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Chapter 0.

Introduction 0
Organisational Stuff
Under no circumstances you should call Fabian by his last name! Also there will be oral
exams in the weeks from 15th–19th February and 22nd–26th March.

Disclaimer ! . — These are not official lecture notes. Instead, Fabian uploads his own
handwritten notes [A&HK] (please suggest a better shorthand) to the lecture’s website.
Fabian’s notes are an excellent resource, and they please the eye with their purple and pink
colour scheme! So why should I bother typing my own notes? This is because of two main
reasons.
(a) I like having my notes as one single document with clickable hyperlinks and a somewhat

reasonable file size (I once attempted to open Fabian’s also excellent but also handwritten
straightening/unstraightening notes on my phone with slow mobile internet—don’t try
this at home).

(b) Typing notes and polishing them after the lecture is a way to force myself to spend time
thinking about the lecture, and in particular, its technical details. This can be a lot of
work, but it’s the best way for me to learn stuff.

I also took the opportunity to try and work out some skipped details or omitted proofs
myself (given Fabian’s ambitious goals for this lecture, some cuts were unavoidable), and I
made a few additions in the hope of clarifying things or sometimes just to unconfuse myself.
My own additions are marked with an asterisk! So whenever you encounter a Proof *, or a
Lemma*, or a list item (c∗), be extra careful for mistakes. If you happen to spot some, do
not hesitate to tell me via GitHub or in person.

Differences in Numbering ! . — Unfortunately, my numbers in Chapter I, and likewise
at some points in the later chapters, tend to diverge from Fabian’s notes, mainly because
some examples discussed there haven’t been part of the lecture (that’s another reason to
check out Fabian’s notes!). I’m trying to keep the numbers aligned where possible and to
minimize the offset where not.

On a related note, I sometimes rearrange the material a bit, for example by upgrading a
side note to the status of a lemma to be citable later. Nevertheless, I hope that these notes
stayed mostly faithful to Fabian’s lecture.

Acknowledgements. — Massive thanks to Fabian, Bastiaan, Branko and Thiago for
spotting countless errors and suggesting various improvements!
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A Fairytale

A Fairytale
Lecture 0

27th Oct, 2020
We start with an overview of the mathematical developments that eventually led to the
invention of K-theory. Don’t worry if you’re not familiar with the stuff on the next few
pages, it is neither a prerequisite for the lecture, nor will it play any prominent role in it.

Let’s begin in the 1850’s: Consider a compact Riemann surface Σ and let D ∈ Z[Σ] be
a divisor on Σ. That is, D =

∑
Ds{s} is a formal sum of points s ∈ Σ with coefficients

Ds ∈ Z, all but finitely many of which are zero. For example, if f : Σ! C is a meromorphic
function, one could consider the principal divisor D(f) given by

D(f)s =


a if f has a zero of order a at s
−a if f has a pole of order a at s
0 else

.

For some divisor D =
∑
Ds{s}, put degD =

∑
Ds and consider the C-vector space

M(D) = {f : Σ! C meromorphic | D(f)s ⩾ −Ds for all s ∈ Σ} .

An important problem in the theory of Riemann surfaces is to determine the dimension
dimM(D). Riemann proved the inequality dimM(D) ⩾ degD + 1 − g(Σ), which was soon
improved upon by his student Roch, who obtained what is famously known today as the
Riemann–Roch theorem.

0.1. Theorem (Riemann–Roch). — Let Σ be a compact Riemann surface of genus g(Σ)
and D be a divisor on Σ. Put D∨ = KΣ −D, where KΣ is the divisor of any 1-form on Σ.
Then

dimM(D) − dimM(D∨) = degD + 1 − g(Σ) .

Note that KΣ, and thus D∨, are only defined up to a principal divisor—in other words,
only their divisor class is well-defined—but that’s all we need, since both dimM(D) and
degD don’t change if D is replaced by D +D(f) for some meromorphic f : Σ! C.

0.2. Example. — Consider Σ = CP1 = C ∪ {∞} and choose D = n{∞}. Then M(D) is
the space of all meromorphic functions f : CP1 ! C whose pole at ∞ has order at most n.
In other words,

M(D) =
{
f : C! C holomorphic

∣∣∣∣ |f(z)| is bounded by C|z|n for some
suitable constant C ⩾ 0 as |z|!∞

}
.

To get KCP1 we can choose the meromorphic 1-form dz, which is holomorphic on C and has
a pole of order 2 at ∞ (because d(z−1) = −z−2dz has a pole of order 2 at 0). Thus the
divisor class of KCP1 is that of −2{∞}. Plugging in Theorem 0.1 gives

dimM(n{∞}) − dimM(−(2 + n){∞}) = n+ 1 .

For n = 0 we obtain M(0) ∼= C, since all bounded holomorphic functions on C are constant
by Liouville’s theorem. By the same reason, M(n{∞}) = 0 for n < 0. Hence

dimM(n{∞}) = n+ 1 for all n ⩾ 0 ,

which makes a lot of sense since we would expect (and have just proved) that M(n{∞}) is
precisely the space of polynomials of degree ⩽ n in that case.
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A Fairytale

Now let’s try to restate the Riemann–Roch theorem in more modern terms. The first
step is to replace divisors by line bundles, which can be done by means of the bijection

{divisors on Σ} / {principal divisors} ∼ − {isomorphism classes of line bundles on Σ} ,

which is, in fact, an isomorphism of abelian groups between the divisor class group Cl(Σ),
whose group structure is inherited from Z[Σ], and the Picard group Pic(Σ), whose group
structure is given by the tensor product of line bundles. If a line bundle L corresponds to a
divisor D under this isomorphism, then the space M(D) corresponds to the C-vector space
Γ(Σ, L) of holomorphic sections of L. Thus, Theorem 0.1 can be restated as

dim Γ(Σ, L) − dim Γ
(
Σ, T ∗Σ ⊗ L−1) = degL+ 1 − g(Σ)

Observe that Γ(Σ, L) = H0
sheaf(Σ, L) and Γ(Σ, T ∗Σ ⊗ L−1) = H1

sheaf(Σ, L) by Serre duality.
So the term on the left-hand side can be interpreted as the “Euler characteristic” χ(Σ, L).
This was the starting point for a generalisation to arbitrary dimensions found by Hirzebruch,
who was not only the founding father of all mathematics in Bonn after the war, but also
incredibly good at guessing the correct generalisations.

0.3. Theorem (Hirzebruch–Riemann–Roch). — Let E ! X be a holomorphic vector
bundle over a d-dimensional compact complex manifold X. Then

χ(X,E) =
d∑
i=0

(
ci(E) ∪ Tdd−i(TX)

)
.

Here ci(E) is the ith Chern class of E and Tdd−i(TX) is the (d− i)th Todd class of TX, so
that the right-hand side lives in the cohomology group H2d(X,Z) = Z and the above equation
makes sense.

Still no sign of K-theory though. This is when Grothendieck, the master of them all,
entered the stage. Recall that Hi(X,E) = RiΓ(X,E). Consider the canonical map f : X ! ∗,
so that the global sections functor is canonically isomorphic to the pushforward along f . In
formulas, f∗ = Γ(X,−). Grothendieck’s idea was to generalize Theorem 0.3 to arbitrary
proper morphisms f : X ! Y of complex manifolds by replacing the Hi(X,E) (appearing in
the definition of χ(X,E)) by Rif∗E. This raises an immediate question though: What is∑

(−1)iRif∗E supposed to be? The summands are coherent sheaves on Y after all, which we
can add (using the direct sum), but surely not subtract one from another. And that brings
us straight to K-theory!

0.4. Definition. — Let X be a complex manifold. We define the 0th K-groups K0(X)
and K0(X) as follows:
(a) K0(X) is the group completion of the monoid of isomorphism classes vector bundles

on X (the monoid structure is given by taking direct sums), modulo the relation
[E] = [E′] + [E′′] for every short exact sequence 0 ! E′ ! E ! E′′ ! 0 (that’s the
condition that was missing in the lecture).

(b) K0(X) is defined in the same way, with vector bundles replaced by arbitrary coherent
sheaves on X.
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A Fairytale

0.5. Theorem (Grothendieck–Riemann–Roch). — Let f : X ! Y be a proper morphism of
complex manifolds. It induces a morphism f! =

∑
(−1)iRif∗ : K0(X)! K0(Y ) on K-groups

which fits into the following hellish commutative diagram:

K0(X) K0(Y )

H∗(X,Z) H∗(Y,Z)

f!

Td(X) ch(−) ch(−) Td(Y )

f∗

The bottom line is the pushforward in cohomology (use Poincaré duality on X, then the usual
pushforward f∗ : H∗(X,Z)! H∗(Y,Z) on homology, and finally use Poincaré duality on Y
to get back to cohomology).

The theory of K0(X) (and its higher versions Ki(X)) is called topological K-theory and
was developed by Atiyah and Hirzebruch soon after Grothendieck had presented is result at
the Arbeitstagung in Bonn. But K0(X) also has an algebraic analogue.

0.6. Definition. — Let R be a ring. The 0th K-group K0(R) is the group completion of
the monoid of finite projective R-modules (the monoid structure is given by taking direct
sums, as usual).

Since every short exact sequence of projective R-modules splits, we don’t need to divide
out the relation from Definition 0.4. The group K0(R) is an interesting invariant of rings: It
is the universal recipient for a “dimension function” for finite projective R-modules.

0.7. Example. — (a) If R = k is a field (or more generally a PID), then the usual
dimension induces an isomorphism K0(k) ∼−! Z.

(b) In general, the map Z! K0(R) induced by n 7! [R⊕n] for n ⩾ 0 is injective iff R has
the invariant basis number property.

(c) If R = Q[G] for some finite group G, then K0(R) =
⊕

V ∈Irr(G) Z, where the indexing
set Irr(G) is the set of isomorphism classes of irreducible G-representations. Indeed,
in this case Q[G] =

∏
V ∈Irr(G) MatnV

(End(V )) for some integers nV ⩾ 0 holds by the
Artin–Wedderburn theorem, which easily gives the above characterisation.

We can go one step further and give an ad hoc definition of K1(R).

0.8. Definition. — The 1st K-group K1(R) = GL∞(R)ab is the abelianisation of the
infinite general linear group GL∞(R) = colimn⩾0 GLn(R).

Moreover, if I ⊆ R is an ideal and S ⊆ R is a multiplicative subset, then one can define
K-groups K0(I) and K0(R,S) fitting into exact sequences

K1(R) −! K1(R/I) ∂
−! K0(I) −! K0(R) −! K0(R/I)

K1(R) −! K1
(
R[S−1]

) ∂
−! K0(R,S) −! K0(R) −! K0

(
R[S−1]

)
,

which look a bit too much like long exact cohomology sequences to be a coincidence. People
actually managed to produce an ad hoc definition of K2(R) fitting into the sequences above,
but that was where consensus ended: People suggested several non-equivalent definitions of
higher K-groups and it was not at all clear how to continue . . .
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Outline of the Course

. . . until Quillen came! He realized that K0(R) and K1(R) could be written as homotopy
groups of a certain simplicial group: Let Proj(R) denote the symmetric monoidal groupoid
of finite projective R-modules. Now consider the inclusion

{Picard groupoids} ⊆ {symmetric monoidal groupoids} .

Here a symmetric monoidal groupoid (G,⊗) is a Picard groupoid if for all x ∈ G there exists
a y ∈ G such that x⊗ y ≃ 1. The above inclusion has a left adjoint (−)grp, and using this
we can write

Ki(R) = πi N
(

Proj(R)grp) for i = 1, 2 .

Here N denotes the nerve construction.
Quillen’s suggestion, although he didn’t have the words to say that yet, was to do the

same, but in the setting of ∞-categories. That is, we consider

{Picard groupoids} {symmetric monoidal groupoids}

{Picard ∞-groupoids} {symmetric monoidal ∞-groupoids}

⊆

⊆ ⊆

(−)grp

⊆

(−)∞-grp

(the objects on the bottom line are also known as grouplike E∞-spaces and E∞-spaces
respectively). In this framework, we can finally define the higher K-groups!

0.9. Definition. — The ith K-group of a ring R is defined as Ki(R) = πi(Proj(R)∞-grp)
(these are abelian groups). More importantly, we define K(R) = Proj(R)∞-grp, which is an
object of the ∞-category of ∞-groupoids (or anima, as we will call them).

0.10. Warning ! . — The functor

(−)∞-grp : {symmetric monoidal ∞-groupoids} −! {Picard ∞-groupoids}

is bloody complicated. For example, one has {Finite sets,⊔}∞-grp = Ω∞S = colimn⩾0 ΩnSn,
so even in the simplest case—finite sets and disjoint union—the homotopy groups of what
comes out are terrifying: they are the stable homotopy groups of spheres.

Outline of the Course
The course will consist of three parts.

Part 1. — wherein we laid the required ∞-categorical foundations. After a review of
Fabian’s previous lectures on ∞-categories, we will discuss symmetric monoidal structures
on ∞-categories and anima. In particular, we will analyse E∞-monoids/groups and develop
the theory of spectra and stable ∞-categories. Important examples of stable ∞-categories
are the ∞-category Sp of of spectra and the derived ∞-category D(R) of R-modules. We
will also prove that {Picard ∞-groupoids} ≃ {connective spectra}, which is a result due to
Boardman–Vogt and May.
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Part 2. — wherein we finally define K-theory. Apart from that, we will do some basic
computations, including Quillens computation of the K-theory of finite fields.

Part 3. — wherein we do some “modern” K-theory. In particular, we will discuss K-theory
as a functor K : Catst

∞ ! Sp from the ∞-category of stable ∞-categories to the ∞-category
of spectra, and sketch the proof of the basic results of “localisation, resolution, and dévissage”.
For this we will follow [LT19] as well as the series of papers [Fab+20I; Fab+20II; Fab+20III]
that Fabian co-authored. These papers are actually concerned with hermitian K-theory,
which arises if we replace Proj(R) by

Unimod(R) = {(P, q) | P is finite projective, q is a unimodular form on R} .

Fabian’s original plan was to develop the algebraic and the hermitian theory simultaneously.
As it turned out, the hermitian side of things fell a bit short, but still played a role. We will
also talk about K-theory being the “universal additive invariant” in the sense of [BGT13].
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Chapter I.

Recollections and Preliminaries I
∞-Categories and Anima

Lecture 1
29th Oct, 2020

The plan for today is to give a rapid review of Fabians lectures from the last two semesters.
Naturally we won’t really prove anything, but give references to Fabians notes [HCI; HCII]
instead.

I.1. Definition. — The simplex category ∆∆ is the category of finite totally ordered sets
and order preserving maps. For C a category we put sC = Fun(∆∆op, C) and cC = Fun(∆∆, C)
and call this the categories of simplicial and cosimplicial objects in C.

I.2. Theorem. — Let A be a small category and let C be a cocomplete category. Then the
Yoneda embedding Y : A! Fun(Aop,Set) induces an equivalence of categories

Y ∗ : FunL
(

Fun(Aop,Set), C
) ∼−! Fun(A, C) .

Here FunL denotes the full subcategory of functors who are left adjoints (and thus admit
right adjoints).

Proof *. In [HCI, Theorem I.41] we proved this statement with FunL replaced by Funcolim,
the full subcategory of colimit-preserving functors. But every such functor automatically
admits a right adjoint by [HCI, Proposition II.18], so Funcolim ⊆ FunL. As all left adjoints
preserve colimits, this inclusion is actually an equality.

In particular, we can apply Theorem I.2 to A = ∆∆ and obtain FunL(sSet, C) ≃ Fun(∆∆, C)
(and of course the right-hand side is the category cC of cosimplicial objects of C). Given a
functor F : ∆∆! C, we denote the corresponding adjoint pair by

| |F : sSet C : SingF .

In concrete terms, | |F can be described as the left Kan extension

∆∆ C

sSet

F

Y LanY F=| |F

of F along the Yoneda embedding Y : ∆∆ ! sSet. Moreover, as SingF is supposed to be
right-adjoint to | |F , it is necessarily given by

SingF (X)n = HomC
(
|∆n|F , X

)
= HomC

(
F ([n]), X

)
.

7
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I.3. Example. — The following adjunctions arise in the way explained above.
(a) π0 : sSet Set : const, where as usual π0 denotes the set of connected components.
(b) π : sSet Cat : N. Here πX denotes the homotopy category of a simplicial set X, and

N(C) the nerve of a category C.
(c) | | : sSet Top : Sing, the adjunction that motivates the above notation.
(d) X × − : sSet sSet : F(X,−) for any simplicial set X. In particular, F(X,Y ) is

our notation for the simplicial set of maps between X and Y , explicitly given by
F(X,Y )n = HomsSet(X × ∆n, Y ).

(e) C[−] : sSet CatsSet : Nc, taking a simplicial set X to the simplicially enriched category
C[X]. The right adjoint Nc is called the coherent nerve functor.

I.4. Definition (“Horn filling conditions”). — A quasicategory or ∞-category C is a
simplicial set such that for all 0 < i < n and all solid diagrams

Λni C

∆n

there exists a dashed arrow as indicated rendering it commutative. A simplicial set X is a
Kan complex if it is an ∞-category and the above condition holds for i = 0, n as well. The
full subcategories of sSet spanned by quasicategories and Kan complexes are denoted qCat
and Kan.

If C and D are ∞-categories, a functor F : C ! D is a map of simplicial sets, or equivalently
a 0-simplex in the simplicial set F(C,D), which we usually denote Fun(C,D) in this case.
Similarly, a natural transformation η : F ⇒ G between functors F,G : C ! D is a 1-simplex
η in Fun(C,D) connecting the 0-simplices F and G.

The simplicial set Λni in Definition I.4 is called the ith n-horn and is given by removing
the interior of ∆n as well as the face opposing its ith vertex. The 2-horns look as follows:

0

1

2

Λ2
0

0

1

2

Λ2
1

0

1

2

Λ2
2

The connection between ∞-categories as defined in Definition I.4 and ordinary categories
(“1-categories”) is given by the following theorem.

I.5. Theorem (“Unique horn filling”). — The nerve functor N : Cat ! sSet is fully
faithful with essential image given by those simplicial sets X such that the dashed arrow in
Definition I.4 exists uniquely. In fact, for a simplicial set X the following are equivalent:
(a) X ∼= N(C) for some category C.
(b) For all 0 < i < n, the restriction F(∆n, X) ∼−! F(Λni , X) is an isomorphism.

8
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(c) For all n, the restriction F(∆n, X) ! F(In, X) is an isomorphism. Here In denotes
the spine of ∆n, i.e., the union of all edges connecting consecutive vertices.

Moreover, an ordinary category C is a groupoid iff N(C) is a Kan complex.

Proof *. In [HCI, Theorem II.25] we proved the equivalence of (a), (b), and (c), but with
HomsSet(−, X) instead of F(−, X). However, the weaker version already implies the stronger
one: We have

F(−, X)n = HomsSet(− × ∆n, X) = HomsSet
(
−,F(∆n, X)

)
,

and if X ∼= N(C) is the nerve of a category, then

F(∆n, X) = F
(

N([n]),N(C)
)

= N Fun([n], C) ,

so we are mapping into the nerve of a category again. The right equality follows from
a straightforward calculation, using that N: Cat ! sSet is fully faithful. The additional
assertion about groupoids and Kan complexes is addressed in Theorem I.13

I.6. Example. — “My first Kan complexes”:
(a) For all topological spaces X ∈ Top, the simplicial set SingX is a Kan complex, which

is pretty easy to check.
(b) Any simplicial group is a Kan complex. That’s not entirely obvious, but not hard. See

[Stacks, Tag 08NZ] for example.
(c) If C and D are 1-categories, then N(Fun(C,D)) ∼= Fun(N(C),N(D)).

I.7. Theorem (Kan/Joyal). — Let C be a simplicial set.
(a) If C is a Kan complex or an ∞-category, then the same holds for F(X, C) for all simplicial

sets X.
(b) C is an ∞-category iff F(∆n, C)! F(Λni , C) is a trivial fibration for all 0 < i < n, which

is again equivalent to F(∆n, C)! F(In, C) being a trivial fibration for all n.
(c) C is a Kan complex iff the conditions from (b) hold and in addition F(∆n, C)! F(Λni , C)

are trivial fibrations for i = 0, n.
Actually, in (b) and (c) it suffices to have the respective conditions only for n = 2.

Proof *. The “if” parts of (b) and (c) follow from the fact that trivial fibrations are surjective.
For the rest of (a), (b), and (c), see [HCI, Corollary V.2.23 and Corollary VI.2.4]. The fact
that C is already an ∞-category if only F(∆2, C)! F(Λ2

1, C) is a trivial fibration was proved
in [HCI, Corollary VI.2.5]. This easily implies the corresponding assertion for Kan complexes:
If F(∆2, C) ! F(Λ2

i , C) is surjective for i = 0, 2, then every morphism in C has a left- and
right-inverse, hence C is a Kan complex by Theorem I.13.

I.8. Warning ! . — In view of Theorem I.7(b) it seems tempting to define ∞-categories
as simplicial sets that have lifting against In ⊆ ∆n. But that’s wrong! The class of simplicial
sets obtained in that way, called composers, is larger than the class of ∞-categories. If you
want to replace Λni by In, you really need the stronger condition that F(∆n, C)! F(In, C)
is a trivial fibration rather than just surjective on 0-simplices.

9
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I.9. Definition. — Let C be an ∞-category. For 0-simplices a, b ∈ C0, define their hom
space/mapping anima/any combination of these as the pullback

HomC(a, b) Fun(∆1, C)

∆0 C × C

. (s,t)
(a,b)

Here s, t : Fun(∆1, C) send a 1-simplex in C to its source and target respectively. The
∞-category Fun(∆1, C) is also called the arrow category of C and denoted Ar(C).

I.10. Example. — (a) For any 1-category D one has HomN(D)(a, b) ∼= const HomD(a, b).
In other words, HomN(D)(a, b) is a discrete simplicial sets and it corresponds to the
Hom set in the original category.

(b) If C is an ∞-category, then the unit adjunction C ! N(πC) of the (π,N) adjunction
induces isomorphisms

HomN(πC)(a, b) ∼= const HomπC(a, b) ∼= constπ0 HomC(a, b) .

In other words, πC is the 1-category having C0 as objects and homotopy classes of C1 as
morphisms.

I.11. Definition. — A ∞-category C is called an ∞-groupoid—or, in Scholze’s fancy new
terminology, an anima—if πC is a groupoid.

I.12. Example. — (a) For a 1-category D let core D denote the (usually non-full) sub-
category spanned by the isomorphisms in D; in particular, core D is a groupoid. If C is
an ∞-category, we define core C by the pullback

core C C

N(coreπC) N(πC)

.

Then core C is an anima. In fact, one can check that it is the largest anima contained in
the ∞-category C.

(b) If C is an ∞-category, then HomC(a, b) is an anima for all a, b ∈ C (that’s not entirely
obvious though).

It’s pretty easy to check that every Kan complex is an anima. Surprisingly, and that was
one of the first hard theorems in ∞-category theory, the converse holds as well!

I.13. Theorem (Joyal). — Every ∞-groupoid is in fact a Kan complex.

Proof *. This follows from Joyal’s lifting theorem, see [HCI, Theorem VI.3.20].

By now, we haven’t been able to produce any examples of ∞-categories yet, safe for
nerves of 1-categories (these guys don’t count). The first real source of interesting examples
is given by coherent nerves of Kan enriched categories.

10
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I.14. Theorem (Cordier–Porter). — If C ∈ CatKan is a category enriched in Kan complexes,
then its coherent nerve Nc(C) is an ∞-category. Moreover, for all a, b ∈ C we have canonical
homotopy equivalences

HomNc(C)(a, b) ≃ FC(a, b) .
Here FC denotes Kan complex of morphisms in the enriched category C.

Proof *. See [HCI, Theorem VII.19] (but be warned that stuff gets technical).

I.15. Example. — “My first ∞-categories”:
(a) The full subcategory Kan ⊆ sSet is enriched over itself via FKan(X,Y ) = F(X,Y ). Its

coherent nerve Nc(Kan) = An is called the ∞-category of anima.
(b) The full subcategory qCat ⊆ sSet is enriched over Kan via FqCat(C,D) = core F(C,D).

Its coherent nerve Nc(qCat) = Cat∞ is the ∞-category of ∞-categories. Note that
Fabian will usually write Cat instead of Cat∞ to not drag the index ∞ around all the
time.

(c)Lecture 2
3rd Nov, 2020

The category Cat1 of all small 1-categories is canonically enriched in groupoids via
FCat1(C,D) = core Fun(C,D). This enrichment can be upgraded to a Kan enrichment:
Namely, taking the nerves of all hom groupoids (which produces Kan complexes by
Theorem I.13) induces a functor N∗ : CatGrpd ! CatKan. We thus obtain an ∞-category
Cat(2)

1 = Nc(N∗ Cat1), called the 2-category of 1-categories.1 Similarly one can define a
2-category Grpd(2)

1 . We end up with a chain of inclusions

An

N(Set) Grpd(2)
1 Cat∞

Cat(2)
1

⊆
⊆

⊆

⊆ ⊆

All of these induce homotopy equivalences on mapping anima. In other words, they are
fully faithful.

(d) The category Top is Kan enriched via FTop(X,Y )n = HomTop(X × |∆n|, Y ), which
provides the ∞-category of topological spaces after taking coherent nerves. However, be
warned that Nc(Top) ̸≃ An!!

(e) Let R be a ring and Ch(R) the category of chain complexes over R. It is enriched over
simplicial R-modules, and thus Kan-enriched by Example I.6, via

FCh(R)(C,D)n = HomCh(R)
(
C ⊗Z C

simp
• (∆n), D

)
.

Here Csimp
• (∆n) is a chain complex of abelian groups given as follows: In degree m

we put Z[{non-degenerate m-simplices of ∆n}] and the differentials are given by ∂m =∑m
i=0(−1)idi, where di is induced by the corresponding face map di : (∆n)m ! (∆n)m−1,

which preserves non-degenerate simplices (that doesn’t hold for arbitrary simplicial sets
though). You probably recognize Csimp

• (X) as the complex that computes the simplicial
homology groups Hsimp

i (X).
1Here “2-category” means that πi HomCat1 (C, D) = 0 for i ⩾ 2. To prove this, use Theorem I.14 and check

that nerves of groupoids have vanishing higher homotopy groups.

11
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We let K(R) = Nc(Ch(R)) be the ∞-category of chain complexes (this “K” has
nothing to do with “K-theory”) and let K⩾0(R),K⩽0(R) ⊆ K(R) the full sub-∞-
categories spanned by chain complexes concentrated in nonnegative/nonpositive degrees.
Inside K⩾0(R), there is the full sub-∞-category D⩾0(R) ⊆ K⩾0(R) spanned by the
degreewise projective chain complexes in concentrated nonnegative degrees. This is
called the bounded below derived category of R. Similarly, there is the bounded above
derived category D⩽0(R) ⊆ K⩽0(R) spanned by degreewise injective chain complexes
concentrated in nonpositive degrees.

Finally, there is Dperf(R) ⊆ K(R) which is the full sub-∞-category spanned by
bounded complexes of degreewise finite projective modules. Once we’ve defined K-
theory, we’ll eventually see that K(R) = Proj(R)∞-grp ≃ K(Dperf(R)) (and yes, this
time, “K” is really the “K” from “K-theory”).

I.15a. Exercise. — For complexes C,D ∈ Ch(R) let HomR(C,D) denote the internal
Hom in Ch(R), so that HomR(C,−) is right-adjoint to C ⊗R − (see the nLab article for an
explicit construction). Show that the Kan enrichment in Example I.15(e) satisfies

πi FCh(R)(C,D) ∼= Hi

(
Hom(C,D)

)
for all i ⩾ 0 .

In particular, π0 FCh(R)(C,D) is the set of chain homotopy classes of maps C ! D.

I.16. Theorem (Dold–Kan). — By a variant of Theorem I.2, the cosimplicial object C• in
Ch⩾0(Z) given by [n] 7! Csimp

• (∆n) gives rise to mutually inverse equivalences of (ordinary!)
categories

| |C• : sAb ∼
∼ Ch⩾0(Z) : SingC•

.

These equivalences translates homotopy groups into chain homology groups. Moreover, we
have FCh(Z)(C,D) = SingC•

(HomZ(C,D)) for all C,D ∈ Ch⩾0(Z).

Proof *. See [HA, Subsection 1.2.3]; it takes a bit of fiddling though to check that our
constructions coincide with the standard ones (i.e. the ones Lurie uses).

I.17. Philosophical Nonsense I. — We obtain a chain of adjunctions

Top sSet sAb Ch⩾0(R)
Sing

| | Z[−]

forget

| |C•

SingC•

(all bottom arrows are right-adjoints, that’s why the direction of the arrows on the left
is swapped). Going from Top to Ch⩾0(Z) sends a topological space X to its singular
chain complex Csing

• (X). Going in the reverse direction sends a chain complex C to the
corresponding generalized Eilenberg–MacLane space. In particular, if C = A[n] is given by
an single abelian group A sitting in degree n, then it is sent to K(A,n).

I.18. Philosophical Nonsense II. — To describe what an unbounded chain complex
is, it suffices to understand bounded below chain complexes. Namely, a chain complex
C ∈ Ch(R) can be described by the sequence of truncations τ⩾iC ∈ Ch⩾i(R). These are
given by

τ⩾iC =
(
. . .

∂i+3
−−−! Ci+2

∂i+2
−−−! Ci+1

∂i+1
−−−! ker ∂i −! 0 −! 0 −! . . .

)
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(this is chosen in such a way that the canonical map τ⩾iC ! C induces isomorphisms on
homology in degrees ⩾ i). One easily checks the following relation with way to many brackets:

(τ⩾iC)[−i] ∼= τ⩾0

((
(τ⩾i−1C)[−(i− 1)]

)
[−1]

)
.

Note that under the Dold–Kan correspondence (Theorem I.16), the operation C 7! τ⩾0(C[−1])
on Ch⩾0(Z) corresponds to X 7! Ω0X on sAb. Here Ω0 denotes the simplicial loop space (or
at least some model for it) with base point 0 ∈ X0, i.e., the neutral element of the simplicial
abelian group X. So if we write Xi = |(τ⩾iC)[−i]|C• , then we obtain canonical isomorphisms
Xi

∼= Ω0Xi−1. I wonder where I’ve seen that before . . .
. . . so let’s define an abelian spectrum to be a sequence of simplicial abelian groups

Xi together with isomorphisms Xi
∼= Ω0Xi−1. In that way, Theorem I.16 extends to an

equivalence {abelian spectra} ≃ Ch(Z). But that’s only the beginning of a long story . . .

I.19. Theorem (Joyal). — Let C and D be ∞-categories.
(a) A functor F : C ! D of ∞-categories is an equivalence (i.e. there exists G : D ! C

and natural equivalences F ◦G ≃ idD and G ◦ F ≃ idC) if and only if it is essentially
surjective and fully faithful (i.e. the induced map F∗ : π0 core C ! π0 core D is surjective
and F∗ : HomC(x, y)! HomD(F (x), F (y)) is a homotopy equivalence of anima for all
x, y ∈ C.)

(b) A natural transformation η : F ⇒ G of functors F,G : C ! D is a natural equivalence
(i.e. η is an isomorphism in the homotopy category π Fun(C,D)) if and only if induces
equivalences on 0-simplices, i.e. ηx : F (x)! G(x) is an equivalence for all x ∈ C.

Proof *. See [HCI, Theorem VII.1, Theorem VII.8].

In 1-category theory, Theorem I.19 is a triviality (up to axiom of choice business). But in
∞-land it is hard. An ∞-category contains infinitely more data than just a bunch of objects
and morphism spaces. All the more surprising, that these actually suffice to characterize
equivalences.

As an application, we get a precise formulation of Grothendieck’s conjectural connection
between (∞-)groupoids and spaces that became famously known as the homotopy hypothesis
(at that time, Grothendieck was already way beyond scribbling devils around his diagrams,
living somewhere deep in the Pyrenees).

I.20. Corollary (Grothendieck’s homotopy hypothesis). — Let CW denote the category
of CW-complexes with its Kan enrichment given by FCW(X,Y ) = Sing Map(X,Y ). The
functors

| | : An Nc(CW) : Sing

are inverse equivalences.

Proof *. See [HCI, Corollary VII.6].

This finishes our recollection of Fabian’s Higher Categories I lecture and we start reviewing
the material from Higher Categories II.
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Cocartesian/Left Fibrations and Lurie’s Straightening
Equivalence
The main goal of Fabian’s Higher Categories II lecture last semester was to construct a
functor HomC : Cop × C ! An and prove the ∞-analogue of Yoneda’s lemma. We know what
HomC ought to do on 0-simplices of C by Definition I.9, but making it into a functor is
incredibly complicated—as is any attempt at defining functors into An or Cat∞. The key to
define such functors is Lurie’s straightening/unstraightening equivalence.

I.21. Theorem (Lurie). — Let ∗/An denote (any model for) the slice category of anima
under a point. To each functor F : C ! An of ∞-categories associate an ∞-category Un(F )
via the pullback

Un(F ) ∗/An

C An

.

F

This association upgrades to a fully faithful functor Un: Fun(C,An) ! Cat∞/C (the “un-
straightening” functor), whose essential image is the full subcategory Left(C) spanned by the
left fibrations over C (to be defined in Definition I.24). We let St: Left(C) ! Fun(C,An)
(“straightening”) denote an inverse.

Proof *. This follows from the combined effort of all we did in Higher Categories II, so let
me randomly pick [HCII, Remark X.57(iii)] as a reference.

I.22. Example. — For any x ∈ C, the straightening of the left fibration x/C ! C is defined
to be HomC(x,−) : C ! An. That this makes sense can be seen as follows. Observe that the
fibre of Un(F )! C over some y ∈ C is just F (y), since the fibre of ∗/An ! An over some
anima X is just X itself. Conversely, St(p : E ! C)(y) ≃ (fibre of G over y) holds for all left
fibrations p : E ! C. In particular, evaluating HomC(x,−) at y gives the fibre of x/C over y,
which is indeed HomC(x, y).

Theorem I.21 generalizes as follows.

I.23. Theorem (Lurie again, of course). — For any ∞-category C, the equivalences from
Theorem I.21 extend to inverse equivalences

St: Cocart(C) ∼
∼ Fun(C,Cat∞) : Un ,

where Cocart(C) is the (non-full!) subcategory of Cat∞/C spanned by cocartesian fibrations
and maps preserving cocartesian edges (to be defined in Definition I.24).

Proof *. Again, I should really cite the entirety of Fabian’s previous lecture. The proof of
the statement in question finishes in [HCII, Chapter X p. 113].

There is also a dual version of Theorem I.23, which asserts that there is an equivalence
Cart(C) ≃ Fun(Cop,Cat∞), induced by the cartesian straightening and unstraightening
functors. Whenever there is room for confusion, we’ll use Stcocart, Uncocart for the cocartesian
versions, and Stcart, Uncart for the cartesian versions.

With that out of the way, let’s define what this “cocartesian” thing actually is!
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I.24. Definition. — Let p : E ! C be a functor of ∞ categories.
(a) Informally, an edge f : x! y in E is called p-cocartesian if the following condition holds:

For all edges g : x! z in E and all fillers σ : ∆2 ! C as depicted in the right diagram
below,

x z

y

g

f

///

∃(!)

p
7−!

p(x) p(z)

p(y)

p(g)

p(f)
σ

there exists a unique (up to contractible choice) filler τ : ∆2 ! E satisfying p(τ) = σ.
In other words, the space of lifts of σ is contractible.

Somewhat more formally, f : x! y is p-cocartesian if for all z ∈ E the diagram

HomE(y, z) HomE(x, z)

HomC
(
p(y), p(z)

)
HomC

(
p(x), p(z)

)
f∗

p∗ p∗

p(f)∗

is a homotopy pullback diagram of anima. However, that doesn’t mean the above is a
pullback diagram taken inside the 1-category Kan (or sSet)—in fact, it likely doesn’t
even commute on the nose, but only up to homotopy. And worse: The “precomposition”
maps f∗ and p(f)∗ are not even canonically defined. To construct f∗, one has to choose
a “composition law” in E , i.e. a section of the trivial fibration Fun(∆2, E)! Fun(Λ2

1, E),
but there is no canonical one.

Despite all these difficulties, there is a way to give a well-defined definition of
homotopy pullbacks using model categories (see [HCII, Example VIII.49(vi)]). However,
once we have the ∞-categorical machinery available, there is a better definition: A
diagram of anima is a homotopy pullback if it is a pullback diagram taken inside the
∞-category An! The connection to the model-theoretic definition will be made precise
in Theorem I.34 below.

(b) Let p-Cocart ⊆ Ar(E) denote the full subcategory spanned by the cocartesian edges.
Then p is called a cocartesian fibration if the dashed arrow q in the diagram below is an
equivalence of ∞-categories.

p-Cocart

P Ar(C)

E C

∼
q

s

p

.
s

p

Informally, the way to think about this is that all edges of C admit a lift with given
starting point. Also p-Cocart! P is automatically fully faithful, as we’ll prove below.

(c) We call p a left fibration if it is a cocartesian fibration and satisfies the following
equivalent conditions.

(i) St(p) : C ! Cat∞ factors through An.
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(ii) The derived fibres of p are anima. By that we mean the fibres of E ′ ! C, where
E ∼−! E ′ ↠ C is any factorisation of p into an Joyal equivalence followed by
fibration in the Joyal model structure. Or just take the fibres as usual, but with
pullbacks inside the ∞-category Cat∞.

(iii) p is conservative, i.e. for all edges f in E we have that f is an equivalence iff p(f)
is an equivalence in C.

(iv) All edges in E are p-cocartesian.
There is also a dual notion of cartesian edges/fibrations and right fibrations. An edge of
E is p-cartesian if its opposite is a cocartesian edge with respect to pop : Eop ! Cop (in
other words, we have to reverse all the arrows in the informal part of (a)). Similarly, p is a
cartesian/right fibration if pop is a cocartesian/left fibration.

In the lecture we had a brief discussion about how Definition I.24 relates to the definition
that the participants of Fabian’s previous lectures would have expected. I’ll give an expanded
version of that discussion below. To be safe, everything is labelled with an asterisk to indicate
it is an addition to the lecture.

I.24a. Warning* ! . — Definition I.24 does not coincide with the way we defined
cocartesian and left fibrations in Fabian’s previous lectures. The main difference is that we
don’t require p to be an inner fibration, resulting in the advantage that Definition I.24 is
invariant under Joyal equivalence (Fabian promised that this will save us some headache). Up
to replacing p : E ! C by an isofibration, both definitions agree, as the following Lemma* I.24b
shows.

Also note that it doesn’t suffice to replace p by an inner fibration. In fact, the inclusion
{0} ↪! J of a point into the free-living isomorphism is an inner fibration (as the nerve of a
map of 1-categories) and a Joyal equivalence, hence it satisfies Definition I.24(b), but it is
not an isofibration and thus not cocartesian in the old sense by [HCII, Proposition IX.2].

I.24b. Lemma*. — The dashed arrow q in Definition I.24(b) is automatically fully faithful.
In particular, for a functor p : E ! C the following conditions are equivalent:
(a) p is a cocartesian/left fibration in the new sense.
(b) For all factorisations E ∼−! E ′ ↠ C into a Joyal equivalence followed by a fibration in

the Joyal model structure, E ′ ! C is a cocartesian/left fibration in the old sense.
(c) The above condition holds for some factorisation E ∼−! E ′ ↠ C as above.
Moreover, the four conditions from Definition I.24(c) are indeed equivalent.

Proof *. Let ×R denote derived pullbacks (or homotopy pullbacks, that’s the same). Let
f : x! y and g : x′ ! y′ be cocartesian edges. Since p-Cocart ⊆ Ar(E) is a full subcategory,
we can use the calculation of Hom anima in arrow categories from [HCII, Proposition VIII.5]
to obtain

Homp-Cocart(f, g) ≃ HomE(x, x′) ×R
HomE (x,y′) HomE(y, y′) .

Our definition of Hom anima in Definition I.9 commutes with pullbacks of simplicial sets (as
long as the pullback still gives an ∞-category), so we get

HomP

(
q(f), q(g)

)
= HomE(x, x′) ×HomC(p(x),p(x′)) HomAr(C)

(
p(f), p(g)

)
.

This is a pullback on the nose, but also a homotopy pullback because s : Ar(C)! C is an
inner fibration (even a cartesian fibration by the dual of Example I.25; this also implies
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that P is an ∞-category), hence s∗ : HomAr(C)(p(f), p(g)) ! HomC(p(x), p(x′)) is a Kan
fibration. Now replacing HomE(y, y′) by the homotopy pullback from Definition I.24(a),
HomAr(C)(p(f), p(g)) by its description from [HCII, Proposition VIII.5], and simplifying
the resulting homotopy pullbacks shows that q∗ : Homp-Cocart(f, g)! HomP (q(f), q(g)) is
indeed an equivalence, hence q is fully faithful.

To prove equivalence of (a), (b), (c), note that Definition I.24(b) is invariant under Joyal
equivalences, so we may assume p : E ! C is a fibration in the Joyal model structure, or
equivalently an isofibration since both are ∞-categories. If p is cocartesian in the old sense,
then q : p-Cocart! P is surjective on the nose, hence a Joyal equivalence by what we just
proved. This is enough to prove (b) ⇒ (c) ⇒ (a). For (a) ⇒ (b), we may again assume p is
an isofibration and we must show that q is surjective on the nose rather than just essentially
surjective. We will even show that q is a trivial fibration. Since q is a Joyal equivalence,
it suffices to show that it is an isofibration. Observe that Ar(E)! P is an isofibration by
[HCI, Corollary VII.11]. Hence its restriction q to the full subcategory p-Cocart ⊆ Ar(E) is
an inner fibration. But p-Cocart is closed under equivalences in Ar(E) (which is evident from
the homotopy pullback condition in Definition I.24(a)), so an easy argument shows that q
also inherits lifting agains {0} ↪! J from the isofibration Ar(E)! P .

Now that we know equivalence of (a), (b), (c) (except for the assertions about left fibrations,
but these will follow immediately), it’s easy to show that the conditions in Definition I.24
are indeed equivalent: Note that the values of St(p) are given by the (derived) fibres of p,
hence (i) ⇔ (ii), and (ii) ⇔ (iii) ⇔ (iv) follows from [HCII, Proposition IX.3]

I.25. Example. — “My first cocartesian edges/fibrations”:
(a) Any equivalence in E is p-cocartesian by Joyal’s lifting theorem.
(b) The “target morphism” t : Ar(C) ! C (given by restriction along {1} ↪! ∆1) is a

cocartesian fibration (in both the old and new sense since it is an isofibration). Let
f : x! x′ and g : y ! y′ be objects in Ar(C). Then a morphism σ : f ! g in Ar(C), i.e.
a commutative square

x y

x′ y′

f σ g

in C, is a t-cocartesian edge if and only if the induced morphism σ0 : x ! y is an
equivalence in C. We will prove this in Lemma* I.25a below (Fabian gave the idea in
the lecture, but some more details can’t hurt).

This immediately implies that t is a cocartesian fibration, because for every object
f : x! x′ of Ar(C) and all morphisms x′ ! y′ in C, we can take

x x

x′ y′

f

as a t-cocartesian lift. However, t is usually not a left fibration. The straightening St(t)
is the slice category functor C/− : C ! Cat∞, which not necessarily factors over An.

Lecture 3
5th Nov, 2020

As a fun fact, let us mention that t : Ar(C)! C is also a cartesian fibration, provided
C has pullbacks (we’ll talk more about limits in ∞-categories soon), which we leave as
Exercise I.25b. Spoiler warning: I’ve also included my attempt at a solution there.
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(c) For all x ∈ C, the slice category projection C/x ! C is a cartesian fibration, and in
fact even a right fibration, since its (derived or non-derived) fibre over y is the anima
HomC(y, x).

I.25a. Lemma*. — With notation as in Example I.25(b), σ is t-cocartesian iff the induced
morphism σ0 : x! y is an equivalence in C.

Proof *. Indeed, if x! y is an equivalence, then an easy calculation involving the characteri-
sation of Hom anima in arrow categories ([HCII, Proposition VIII.5]) shows that σ satisfies
the homotopy pullback condition from Definition I.24(a). Conversely, if σ is cocartesian,
then any diagram

z

x y

z′

x′ y′

h

f

///

g

///

in which the front face is σ, and only the top and right back face are missing, admits a
filler (at least up to equivalence of such diagrams). Choose the left back face λ as follows:
Put z = x and z′ = y′, also choose λ0 : x ! x as the identity on x, and λ1 : x′ ! y′ as
σ1 : x′ ! y′, and h : x ! y′ as a composition of f and σ1 in C. Then a filler of the above
diagram provides a left inverse of x! y. Moreover, the morphism ρ : g ! h in Ar(C) induced
by the right back face ρ is again t-cocartesian. This is because λ is a composition of ρ and σ,
and both σ and λ are t-cocartesian (for λ this follows from x! z being the identity on x,
hence an equivalence), so [HCII, Proposition IX.5] can be applied. Therefore, we may repeat
the all the arguments for ρ instead of σ, which shows that the left inverse of σ0 : x! y has a
left inverse itself, whence σ0 must indeed be an equivalence.

I.25b. Exercise. — Show that C admits pullbacks (in the ∞-categorical sense defined in
Example I.33(b) below) iff the cocartesian fibration t : Ar(C)! C is also a cartesian fibration.
More generally, the t-cartesian edges are given precisely by the pullback squares.

Proof sketch*. If the claimed characterisation of cartesian edges is true, then the lifting
condition for t to be a cartesian fibration is satisfied if and only if C has all pullbacks. So it
suffices to show the second assertion.

We’ll freely use the yoga of limits in ∞-categories which is developed from Example I.33(b)
onward. By Corollary I.50, HomC(z,−) : C ! An preserves all limits for every z ∈ C. Also
limits in An can be computed by homotopy limits thanks to Theorem I.34 below.

Now let f : x ! x′ and g : y ! y′ be objects of Ar(C) and let σ : f ! g be an edge in
Ar(C). Then σ is cartesian iff for all h : z ! z′ we can compute HomAr(C)(h, f) by a certain
homotopy pullback dual to that in Definition I.24(a). Writing that condition out explicitly
and simplifying using the description of Hom anima in arrow categories given in [HCII,
Proposition VIII.5], we obtain the condition

HomC(z, x) ×R
HomC(z,x′) HomC(z′, x′) ≃ HomC(z, y) ×R

HomC(z,y′) HomC(z′, x′) .

If z = z′ and h = idz, then this condition precisely says that x is a pullback of y ! y′  x′

by our remark on HomC(z,−) in the previous paragraph. We should perhaps explain why
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it suffices to check that on objects z ∈ C. This is because one has, in fact, a natural
transformation HomC(−, x) ⇒ HomC(−, y) ×R

HomC(−,y′) HomC(−, x′) of functors Cop ! An
(to construct this one has to dive into the straightening construction), and whether this is
an equivalence can indeed be checked object-wise by Theorem I.19. Conversely, if x is a
pullback of y ! y′  x′, one easily checks that the above equivalence holds.

I.26. Constructing the functor HomC : Cop × C ! An. — There are at least four
equivalent ways to do so.
(a) Recall An = Nc(Kan), so Cop × C ! An corresponds to a simplicially enriched functor

C[Cop × C]! Kan. This is provided by the commutative square

C[Cop × C] Kan

C[C]op × C[C] sSet
FC[C]

Ex∞

where as usual FC[C] : C[C]op ×C[C]! sSet denotes the simplicial set of morphisms in the
simplicially enriched category C[C]. Instead of Ex∞ we could use any functorial weak
equivalence into a Kan complexes; for example, Lurie uses the functor X 7! Sing |X| in
[HTT, §5.1.3].

(b) We construct the corresponding left fibration to Cop ×C explicitly: It is the twisted arrow
category TwAr(C) defined by TwAr(C)n = HomsSet((∆n)op ⋆ ∆n, C). The functorial
inclusions (∆n)op ⊔ ∆n ⊆ (∆n)op ⋆∆n induce a projection

TwAr(C) −! Cop × C ,

which turns out to be a left fibration with the correct fibres. See [HA, §5.2.1] for proofs.
The twisted arrow category construction of HomC is the one that is most commonly
used today.

(c) Fabian’s favourite construction considers the commutative diagram

Ar(C) C × C

C

(s,t)

t pr2

which is a morphism in Cocart(C) (in particular, (s, t) preserves cocartesian edges)
by Example I.25(b) and the following simple fact: For all ∞-categories C and D, the
projection pr2 : C×D ! D is cartesian and cocartesian, and the pr2-cartesian/cocartesian
edges are those of the form (equivalence in C, arbitrary morphism in D).

Applying the cocartesian straightening construction gives a natural transformation
Stcocart(t) ⇒ const C of functors C ! Cat∞ by Theorem I.23. This natural transforma-
tion defines a map ∆1 ! Fun(C,Cat∞), hence a functor S : C ! Ar(Cat∞) by adjoining.
Informally, S takes x ∈ C to the object C/x ! C in the arrow category of Cat∞. In
particular, these are right fibrations by Example I.25(c) and the target is always C,
whence S factors through Right(C) ! Ar(Cat∞). We denote the resulting functor
S : C ! Right(C) as well. Composing S with Stcart : Right(C) ∼−! Fun(Cop,An), the
cartesian straightening equivalence, finally provides a functor

Y C : C −! Fun(Cop,An)
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(the Yoneda embedding), which gives the desired HomC : Cop × C ! An after “currying”
(which is how Fabian sometimes calls the adjunction Fun(C,Fun(D, E)) ≃ Fun(C×D, E)).

(d) You can also dualize all steps in (c) and start with

Ar(C) C × C

C

(s,t)

s pr1

I.27. Theorem. — All constructions in I.26 give the same functor HomC : Cop × C ! An
up to equivalence.

We won’t prove Theorem I.27. Lurie shows that I.26(a) and (b) are equivalent in [HA,
Proposition 5.2.1.11], and for equivalence of (c) and (d) you probably shouldn’t go for a direct
proof, but show that either one is equivalent to (b). Fabian believes that if one works with
any of these constructions long enough, it will become obvious that the others are equivalent.

I.28. More on the twisted arrow category. — By I.26(b) and Theorem I.21, the
twisted arrow category of C sits inside a pullback (up to equivalence, or take the pullback in
Cat∞)

TwAr(C) ∗/An

Cop × C An

.

HomC

(if you don’t want to use I.26(b) to construct HomC , this pullback square can also be taken
as a definition of TwAr(C)).

Unwinding, this shows that the objects of TwAr(C) are given by pairs (x, y) ∈ Cop × C
together with a map f : ∆0 ! HomC(x, y). In other words, objects are arrows f : x! y in
C. Informally, an edge f ! g in TwAr(C) between f : x ! y and g : x′ ! y′ is given by a
“twisted square” (∆1)op ⋆∆1 ! C and a 2-simplex ∆2 ! An as follows:

x x′

y y′

f

ms

g

mt

and
HomC(x, y) HomC(x′, y′)

∆0

m∗
s◦mt,∗

f g

More formally, since TwAr(C) sits in the pullback above, HomTwAr(C)(f, g) can be computed
as the pullback of the corresponding Hom anima in Cop × C, An, and ∗/An. This pullback is
also a homotopy pullback, as ∗/An! An is an inner fibration (even a left fibration in the
old sense), hence induces Kan fibrations on Hom anima. Plugging in the calculation of Hom
anima in slice categories from [HCII, Corollary VIII.6] thus provides a homotopy pullback

HomTwAr(C)(f, g) {g}

HomC(x′, x) × HomC(y, y′) HomC(x′, y′)

.
h

where the bottom arrow sends (ms,mt) 7! mt ◦ f ◦ms for some choice of composition.
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The twisted arrow category will be important to us since it has to do with spans in
C. This becomes apparent when we look at TwAr(∆n). Its objects are arrows in ∆n.
We organize these arrows in an upwards pointing triangle with rows numbered 0, 1, . . . , n
from the bottom to the top: In the ith row, we put the morphisms that “go up by i”, i.e.,
(0! i), (1! i+ 1), . . . , (n− i! n). In particular, the bottom row contains the identities
and the top row contains only the morphism (0! n). If we draw in some of the edges in
TwAr(C) (every other edge can be obtained as a composite of these), we obtain a picture as
follows:

. . .

. . .

. . .

. . .. .
. . . .

And voilà, plenty of spans! The corresponding picture for Ar(∆n) is instead the following:
...

. . .

. . .

. . .

. . .

...

As a bit of foreshadowing, Fabian mentioned that the first picture is related to the Quillen
Q-construction (see I.70), whereas the second is related to the Segal S-construction (see
Construction IV.5), which people keep calling Waldhausen S-construction, even though
Waldhausen himself wrote Segal S-construction.
I.28a. Exercise. — Show that core TwAr(C) ≃ core Ar(C) holds for all ∞-categories C.
Proof sketch. See [A&HK, Proposition I.31] for a rough sketch.

Yoneda’s Lemma, Limits and Colimits in ∞-Categories
Yoneda’s Lemma and Adjunctions
Now that we have a sufficient supply of mutually equivalent definitions of the Hom functor,
the next step is to prove Yoneda’s lemma.
I.29. Theorem (Yoneda’s lemma). — Let C be an ∞-category. Given a functor F : C ! An
and an object x ∈ C, the evaluation map

evidx : Nat
(

HomC(x,−), F
) ∼−! F (x)

is an equivalence (we use Nat as a shortcut for HomFun(C,An)). Morover, adjoining the
functor HomC : Cop × C ! Fun(C,An) gives fully faithful functors (“Yoneda embeddings”)

Y C : C −! Fun(Cop,An) and YC : Cop −! Fun(C,An) .
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Proof of Theorem I.29*. See [HCII, Corollaries XI.2 and XI.4].

I.30. Definition. — For an ∞-category C we denote by P(C) = Fun(Cop,An) the ∞-
category of presheaves on C.

Onwards to adjunctions!

I.31. Definition. — Let R : D ! C be a functor of ∞-categories.
(a) Given objects y ∈ C, x ∈ D, and a morphism η : y ! Rx in C, we say η witnesses x as

a left-adjoint object to y under R if the composite

HomD(x,−) R
−! HomC(Rx,R−) η∗

−! HomC(y,R−)

is an equivalence of functors D ! An (which may be tested on objects by Theo-
rem I.19(b)).

(b) An adjunction between R and some functor L : C ! D is an equivalence

HomD(L−,−) ≃ HomC(−, R−)

as functors Cop × C ! An.

A simple but still somewhat surprising and incredibly useful consequence of Yoneda’s
lemma is that to define left-adjoint functors, it suffices to do so on objects (something that is
wildly false for arbitrary functors)!

I.32. Corollary. — A functor R : D ! C of ∞-categories admits a left adjoint if and only
if every y ∈ C admits a left-adjoint object under R. More generally, if CR ⊆ C is the full
subcategory spanned by those objects y ∈ C which admit a left-adjoint object, extracting these
left-adjoint objects defines a functor

L : CR −! D .

Proof. We repeat the proof given in [HCII, Lemma XI.6]. Via currying, the functor
HomC(−, R−) : Cop × D ! An corresponds to a functor H : Cop ! Fun(D,An). When
restricted to Cop

R , it lands in the representables, i.e., in the essential image of the Yoneda
embedding YD : Dop ! Fun(D,An). By Theorem I.29, YD is fully faithful, hence an equiva-
lence onto its essential image by Theorem I.19(a). Composing H|Cop

R
with an inverse of this

equivalence gives a functor Cop
R ! Dop. Taking (−)op we get L : CR ! D as required.

By construction, YD ◦Lop is equivalent to H|Cop
R

in Fun(Cop
R ,Fun(D,An)). But this means

that HomD(L−,−) and HomC(−, R−) are equivalent in Fun(Cop
R × D,An). If CR = C, this

proves that L is indeed a left adjoint of R.

I.33. Example. — “My first adjoint pairs of functors”:
(a) The inclusion An ⊆ Cat∞ has both a left adjoint, the functor | | : Cat∞ ! An (which

sends an ∞-category to its localisation at all its morphisms), and a right adjoint, given
by core : Cat∞ ! An. We proved this in [HCII, Example XI.8]. Moreover, the inclusion
Set! An has π0 : An! Set as a left adjoint. In pictures,

Set An Cat∞⊆ ⊆

π0 | |

core
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Of course we should actually write N(Set) instead of Set, but from now on we’ll frequently
abuse notation that way since writing N all the time will inevitably get on our . . .
nerves (sorry).

(b) Let I be any simplicial set (which we think of as a “diagram shape”) and consider the
functor const : C ! Fun(I, C). Given a map F : I ! C, a left-adjoint object to F under
const is called a colimit of F and denoted colimI F . Similarly, a right-adjoint object is
called a limit and denoted limI F . In particular, one has

HomC

(
colim

I
F, x

)
≃ Nat(F, constx)

for all objects x ∈ C, and similarly for limI F . We will discuss limits and colimits in
detail in the next subsection.

First Properties and Examples of (Co)Limits
First we’ll discuss the main existence theorem for limits and colimits in ∞-categories. For
that matter, recall the notion of Kan simplicial model categories from [HCII, Digression IV
Definition G.2]. For a (not necessarily Kan simplicial) model category A, we denote by Acf its
full subcategory of bifibrant objects (Lurie uses the notation A◦ instead). Also (−)c : A! A
and (−)f : A! A denote any choice of cofibrant/fibrant replacement functors.

I.34. Theorem. — If A is a Kan simplicial model category, then Nc(Acf) has all limits
and colimits. For a diagram F : I ! Nc(Acf), these are given by

colim
I

F ≃
(

hocolim
C[I]

F̃
)f

and lim
I
F ≃

(
holim
C[I]

F̃
)c
,

where F̃ : C[I]! Acf is adjoint to F : I ! Nc(Acf).

Proof *. See [HCII, Theorem XI.21].

I.34a. Remark*. — We’ll soon talk about cofinal and final maps (see Definition I.44
or [HTT, §4.1]), but let me already mention that the theory of these allows us to assume
that all diagram shapes I are ∞-categories. This hardly ever matters, but we formulated
Theorem I.23 for ∞-categories only, so I sleep better knowing that I can be chosen that way.

I.35. Example. — Applying Theorem I.34 to A = sSet with its Kan–Quillen model
structure or A = sSet+ (the category of marked simplicial sets) with its marked Joyal model
structure, which are Kan simplicial model categories by [HCII, Digression IV Examples G.3],
shows that An and Cat∞ are complete and cocomplete (i.e. have all limits and colimits).

Another example of a complete and cocomplete ∞-category is K(R) for any ring R, as
defined in Example I.15(e). In this case though, we can’t apply Theorem I.34, since K(R)
is (probably) not given by a Kan simplicial model structure on Ch(R), at least not for the
projective or injective model structure (these have quasi-isomorphisms as weak equivalences,
whereas K(R) wants homotopy equivalences). Instead, one has to use some more properties
of limits and colimits, which we will develop until Exercise I.50b.

I.35a. Example*. — Per Bastiaan’s suggestion, we give two more examples. Recall that
a pullback on the nose in a model category is also a homotopy pullback if all objects are
fibrant and one of its legs is a fibration (this follows from Reedy’s lemma for example, see
[HCII, Corollary VIII.52]).
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(a) Combining this observation with Theorem I.34 shows that the pullback defining
HomC(a, b) from Definition I.9 is also a pullback in Cat∞, because its vertical leg
Fun(∆1, C)! Fun(∂∆1, C) ≃ C ×C is an isofibration (by [HCI, Corollary VII.11]), hence
a fibration in the Joyal model structure on sSet.

(b) Likewise, the pullback defining Un(F ) in Theorem I.21 is a pullback in Cat∞, because
∗/An! An is a left fibration, hence an isofibration.

For a cocartesian fibration p : E ! S, we denote by Γ(p) its ∞-category of sections
defined by the pullback

Γ(p) Fun(S,E)

{idS} Fun(S, S)

. p∗

If we use the new notion from Definition I.24(b) and p is not necessarily an isofibration, we
need to take this pullback in Cat∞, otherwise it can also be taken in sSet by the arguments
from Example* I.35a above. We let Γcocart(p) ⊆ Γ(p) denote the full sub-∞-category spanned
by sections that take all edges in S to p-cocartesian edges.

I.36. Proposition (Lurie). — Given a diagram F : I ! Cat∞, we have

colim
I

F ≃ Uncocart(F )
[
{cocartesian edges}−1] ,

lim
I
F ≃ Γcocart

(
Uncocart(F )

)
.

In particular, if F : I ! An takes values in anima, then

colim
I

F ≃
∣∣Un(F )

∣∣ and lim
I
F ≃ Γ

(
Un(F )

)
.

Proof sketch. In [HCII, Theorem XI.23] Fabian gave a proof that’s basically the same as
what we are going to do now, but more on the model category side (but also less sketchy).
We only do the case of limits. Consider the diagram

Fun(I,Cat∞)

Cat∞

Cocart(I)

∼

St

const

in which the bottom arrow sends C ∈ Cat∞ to the cocartesian fibration pr2 : C × I ! I
over I. Let p : E ! I denote the cocartesian unstraightening of F . If X ≃ limI F , then we
must have equivalences Nat(const C, F ) ≃ HomCat∞(C, X) for all ∞-categories C. Applying
Theorem I.23, this translates into

HomCocart(I)
(
(pr2 : C × I ! I), (p : E ! I)

)
≃ HomCat∞(C, X) ,

which we’ll prove now is fulfilled for X ≃ Γcocart(p) (or rather we give an idea why it
holds). A map φ : C × I ! E corresponds to a map φ̂ : C ! Fun(I, E) via currying. By
inspection, φ commutes with the projection down to I iff φ̂ factors over Γ(p)! E. Since pr2-
cocartesian edges are precisely those of the form (equivalence in C, arbitrary morphism in I),
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we see that φ preserves cocartesian edges iff φ̂ sends equivalences f : c! c′ in C to natural
transformations η : φ̂(c) ⇒ φ̂(c′) ∈ Fun(I, E)1 such that for all edges g : i ! i′ in I the
composition (or some choice of it)

φ̂(c)(i) ηi−! φ̂(c′)(i) g∗−! φ̂(c′)(i′)

is p-cocartesian in E. Since f : c! c′ is an equivalence in C, we get that ηi is an equivalence
in the fibre E×I {i} (even in E), hence automatically p-cocartesian by [HCII, Corollary IX.8].
Thus the composition is p-cocartesian iff g∗ is p-cocartesian, in other words, if φ̂(c′) sends all
morphisms in I to p-cocartesian edges. Since this holds for all c′ ∈ C (we can always take
f = idc′), we finally obtain that φ preserves pr2-cocartesian edges iff φ̂ : C ! Γ(p) factors
over Γcocart(p). “Thus” X ≃ Γcocart(p).

So far, this is no proof at all, since we only explained why 0-simplices of Nat(const C, F )
correspond to 0-simplices of HomCat∞(C,Γcocart(p)) but it’s not clear how to proceed for
higher simplices, nor how to make this an ∞-natural transformation. To fix this, first note
that we have a map of cocartesian fibrations

Γcocart(p) × I E

I I

pr2 p

induced by the evaluation map Fun(I, E) × I ! E. After straightening, this gives a natural
transformation η : const Γcocart(p) ⇒ F , hence we get

HomCat∞

(
−,Γcocart(p)

) const ∗====⇒ Nat
(

const −, const Γcocart(p)
) η∗=⇒ Nat(const −, F ) ,

which is the desired natural transformation. Whether this is an equivalence can be checked
pointwise. Since instead of Nat(const −, F ) we can take the corresponding Hom anima in
Cocart(I), we arrive at the equivalence from the beginning of the proof. Since we know how
to compute Hom spaces in Cat∞ and in Cat∞/I (the latter by [HCII, Corollary VIII.6]),
one easily checks HomCat∞(C,Γ(p)) ≃ HomCat∞/I((pr2 : C × I ! I), (p : E ! I)). Now the
Hom anima we are interested in are full subanima of these, so it really suffices to check that
their 0-simplices correspond, which we did above.

I.37. Example. —Lecture 4
10th Nov, 2020

Since core : Cat∞ ! An is right-adjoint to the inclusion An ⊆ Cat∞
(Example I.33(a)), we get a natural counit transformation core ⇒ idCat∞ , which is given by
a map ∆1 ! Fun(Cat∞,Cat∞). By currying, this yields a functor

Cat∞ −! Ar(Cat∞)
C 7−! (core C ! C) .

If F : W ! C is an object in Ar(Cat∞), a left-adjoint object to F under the above functor is
called a localisation of C at F (or rather at the image of π0 core Ar(W )! π0 core Ar(C)) of
F and denoted C[W−1]. Unwinding, this means that

HomCat∞

(
C[W−1],D

)
⊆ HomCat∞(C,D)
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is a collection of path components, given by those G : C ! D such that the composite
G ◦ F : W ! D lands in core D. The localisation C[W−1] always exists, as one can take

W C

|W | C[W−1]

F

. p

(the pushout is taken in Cat∞ of course). Futhermore, it turns out that

p∗ : Fun
(
C[W−1],D

)
−! Fun(C,D)

is fully faithful, with essential image spanned by the same functors G : C ! D as above (see
[HCII, Proposition VIII.7] for a proof). This has the funny consequence that the Yoneda
embedding induces fully faithful inclusions C[W−1] ⊆ P

(
C[W−1]

)
⊆ P(C). In other words,

all localisations of C occur as full subcategories of P(C), which puts a size bound on how
large C[W−1] can be.

Warning ! . — Localisations are difficult! Localisations of locally small ∞-categories
may not be locally small any more. Moreover, the localisation of a 1-category may not be a
1-category any more.

I.38. Example. — Let’s compute the pushout

∆0 ∆1

∆1 ?

1

.0

in Cat∞. One way to do this would be to notice that 0: ∆0 ! ∆1 is a cofibration in the
Joyal model structure on sSet (and so is 1: ∆0 ! ∆1, but we don’t even need this) and
all objects are cofibrant, hence the pushout on the nose, which is the 2-spine I2, is also a
homotopy pushout. Now I2 ⊆ ∆2 is inner anodyne, hence ∆2 is a fibrant replacement of I2

in the Joyal model structure, which shows that ? ≃ ∆2 is really the pushout in question by
Theorem I.34.

For educational purposes, Fabian presented a less efficient way to show ? ≃ ∆2 using
Proposition I.36. Consider the pushout diagram above as a map F : Λ2

0 ! Cat∞. Since all
maps in the diagram are nerves of functors of 1-categories, the cocartesian unstraightening
D = Uncocart(F ) is simply given by the Grothendieck construction. Therefore, the cocartesian
fibration D ! Λ2

0 can be pictured as follows:

///

Λ2
0

D D′

The two pink edges are the cocartesian ones and thus sent to equivalences in the localisation
D[{cocartesian edges}−1] = D[{pink edges}−1]. Let D′ be the ∞-category obtained from D
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by removing the purple and the pink edge on the left, together with the 2-simplex spanned
by them. We claim that the restriction

Fun{pink}(D, E) ∼−! Fun{pink}(D′, E)

is an equivalence for any ∞-category E , where Fun{pink} denotes functors that send pink
edges to equivalences. Indeed, the purple edge on the left is “superfluous data”, i.e., any
map D ∖ {purple edge}! E has a contractible space of lifts to D, by Joyal’s lifting theorem.
Moreover any map D′ ! E has a contractible space of lifts to a map D ∖ {purple edge}! E
that sends the left pink edge to an equivalence. This proves the above equivalence.

A similar argument shows that it doesn’t matter whether we send the pink edge on the
right to an equivalence or to an actual identity in E . Thus

Fun{pink}(D′, E) ≃ Fun(Λ2
1, E) ≃ Fun(∆2, E) ,

which proves that D[{cocartesian edges}−1] ≃ ∆2, as claimed.

I.39. Lemma. — If C is complete or cocomplete, then so is Fun(D, C) for any D. Further-
more, for any f : E ! D, the precomposition functor

f∗ : Fun(D, C) −! Fun(E , C)

preserves limits and colimits. In particular (taking f to be {d} ↪! D for any d ∈ D), limits
and colimits in functor categories are computed pointwise.

For the proof we need the following observation.

I.40. Observation. — If L : C D :R are adjoint functors, then so are

L∗ : Fun(E , C) Fun(E ,D) :R∗ and R∗ : Fun(D, E) Fun(C, E) :L∗

for any ∞-category E.

Proof. Being adjoints can be characterized by the existence of a unit and a counit transfor-
mation satisfying the triangle identities (see [HCII, Proposition XI.14], and L∗, R∗ inherit
these transformations from L, R. Same for R∗, L∗.

I.41. Observation. — Left-adjoint functors preserve colimits, right-adjoint functors
preserve limits.

Proof. Straightforward calculation using Observation I.40. See [HCII, Lemma XI.22] for
details.

Proof of Lemma I.39. For any diagram shape I, consider the commutative diagram

Fun
(
I,Fun(D, C)

)
Fun(D, C)

Fun
(
D,Fun(I, C)

)
const

const ∗

colim∗

lim∗
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By Observation I.40, colim∗ and lim∗ are left and right adjoints of const ∗ respectively, which
proves that const : Fun(D, C)! Fun(I,Fun(D, C)) has a left and right adjoint as well. Hence
Fun(D, C) is complete and cocomplete again. Moreover, the assertion that limits and colimits
are computed pointwise follows by unraveling.

It remains to show that f∗ : Fun(D, C) ! Fun(E , C) preserves limits and colimits. For
any diagram F : I ! Fun(D, C) we get a map

colim
I

f∗F −! f∗ colim
I

F

(unique up to contractible choice). Whether this is an equivalence in Fun(E , C) can be checked
pointwise (by Theorem I.19(b)), i.e., after composition with x∗ : Fun(E , C)! Fun({x}, C) ≃ C
for all x ∈ E . Since we already know that colimits in Fun(E , C) and Fun(D, C) are computed
pointwise, we see that both x∗ colimI f

∗F and x∗f∗ colimI F are colimits of the diagram
I × {f(x)}! C induced by currying of F and restriction along {f(x)} ↪! D.

I.42. Proposition. — Let p : E ! C be a cocartesian fibration and F : E ! D a diagram.
Suppose that the restrictions F|c : E|c ! D of F to the fibres E|c = E ×C {c} of p have colimits
for all c ∈ C. Then these assemble into a functor G : C ! D sending c 7! colimE|c

F|c, and

colim
E

F ≃ colim
C

G ,

whenever either exists. In particular (taking p to be the projection pr2 : I × C ! C for some
∞-category I), this means that “colimits commute”. Also a dual assertion holds, with p a
cartesian fibration and all colimits replaced by limits.

Proof *. Fabian claims (I think) this follows from [HTT, Proposition 4.3.2.12], but Lurie’s
proof is rather laborious, so I’ll give my own proof*. As it turns out, the arguments are
pretty much the same as for the proof of Theorems I.51 and I.52 in Fabians notes. I’ll freely
reference later results (without running into circular arguments, I hope).

We won’t prove the assertion as stated above, but its dualized version. The reason is
that the direct proof of the undualized version is quite confusing (for example, neither of the
Yoneda embeddings preserves colimits, so we would have to consider (Y D)op : Dop ! P(D)op)
and it seems cleaner to prove the dualized statement and then deduce the undualized one by
applying the dual statement to pop : Eop ! Cop.

So let p : E ! C be cartesian instead. We want to construct G as the right Kan extension
G ≃ p∗F . Let’s first consider the case where D is replaced by P(D). Then the dual of
Theorem I.21 implies Fun(C,P(D)) ≃ Fun(C ×Dop,An) ≃ Right(Cop ×D) and same for E , so
we may apply Lemma* I.42a below to the cocartesian fibration pop × idD : Eop ×D ! Cop ×D
to see that p∗ : Fun(C,P(D)) ! Fun(E ,P(D)) has a right adjoint p∗. Now consider the
diagram

Fun
(
C,P(D)

)
Fun

(
E ,P(D)

)
Fun

(
{c},P(D)

)
Fun

(
E|c,P(D)

)
p∗

c∗ i∗

p∗
|c

where i : E|c ↪! E denotes the inclusion of the fibre. The second part of Lemma* I.42a ensures
that c∗p∗F ≃ p|c,∗i

∗F . By inspection, right Kan extension along the functor p|c : E|c ! {c}
is given by taking a functor G : E|c ! P(D) to limE|c

G. This implies p∗F (c) ≃ limE|c
F|c, so
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p∗F takes the correct values. Moreover, limits over C are given by right Kan extension along
the unique map π : C ! ∗, and similar for π ◦ p : E ! ∗, hence

lim
C
p∗F ≃ π∗p∗F ≃ (π ◦ p)∗F ≃ lim

E
F

since right adjoints compose. This finishes the proof for P(D).
Now for the case of general D. The Yoneda embedding Y D : D ! P(D) is fully faithful,

hence an equivalence onto its essential image. To obtain a functor p∗F : C ! D, it thus
suffices to check that p∗(Y D ◦ F ) : C ! P(D) has image in the representable functors. By
assumption, all limits limE|c

F|c exist in D and Y D preserves limits by Corollary I.50, hence
the description of the values p∗(Y ◦ F )(c) for c ∈ C shows that indeed it takes values in
the representables. Thus p∗F : C ! D exists. The additional assertion about limits follows
as above, noting that the limits in question exist in D if and only if the limits taken in
P(D) (where they definitely exist) are representable, since Y D is fully faithful and preserves
limits.

I.42a. Lemma*. — Let p : C ! D be a cocartesian fibration of ∞-categories. Consider a
pullback square (inside Cat∞) as on the left

C′ D′

C D

q

g .
f

p

Right(C′) Right(D′)

Right(C) Right(D)

q∗

q∗

g∗

p∗

f∗

p∗

inducing a square as on the right. Then p∗ and q∗ have right adjoints p∗ and q∗ as indicated.
Moreover, there’s a natural equivalence

f∗p∗
∼=⇒ q∗g

∗ .

Proof *. Without loss of generality all cartesian or right fibrations can be taken in the old
sense. Recall (e.g. from the dual of [HTT, §2.1.4]) that there exists the contravariant model
structure on sSet/C, in which the cofibrations are monomorphisms of simplicial sets and fibrant
objects are given by right fibrations over C (general fibrations are more complicated). The
functor p∗ : sSet/D ! sSet/C has a right adjoint p∗ for abstract reasons: It’s straightforward
to check that p∗ preserves colimits, so Theorem I.2 can be applied to sSet/D ≃ P((∆/D)op)
(here ∆/S denotes the slice category with respect to the functor ∆: ∆∆ ! sSet sending
[n] 7! ∆n). We claim that

p∗ : sSet/D sSet/C :p∗

is even a Quillen adjunction when p is a cocartesian fibration. Indeed, it’s clear that p∗

preserves cofibrations and cofibrant objects. For preservation of trivial cofibrations, we refer
to [HTT, Proposition 4.1.2.15] or the dual of [HCII, Proposition X.43] for the essential case.

As for any Quillen adjunction of model categories, we get an induced adjunction

Lp∗ : (sSet/C)∞ (sSet/D)∞ :Rp∗

on underlying ∞-categories, defined as the localisations at all weak equivalences, or equiv-
alently as Nc((sSet/C)cf) and Nc((sSet/C)cf), since sSet/C and sSet/D can be made into a
Kan simplicial model categories, so [HCII, Digression III Theorem D] applies. The latter
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description shows that the underlying ∞-categories identify with Right(C) and Right(D).
Hence Lp∗ (which we abbreviate to p∗ in the following) has indeed an adjoint Rp∗ (which
we abbreviate to p∗).

So p∗ and q∗ exist. The counit p∗p∗ ⇒ id induces a transformation q∗f∗p∗ ≃ g∗p∗p∗ ⇒ g∗,
whose adjoint is the transformation f∗p∗ ⇒ q∗g

∗. Whether this is an equivalence can be
checked on objects. However, explicitly computing p∗ and q∗ is nasty, so we employ a trick:
By Yoneda, it suffices to check that HomRight(D′)(−, f∗p∗−) ⇒ HomRight(D′)(−, q∗g

∗−) is
a natural equivalence. But f∗ and g∗ have left adjoints f! and g! by Theorem I.47, so we
may as well show that HomRight(C)(p∗f!−,−) ⇒ HomRight(C)(g!q

∗−,−) is an equivalence,
i.e., that g!q

∗ ⇒ p∗f! is an equivalence. This is now easily checked on objects: Unravelling,
we need to prove that if X ↠ D′ is a right fibration and X ↪! Y ↠ D is a factorisation into
a right anodyne and a right fibration, then X ×D C ↪! Y ×D C is right anodyne again, which
follows from the references above since p : C ! D is cocartesian.

I.43. Theorem (Joyal’s version of Quillen’s Theorem A). — For a functor α : I ! J the
following statements are equivalent.
(a) A functor F : J ! C has a colimit iff the composition F ◦ α : I ! C has a colimit, and

in this case
colim

I
F ◦ α ≃ colim

J
F .

(b) For all j ∈ J we have |j/α| ≃ ∗, i.e., the slice category j/α is weakly contractible. Here
we define j/α by the pullback

j/α Ar(J )

{j} × I J × J

. (s,t)
(incl,α)

Also observe that j/α = I ×J j/J , which is how people usually denote this in the
literature.

Proof *. Combine [HTT, Proposition 4.1.1.8] (for more equivalent characterisations) and
[HTT, Theorem 4.1.3.1] (for the actual proof).

I.44. Definition. — Maps α : I ! J as in Theorem I.43 are called cofinal. Dually, if
precomposition with α preserves limits and detects their existence, then α is called final.

Cofinal maps induce homotopy equivalences |α| : |I|! |J | of anima, which can be seen
via the chain of homotopy equivalences

|I| ≃ colim
I

const ∗ ≃ colim
J

const ∗ ≃ |J |

(the colimits in the middle are taken in An). Here we use |I| ≃ colimI const ∗, which can be
seen in several ways: One could use Theorem I.34 and the Bousfield–Kan formula ([HCII,
Digression III]). Alternatively, compute HomAn(colimI const ∗,K) ≃ limI HomAn(∗,K) ≃
limI K for any anima K using Corollary I.50 below, and apply Proposition I.36 to get
limI K ≃ Γ(pr2 : K×I ! I). The space of sections of pr2 : K×I ! I clearly identifies with
Fun(I,K) ≃ core Fun(I,K) ≃ HomCat∞(I,K), so colimI const ∗ is indeed a left-adjoint
object of I under the inclusion An ⊆ Cat∞.
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Examples of cofinal maps are given by right-adjoint functors and localisations. Indeed, if
α : I ! J is a right adjoint, then consider the diagram

C

Fun(J , C) Fun(I, C)
const const

α∗

colimJ colimI

By Observation I.40, α∗ : Fun(J , C)! Fun(I, C) is a left-adjoint. Since left-adjoints compose,
we obtain colimJ ≃ colimI ◦ α∗, as required. If p : C ! C[W−1] is a localisation and
F : C[W−1]! D is any diagram, then

Nat(F, constx) ≃ Nat(F ◦ p, constx)

holds for every x ∈ C since p∗ : Fun(C[W−1],D)! Fun(C,D) is fully faithful, which again
proves cofinality by means of Theorem I.43(a).

I.45. Corollary. — Let G : I ! Cat∞ be a diagram and put J ≃ colimI G. Let F : J ! D
be another diagram and suppose that the restrictions

G(i) −! J F
−! D

have colimits for all i ∈ I. Then these colimits assemble into a functor H : I ! D sending
i 7! colimG(i) F , and we have

colim
J

F ≃ colim
I

H

if either exists.

Proof. By Proposition I.36, we have J ≃ colimI G ≃ Uncocart(G)[{cocartesian edges}−1].
Since localisations are cofinal, we obtain

colim
J

F ≃ colim
Uncocart(G)

F .

Now recall that G(i) ≃ Uncocart(G) ×I {i}, so we are done by Proposition I.42.

I.46. “Corollary”. — If C has coproducts and pushouts, then it is cocomplete. Dually, if
C has products and pullbacks, then it is complete.

“Proof” sketch. Decompose any test category I into its skeleta and repeatedly apply Corol-
lary I.45 using colim∆n F = F (n) since {n} ↪! ∆n is cofinal—in fact, all right anodyne maps
are cofinal. For a complete proof, check out [HTT, Proposition 4.4.2.6].

Colimits and the Yoneda embedding
We start with an existence result for “Kan extensions” which was already used in the proof*
of Proposition I.42.

I.47. Theorem (Joyal). — Given an arbitrary functor f : C ! D of ∞-categories, the
pullback functor

f∗ : Right(D) −! Right(C)
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admits a left-adjoint. Its value on p : E ! C is obtained by factoring E ! C ! D as a cofinal
map followed by a right fibration p′ : E ′ ! D. In diagrams

E E ′

C D

p p′

f

where the top arrow is cofinal.

Proof sketch*. One way to prove this would be to use the contravariant model structures on
sSet/C and sSet/D as in the proof* of Lemma* I.42a: One shows that f∗ : sSet/D ! sSet/C
has a left Quillen adjoint f!, sending E ! C to E ! C ! D. Since right anodyne maps are
cofinal ([HTT, Proposition 4.1.1.3] or [HCII, Theorem XI.28]), a quick unraveling shows that
Lf! can indeed be described as above.

However, Bastiaan has pointed out a simpler proof that doesn’t need any model categories.
We will proceed in three steps:
(1) The pullback functor f∗ : Cat∞/D ! Cat∞/C (where we take the pullback along f in

Cat∞) has a left adjoint. On objects, it is the “forgetful functor” sending p : E ! C to
f ◦ p : E ! C ! D.

(2) Under the fully faithful inclusions Right(C) ⊆ Cat∞/C and Right(D) ⊆ Cat∞/D, the
pullback functor f∗ : Cat∞/D ! Cat∞/C restricts to f∗ : Right(D) ! Right(C) from
the formulation of the theorem.

(3) The fully faithful inclusion Right(D) ⊆ Cat∞/D has a left adjoint, sending an object
q : E ! D to q′ : E ′ ! D, where E ! E ′ ! D is any factorisation into a cofinal map
followed by a right fibration.
Since left adjoints compose, combining (1), (2), and (3) shows that f∗ : Right(D) !

Right(C) has a left adjoint f! with the desired description on objects.
To show (1), we use Corollary I.32 to see that it suffices to show that f ◦ p is a left adjoint

object of p for any (p : E ! C) ∈ Cat∞/C. If we had the dual of Corollary I.50 below already,
this would be almost trivial, but as it is, we need to be a bit careful. Factor f ◦ p into a
Joyal equivalence E ! E ′ followed by an isofibration p′ : E ′ ! D. Then f∗E ′ equals the same
pullback taken in sSet by Theorem I.34. Hence there is a natural map E ! f∗E ′. Together
with functoriality of f∗, it induces natural transformations

HomCat∞/D(E ,−) ≃ HomCat∞/D(E ′,−) =⇒ HomCat∞/C
(
f∗E ′, f∗(−)

)
=⇒ HomCat∞/C

(
E , f∗(−)

)
.

We are to show that the composite is an equivalence. By Theorem I.19(b), this can be done
on objects. Let T ! D be an bject of Cat∞/D, which we may choose to be an isofibration
without restriction, so that f∗(T ) agrees with the corresponding pullback in sSet. Consider
FunD(E , T ) := Fun(E , T ) ×Fun(E,D) {f ◦ p} and define FunC(E , f∗(T )) similarly. Since T ! D
is an isofibration, it doesn’t matter whether this pullback is taken in sSet or in Cat∞.
Moreover, core(−) transforms pullbacks in Cat∞ into pullbacks in An (it is a right adjoint by
Example I.33(a), so Observation I.41 can be applied), hence our computation of Hom anima
in slice categories from [HCII, Corollary VIII.6] shows HomCat∞/D(E , T ) ≃ core FunD(E , T ).
Likewise, HomCat∞/C(E , f∗(T )) ≃ core FunC(E , f∗(T )). Now the universal property of f∗(T )
as a pullback in sSet implies FunD(E , T ) ≃ FunC(E , f∗(T )), which proves step (1).
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For (2), observe that f∗ of a right fibration in the old sense can also be taken in sSet by
Theorem I.34 again, and right fibrations (in the old sense) are preserved under pullbacks
formed in sSet. Hence right fibrations in the new sense are preserved by pullbacks in Cat∞.

Finally, to show (3), we can argue as (1) to reduce the assertion to FunD(E ′, T ) ≃
FunD(E , T ) for any right fibration T ! D and any cofinal map E ′ ! E over D. But this is
precisely how Lurie defines cofinal maps in [HTT, Definition 4.1.1.1], and his definition is
equivalent to our Definition I.44.

I.48. Corollary. — The functor f∗ : P(D)! P(C) has a left-adjoint f! (given by left Kan
extension) such that the diagram

C D

P(C) P(D)

f

Y C Y D

f!

commutes in the ∞-category Cat∞.

Proof. The first statement immediately follows from Theorem I.47 and (the dual of) The-
orem I.21, which asserts that the cartesian straightening Stcart : Right(C) ∼−! P(C) is an
equivalence with inverse the cartesian unstraightening Uncart.

For the second statement, we have to show that f! HomC(−, x)! HomD(−, f(x)) is an
equivalence for all x ∈ C. After unstraightening, this translates to the statement that the
diagram

C/x D/f(x)

C Df

exhibits D/f(x)! D as f!(C/x! C). The right vertical arrow is already a right fibration,
so it suffices to check that C/x! D/f(x) is cofinal. This holds because

∆0

C/x D/f(x)

x f(x)

f

has both downward arrows cofinal (as x and f(x) are terminal objects in C/x and D/f(x)
respectively and thus both sloped arrows are right anodyne by [HCII, Digression I Corol-
lary D.7]).

I.49. Corollary. — Given functors F,G : C ! D of ∞-categories, we have an equivalence
of anima

Nat(F,G) ≃ lim
(x!y)∈TwAr(C)

HomD
(
F (x), G(y)

)
.

Explicitly, the limit is taken over TwAr(C)! Cop × C F op×G
−−−−−! Dop × D HomD−−−−! An.

Note that Corollary I.49 explains why natural transformations are complicated in ∞-land:
π0 does not commute with arbitrary limits!
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Proof of Corollary I.49. By Proposition I.36, the right-hand side can be computed as the
anima of sections of p : P ! TwAr(C), where P denotes the correct unstraightening. Explicitly,
we have a diagram

P P ′ TwAr(D) ∗/An

TwAr(C) Cop ! C Dop × D An

. . .

(s,t) F op×G HomD

which shows Γ(p) ≃ HomCat∞/Cop×C(TwAr(C), P ′). But these are both left fibrations
over Cop × C, so the Hom anima on the right-hand side can be equivalently computed as
Nat(HomC ,HomD ◦ (F op ×G)). Now the currying equality Fun(Cop × C,An) = Fun(C,P(C))
sends HomC to Y C and HomD ◦ (F op × G) to F ∗ ◦ Y D ◦ G, hence the Hom anima under
consideration is given by

Nat
(
Y C , F ∗ ◦ Y D ◦G)

)
≃ Nat(F! ◦ Y C , Y D ◦G) ≃ Nat(Y D ◦ F, Y D ◦G) ≃ Nat(F,G) ,

as claimed. For the left equivalence, we use that F! ◦− is an adjoint of F ∗ ◦− by construction
and Observation I.40, the middle equivalence follows from Corollary I.48, and the right one
since Y D : D ! P(D) is fully faithful by Yoneda’s lemma (Theorem I.29).

I.50. Corollary. — Let F : I ! C be a functor of ∞-categories. A natural transformation
η : F ⇒ const c exhibits c ∈ C as the colimit of F if and only if the natural map

η∗ : HomC(c, x) ∼−! lim
i∈Iop

HomC
(
F (i), x

)
is an equivalence for all x ∈ C. A similar assertion holds for limits. In particular, the
functors HomC(−, d) : Cop ! An and Y C : C ! P(C) preserve limits.

Proof. We are done if we can show that the right-hand side is just Nat(F, constx). From
Corollary I.49 we get a map

Nat(F, constx) ≃ lim
(i!i′)∈TwAr(I)

HomC(F (i), x) −! lim
i∈Iop

HomC(F (i), x) .

So we are done if we show that s : TwAr(I)! Iop is final. By (the dual of) Theorem I.43(b)
we must show |s/i| ≃ ∗ for all i ∈ Iop. Applying Exercise I.50a to the cocartesian fibration
s = pr2 ◦(s, t) : TwAr(I)! Iop ×I ! Iop, we find that |s−1{i}| ≃ |s/i| since adjoints induce
inverse homotopy equivalences after applying | |; alternatively one can use that left adjoints
are final. Now s−1{i} has an initial object which immediately shows |s−1{i}| ≃ ∗. In fact, we
have s−1{i} ≃ i/I (and idi is initial in the right-hand side): Depending on your definitions,
this is either something one has to check (as in the proof of [HA, Proposition 5.2.1.10]), or
follows from the fact that t : s−1{i}! I represents the functor HomI(i,−) and is thus given
by the left fibration i/I ! I.

I.50a. Exercise. — Let p : E ! C be a cocartesian fibration (in the old sense; if you want
this to work in the new sense as well, all fibre products need to be taken inside Cat∞). Show
that the natural map E ×C {c}! E ×C C/c has a left adjoint for all c ∈ C.

Fabian wrote i/s instead of s/i in the lecture and in [A&HK, Corollar I.50], and the
exercise was formulated with c/C instead of C/c. I’m pretty sure that we really need the
other slices—after all, we need to apply the dual version of Theorem I.43(b), also it will
become apparent during the proof* of Exercise I.50a that we really need to use C/c.
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Proof of Exercise I.50a*. Since adjoints can be constructed objectwise by Corollary I.32, we
only need to show that every object (e′, φ : c′ ! c) ∈ E ×C C/c admits a left-adjoint object.
Let η : e′ ! e be a p-cocartesian lift of φ. This induces a morphism η : (e′, φ)! (e, idc) in
E ×C C/c. We claim that η exhibits e as a left-adjoint object of (e′, φ), so we need to show
that the composite

HomE×C{c}(e, e′′) −! HomE×CC/c
(
(e, idc), (e′′, idc)

) η∗

−! HomE×CC/c
(
(e′, φ), (e′′, idc)

)
is an equivalence for all e′′ ∈ E ×C {c}. Plugging in the homotopy pullback that describes
HomE(e, e′′) due to e′ ! e being p-cocartesian, as well as the homotopy pullback that
computes HomC/c(c′, c) due to [HCII, Corollary VIII.6], shows that both the left-hand side
and the right-hand side are homotopy equivalent to HomE(e′, e) ×R

HomC(c′,c) {φ} and that the
above composite induces the identity on that anima.

I.50b. Exercise. — Use Corollary I.50 to show that K(R) and Nc(Top) are (co)complete.

! Public Service Announcement. — From now on, all pullbacks of ∞-categories or
anima will be taken in Cat∞ or An, unless specified otherwise! Still, in many cases they will
agree with the corresponding pullbacks in sSet by arguments like Example* I.35a.

Kan Extensions
Lecture 5

12th Nov, 2020
The first goal for today is to discuss two closely related theorems, which provide an ∞-analogue
of Theorem I.2.

I.51. Theorem. — For every cocomplete ∞-category D and every small ∞-category C,
the restriction of Y C,∗ : Fun(P(C),D) ! Fun(C,D) to colimit-preserving functors in the
source is an equivalence. Furthermore, any such functor has a right adjoint. In view of
Observation I.41, we thus get an equivalence

Y C,∗ : FunL
(
P(C),D

) ∼−! Fun(C,D) ,

where FunL denotes the full sub-∞-category spanned by left adjoint functors.

I.52. Theorem. — If C is a small ∞-category and D cocomplete or complete, then for
any f : C ! E the functor

f∗ : Fun(E ,D) −! Fun(C,D)

has a left adjoint Lanf or a right adjoint Ranf (sometimes also denoted f! and f∗) which
satisfy

Lanf F (e) ≃ colim
(c,f(c)!e)∈f/e

F (c) and Ranf F (e) ≃ lim
(c,e!f(c))∈e/f

F (c) .

In fact, if D is not necessarily cocomplete or complete, but these colimits or limits happen
to exist for all e ∈ E, then they assemble into a functor Lanf F : E ! D or Ranf F : E ! D
which is a left- or right-adjoint object of F with respect to f∗.

I.53. Definition. — If G : E ! D is a left or right adjoint object of F : C ! D under
f∗ : Fun(E ,D)! Fun(C,D), then G is called a left or right Kan extension of F along f .
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A first example is given by f! : P(C)! P(D) from Corollary I.48, which sends a presheaf
F : Cop ! An to its left Kan extension f!F : Dop ! An along Cop ! Dop.

In the official lectures notes (starting from [A&HK, Observation I.56]) Fabian outlines
two proofs of Theorems I.51 and I.52, one due to Cisinski and one due to Lurie. In these
notes we’ll present a third proof that Fabian briefly sketched in the lecture. It’s perhaps a bit
more straightforward than the other two in that it really does the same as for 1-categories,
but it’s not really shorter.

Proof of Theorem I.52*. Consider the slice category f/E defined by the pullback

f/E Ar(E)

C E

.
s

f

(this is not equivalent to the thin or fat slice Ef/ or Ef//). Informally, f/E consists of
pairs (c, f(c) ! e) where c ∈ C, e ∈ E . It comes with morphisms s : f/E ! C and
t : f/E ! E sending such a pair to c or e respectively. Then t is a cocartesian fibration
by an easy generalisation of Example I.25(b) and its fibres t−1{e} ≃ f/e are the slice
categories from the definition of Lanf F (e). We may thus apply Proposition I.42 to the
cocartesian fibration t and the functor F ◦ s : f/E ! D to see that the pointwise formulas
indeed assemble into a functor Lanf F . Going through the proof of Proposition I.42, we
see that (Lanf F )op ≃ top

∗ (F op ◦ sop) is a right-adjoint object of F op ◦ sop with respect to
(top)∗ : Fun(Eop,Dop) ! Fun((f/E)op,Dop), hence Lanf F is a left-adjoint object of F ◦ s
under t∗ : Fun(E ,D)! Fun(f/E ,D). Thus, we only need to show that there is an equivalence

Nat(F,− ◦ f) ∼=⇒ Nat(F ◦ s,− ◦ t) .

Observe that s has a section r : C ! f/E , defined by the universal property of pullbacks
and the maps idC : C ! C and f∗ ◦ const : C ! Ar(E). Then f = t ◦ r and there are natural
transformations η : f ◦ s ⇒ t and η′ : r ◦ s ⇒ idf/E ; in diagrams

C f/E C

E
f

r

t

s

f
⇐=η///

To get η, we compose f/E × ∆1 ! Ar(E) × ∆1 with the evaluation map Ar(E) × ∆1 ! E . To
get η′ : f/E × ∆1 ! f/E , we must choose homotopies f/E × ∆1 ! C and f/E × ∆1 ! Ar(E).
The first can be chosen to be constant at s, the second is equivalently given by a map
∆1 × ∆1 ! Fun(f/E , E), which we choose to be

f ◦ s f ◦ s

f ◦ s t

η η
///

///
η

In particular, t ◦ η′ = η. Now the desired equivalence can be obtained via the composite
η∗ ◦ s∗ : Nat(F,− ◦ f) ⇒ Nat(F ◦ s,− ◦ f ◦ s) ⇒ Nat(F ◦ s,− ◦ t). To show that it is
an equivalence, we simply check that r∗ : Nat(F ◦ s,− ◦ t) ⇒ Nat(F,− ◦ f) (here we use
s ◦ r = idC and t ◦ r = f) is an inverse by a straightforward computation.
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To prove Theorem I.51, we’ll check that LanY C : Fun(C,D)! Fun(P(C),D) constitutes
an inverse to Y C,∗. For this, we need to check that LanY C really takes values in FunL(P(C),D),
which needs some preparations. The first is a lemma that I copied straight from Fabians
notes [A&HK, Proposition I.51] (but Fabian proves it differently).

I.53a. Lemma*. — Every element in P(C) is a colimit of representable presheaves. More
precisely, for every E ∈ P(C), the canonical map

colim
(c,c!E)∈Y C/E

HomC(−, c) ∼−! E

is an equivalence.

Proof *. By Theorem I.19(b), it suffices to check that both sides agree after evaluation at
x ∈ Cop. Since colimits in functor categories are computed pointwise by Lemma I.39, we see
that the left-hand side, when evaluated at x, is given by the colimit of

Y C/E
s
−! C HomC(x,−)

−−−−−−−! An .

We know how to compute colimits in An by Proposition I.36. The cocartesian unstraightening
of HomC(x,−) is x/C ! C, hence the cocartesian unstraightening U of the functor in question
is given by the pullback

U x/C

Y C/E C

.

s

We’ll see in the proof of Lemma* I.53b that Y C/E ! C is cartesian (even a right fibration),
hence the dual of Exercise I.50a provides an adjunction U ×x/C {idx} U . In particular,
we get a homotopy equivalence |U ×x/C {idx}| ≃ |U | (see [HCII, Corollary XI.17]). Now
Proposition I.36 shows that |U | is precisely the colimit we’re interested in, and

U ×x/C {idx} ≃ Y C/E ×C {x} ≃ HomP(C)
(
Y C(x), E

)
≃ E(x)

holds by a quick unravelling of definitions and Yoneda’s lemma.

I.53b. Lemma*. — Let D be cocomplete. For every functor F : C ! D, the left Kan
extension LanY C F : P(C)! D commutes with colimits.

Proof *. One is tempted to say “This follows immediately from the pointwise formula (Theo-
rem I.52) and the fact that colimits commute (Proposition I.42)”, but in reality it is way more
subtle than that. If you don’t believe me, have a look at Warning* I.53c below. Anyway,
let’s move onward to the problem at hand.

Let Θ: I ! P(C) be a diagram with colimit E ≃ colimI Θ. Abusively we will also write
Θ(i) = Ei and E ≃ colimi∈I Ei. Define J as the pullback

J Y C/P(C) C D

I P(C)

.
t

s F

Θ LanY C F
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Note that t : Y C/P(C)! P(C) is a cocartesian fibration by an easy generalisation of Exam-
ple I.25(b), hence so is J ! I. The pointwise formula from Theorem I.52 yields

LanY C F
(

colim
i∈I

Ei

)
≃ LanY C F (E) ≃ colim

(
Y C/E −! C F

−! D
)

Using the pointwise formula for each Ei together with Proposition I.42, we find that

colim
i∈I

LanY C F (Ei) ≃ colim
(

J −! C F
−! D

)
.

We obtain a canonical map J ! Y C/E as follows: Extend Θ: I ! P(C) to its colimit
cocone Θ▷ : I▷ ! P(C). Since I▷ = (I × ∆1)/(I × {1}), this can be further extended to a
map I × ∆1 ! P(C) which is constE on I × {1}. Pulling back t : Y C/P(C)! P(C) along
I × ∆1 ! P(C) gives a cocartesian fibration over I × ∆1, hence a cocartesian fibration
over ∆1 by composing with pr2 : I × ∆1 ! ∆1. After applying Stcocart this gives a map
J ! I × Y C/E, providing the required map J ! Y C/E.

Now observe that J ! C is a cartesian fibration and Y C/E ! C is even a right fibration.
Indeed, by construction and some abstract nonsense about pullbacks, we get pullback
diagrams

J C

P(C)/Θ P(C)

.
Y C

s

and
Y C/E C

P(C)/E P(C)

.
Y C

s

Now P(C)/Θ ! P(C) is a cartesian fibration by an easy generalisation of the dual of
Example I.25(b) and P(C)/E ! P(C) is a right fibration. The right-hand side shows that
Stcart(Y C/E ! C) ≃ HomP(C)(Y C(−), E) ≃ E(−) as functors Cop ! An by Yoneda’s lemma.
Hence the map J ! Y C/E constructed above induces a natural transformation

Stcart(J ! C) =⇒ E .

Since An ⊆ Cat∞ has a left-adjoint | | : Cat∞ ! An, this transformation factors over
| Stcart(J ! C)|. In fact, we will show that | Stcart(J ! C)| ≃ E! This can be done objectwise,
so we need to show |J ×C {x}| ≃ E(x) for all x ∈ C. We have E(x) ≃ colimi∈I Ei(x) as
colimits of presheaves are computed pointwise by Lemma I.39. The colimit on the right-
hand is precisely the colimit over evx ◦ Θ: I ! P(C) ! An. This can be computed via
Proposition I.36, so it suffices to show J ×C {x} ≃ Uncocart(evx ◦ Θ). By Yoneda’s lemma,
the diagram

I An

P(C)

Θ

evx◦Θ

HomP(C)

(
Y C(x),−

)
commutes, hence Uncocart(evx ◦ Θ) is the pullback of the left fibration Y C(x)/P(C)! P(C)
along Θ. By abstract pullback nonsense again, this agrees with J ×C {x}, as required.

Now that we know | Stcart(J ! C)| ≃ E, we can finally prove that J ! Y C/E is
cofinal, which ultimately shows what we want. Since | | : Cat∞ ! An is a left adjoint
of An ⊆ Cat∞, we obtain HomFun(Cop,Cat∞)(Stcart(J ! C), G) ≃ HomP(C)(E,G) for all
presheaves G : Cop ! An, hence

HomCart(C)(J , X) ≃ HomRight(C)
(
Y C/E,X

)
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for right fibrations X ! C. This easily implies FunY C/E(J , X) ≃ FunY C/E(Y C/E,X) for
all right fibrations X ! Y C/E, hence J ! Y C/E is indeed cofinal in the sense of [HTT,
Definition 4.1.1.1], which is equivalent to our Definition I.44.

I.53c. Warning* ! . — In the situation of Theorem I.52, there examples where f : C ! E
is fully faithful and colimit-dense, but still Lanf F doesn’t commute with colimits (but of
course the functor Lanf itself does preserve colimits as it is a left adjoint). Here’s a
counterexample, I think. Let C = N⊔ {c} be the poset consisting of N and a totally unrelated
additional point c, such that HomC(c, n) = ∅ = HomC(n, c) for all n ∈ N. Let E = C▷ be the
cocone below C, with tip e ∈ E , and let f : C ! E be the canonical inclusion. Let F : C ! An
be the functor that is constant with value ∅ ∈ An on N and takes F (c) = ∗ ∈ An. Then
colimn∈N n ≃ e and we have

colim
n∈N

Lanf F (n) ≃ colim
n∈N

∅ = ∅

(here we use Corollary I.54 below). However, Lanf F (e) ̸= ∅, because there is a map
F (c)! Lanf F (e) by the pointwise formula.

The key problem in this counterexample is the existence of a map c! e ≃ colimn∈N n that
doesn’t factor over any c! n, and the only reason why this doesn’t happen for Y C : C ! P(C)
as well is the Yoneda lemma! This shows that Lemma* I.53b critically depends on the Yoneda
lemma and perhaps justifies the effort we had to put into its proof.

Proof of Theorem I.51*. From Theorem I.52 we obtain that Y C,∗ admits a left adjoint
LanY C : Fun(C,D) ! Fun(P(C),D). We have verified in Lemma* I.53b that LanY C takes
values in the full sub-∞-category Funcolim(P(C),D) of colimit-preserving functors. We first
show that

LanY C : Fun(C,D) ∼
∼ Funcolim (P(C),D

)
:Y C,∗

is an equivalence. It suffices to show that the unit and counit of (LanY C , Y C,∗) are equivalences.
For the counit, this follows from Corollary I.54 below. For the unit, let G : P(C) ! D be
a colimit-preserving functor. We need to prove that G ≃ LanY C (G ◦ Y C,∗). But both sides
coincide on representable presheaves (i.e. after precomposition with Y C, as we have just
verified) and every presheaf can be written as a colimit of representable ones by Lemma* I.53a,
hence the claim.

It remains to check that FunL(P(C),D) ⊆ Funcolim(P(C),D) is an equivalence, i.e. that
every colimit-preserving functor P(C)! D admits a right adjoint. This can be written down
explicitly, which we do in Corollary I.55 below.

I.54. Corollary. — If f : C ! E is fully faithful in the situtation of Theorem I.52, then

F ≃ Lanf F ◦ f and F ≃ Ranf F ◦ f

holds for all functors F : C ! D.

Proof. The natural transformations in question are induced by the unit of the (Lanf , f∗)-
adjunction and the counit of the (f∗,Ranf )-adjunction, so it suffices to check both of them
on objects c ∈ C. But if f is fully faithful, then the slice categories f/f(c) have (c, idf(c))
as terminal objects, hence colimits over f/f(c) are computed by evaluation at that object,
proving Lanf F (f(c)) ≃ F (c). Same for Ranf F (f(c)).
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I.55. Corollary. — In the situation of Theorem I.51, let F : C ! D be a functor cor-
responding to LanY C F : P(C) ! D. Then LanY C F admits a right-adjoint R : D ! P(C),
which is given by

R(d) ≃ HomD(F −, d) : Cop −! An

on objects d ∈ D.

Proof. To check that LanY C F admits a right adjoint, it suffices to check that all d ∈ D
admit right-adjoint objects under LanY C F by Corollary I.32. We already have a candidate
for R(d), so we need to check that there is an equivalence

HomD
(

LanY C F −, d
)

≃ Nat
(
−, R(d)

)
of functors P(C)op ! An. But regarding both sides as functors P(C)! Anop instead, note
that they preserve colimits and they agree on representables since both become HomD(F −, d)
after precomposition with Y C : C ! P(C) (for the left-hand side we need to use Corollary I.54,
for the right-hand side use Yoneda’s lemma). Hence these two functors must be equivalent
by Theorem I.51. To complete the proof that R(d) is a right-adjoint object of d, we need
to check that the above equivalence is actually induced by a map LanY C F (R(d)) ! d,
but this we get for free by plugging R(d) into the above equivalence and taking the of
idR(d) ∈ Nat(R(d), R(d)) in the left-hand side.

This finishes the proofs of Theorem I.51 and Theorem I.52. Time for examples!

I.56. Very Long Example. — We will show that algebraic topology is a corollary of
Theorem I.51. Let C = ∗. Then the theorem shows that the evaluation at the point ∗ ∈ An
is an equivalence

ev∗ : FunL(An,D) ∼−! D .

for every cocomplete D. For example, take D = D⩾0(Z) to be the derived category of abelian
groups (which is cocomplete—after “Corollary” I.46 and Corollary I.50 there isn’t much to
do). Then the equivalence D⩾0(Z) ≃ FunL(An,D⩾0(Z)) from above takes Z[0] ∈ D⩾0(Z) to
the “normalized chain complex” functor

C• : An −! D⩾0(Z) ,

that is, the homology of C•(X) gives the unreduced homology of X (as a simplicial set, or
equivalently the unreduced cellular/singular homology of the realisation |X| ∈ CW). The fact
that C• preserves coproducts and pushouts precisely gives that simplicial/cellular/singular
homology takes disjoint unions to direct sums and satisfies a Mayer–Vietoris sequence.

The right adjoint of C• is
K : D⩾0(Z) −! An

(this is another K that has nothing to do with K-theory), which is now our official definition
of Eilenberg–MacLane spaces anima. On objects C ∈ D⩾0(Z) it can be explicitly described
as K(C) ≃ HomD⩾0(Z)(Z[0], C) by Corollary I.55. The (C•,K) adjunction can be upgraded
to an adjunction

C̃• : ∗/An D⩾0(Z) :K .

Here C̃•(X,x) is the complex computing the reduced homology of a pointed anima (X,x).
For example, if Si is your favourite model for the i-sphere in anima, then C•(Si, ∗) ≃ Z[i].
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This new adjunction needs a bit of justification, but to not interrupt the flow we’ll discuss
that later in Remark* I.56c. For now let’s compute

πiK(C) = π0 Hom∗/An
(
(Si, ∗),K(C)

)
= π0 HomD⩾0(Z)

(
C•(Si, ∗), C

)
= π0 HomD⩾0(Z)

(
Z[i], C

)
= Hi(C) .

In fact, we can say more: Let A be an abelian group and A[n] ∈ D⩾0(Z) the complex
consisting of A placed in degree n (technically we have to replace A[n] by a projective
resolution to be consistent with Example I.15(e)). Then K(A,n) := K(A[n]) satisfies

πi HomAn
(
X,K(A,n)

)
= πi HomD⩾0(Z)

(
C•(X), A[n]

)
= Hi−nC

•(X,A)
= Hn−i(X,A) ,

where C•(X,A) ∈ D⩽0(Z) is the complex of simplicial/cellular/singular cochains with
coefficients in A. If X is pointed and connected, the same calculation works with reduced
cohomology (this only matters for n = i). We thus obtain:

I.56a. Theorem (Eilenberg–MacLane). — The functors Hn(−, A) : πAn ! Set (unre-
duced cohomology) and H̃n(−, A) : π(∗/An)! Set (reduced cohomology) are represented by
K(A,n).

In particular, if X ∈ ∗/An satisfies πiX = 0 for i ≠ n, then H := Hom∗/An(X,K(A,n)) is
given by the discrete anima Hn(X,A): Indeed, we have πiH = H̃n−i(X,A), which vanishes
for 1 ⩽ i ⩽ n by Hurewicz and the universal coefficient theorem, and for i > n by the fact
that cohomology is zero in negative degrees. So H ! π0H is a homotopy equivalence by
Whitehead’s theorem. Using universal coefficients again, we can summarize this by

Hom∗/An
(
X,K(A,n)

)
≃ Hn(X,A) ≃ HomAb

(
Hn(X), A

)
.

For n ⩾ 1, an isomorphism on the right-hand side gives an equivalence on the left-hand side
by a combination of Hurewicz and Whitehead (for n = 1 we really need that A is abelian for
this argument to work). This shows that K(−, n) : Ab! ∗/An is fully faithful for n ⩾ 1.

Now consider the full sub-∞-category ∗/An⩽n ⊆ ∗/An spanned by n-truncated anima,
i.e. those with vanishing πi for i > n. The inclusion has a left-adjoint τ⩽n : ∗/An! ∗/An⩽n.
One can construct τ⩽nX by iteratively attaching cells to X to kill higher and higher homotopy
groups and then use that adjunctions can be constructed objectwise by Corollary I.32. In
fact, one can take τ⩽nX = coskn+1 X, since the right-hand side is a really brutal way of
killing homotopy groups in degrees n and higher. In particular, the n-truncation τ⩽nX
satisfies

πi(τ⩽nX) =
{

0 if i > n

πi(X) if i ⩽ n
.

The unit map X ! τ⩽nX factors over τ⩽n+1X ! τ⩽nX, since τ⩽nX is already (n + 1)-
truncated. We claim that the homotopy fibre F (i.e. the fibre taken inside the ∞-category An)
of this map is equivalent to K(πn+1X,n+ 1). Indeed, the long exact sequence of homotopy
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groups shows that πiF = 0 for i ̸= n+ 1 and that πn+1F ≃ πn+1X. Hence, by the discussion
after Theorem I.56a,

Hom∗/An
(
F,K(πn+1X,n+ 1)

)
≃ HomAb

(
Hn+1(F ), πn+1X

)
,

and an isomorphism on the right-hand side induces an isomorphism on the left-hand side.
But Hn+1(F ) ≃ πn+1X by Hurewicz, hence we do obtain an equivalence as desired.

The diagram

X −!
(
. . . −! τ⩽n+1 −! τ⩽nX −! . . . −! τ⩽1X

)
is called the Postnikov tower of X. It’s not hard to show that the Postnikov tower induces an
equivalence X ∼−! limn∈Nop τ⩽nX in ∗/An when X is connected (see [Hat02, Corollary 4.68]
for example). The Postnikov tower is an important organisational and computational
tool, since it “stratifies” ∗/An into pieces, whose “difference is controlled by Ab” via the
Eilenberg–MacLane functor K(−, n) : Ab! ∗/An.

I.56b. Exercise. — Show that every chain complex over Z (in fact, over any PID) is
quasi-isomorphic via a zigzag to its homology, considered as a chain complex all of whose
differentials are 0.

In particular, Exercise I.56b implies that for C ∈ D⩾0(Z) there is a (non-canonical)
equivalence

C ≃
∞⊕
i=0

Hi(C)[i] ≃
∞∏
i=0

Hi(C)[i] .

Since the right-adjoint functor K preserves limits (Observation I.41), this implies K(C) ≃∏∞
i=0 K(Hi(C), i). In general, anima X with the property

X ≃
∞∏
i=0

K(πiX, i)

are called gems (a pun on “generalized Eilenberg–MacLane spaces”). It is also easy to check
that the following diagram is a pullback in the ∞-category D⩾0(Z):

τ⩾0
(
C[−1]

)
0

0 C

.

Again, since K preserves limits, we get K(τ⩾0C[−1]) ≃ ΩK(C) (indeed if you take the same
pullback in An, it will give you the loop space). In particular, K(A,n− 1) ≃ ΩK(A,n) for
all n ⩾ 1. And that’s our first spectrum!

I.56c. Remark*. — To construct a lift K : D⩾0(Z) ! ∗/An, Fabian explained that
0 ∈ D⩾0(Z) is an initial object and K(0) ≃ HomD⩾0(Z)(Z[0], 0) ≃ ∗, so K lifts to a functor
K : D⩾0(Z) ≃ 0/D⩾0(Z)! ∗/An on slice categories. I claimed that K(0) ≃ ∅ in a previous
version of these notes, but that’s nonsense and Fabian was completely right!

Yet the fact that K has a left adjoint is not entirely automatic; more precisely, it’s
not an instance where an adjunction automatically descends to slice categories (this will
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happen occasionally in the future). The reason is C•(∗) ≃ Z[0], so C• doesn’t lift to a
functor ∗/An! 0/D⩾0(Z) ≃ D⩾0(Z) on slice categories. Instead, we have to define a functor
C̃• : ∗ /An! D⩾0(Z) taking a pointed anima (X,x) to the pushout

Z[0] ≃ C•(x) C•(X)

0 C̃•(X,x)

.

or in other words, to the cofibre cofib(C•(x)! C•(X)). It’s straightforward to check that
C̃• is indeed left-adjoint to K. Indeed, from Corollary I.50 and the computation of Hom
anima in slice categories ([HCII, Proposition VIII.6]) we get

HomD⩾0(Z)
(
C•(X,x), D

)
≃ HomD⩾0(Z)

(
C•(X), D

)
×HomD⩾0(Z)(C•(x),D) {0}

≃ HomAn
(
X,K(D)

)
×HomAn(x,K(D)) {K(0) ≃ ∗! K(D)}

≃ Hom∗/An
(
(X,x),K(D)

)
(all pullbacks are taken in An, as announced on Page 35). The complex C̃•(X,x) computes
reduced homology. For example, if Si denotes the i-sphere, then C•(Si, ∗) ≃ cofib(Z[0] !
Z[0] ⊕ Z[i]) ≃ Z[i], as one would expect.

I.57. Example. — Two more applications of Theorem I.51:
(a) If D is an ∞-category, we will again write sD and cD for the functor categories

Fun(∆∆op,D) and Fun(∆∆,D) respectively. If D is cocomplete and F ∈ cD a cosimplicial
object in D, we obtain an adjunction

| |F : sAn D : SingF .

In the case where D is a 1-category, we also get an adjunction | |1F : sSet D : Sing1
F

from Theorem I.2. To see how these two adjunctions are related, recall that sSet ⊆ sAn
has a left adjoint π0 : sAn! sSet by Example I.33(a) and Observation I.40, which yields
a factorisation

| |F : sAn sSet D : SingF
π0

incl

| |1
F

Sing1
F

of the adjunction above.

Warning ! . — Right now there is another possible definition of π0. Recall that
π0 : sSet ! Set can also be written as colim∆∆op = | |1const ∗, where the cosimplicial
set const ∗ : ∆∆ ! Set sends everything to a point. Analogously, we have a functor
colim∆∆op = | |const ∗ : sAn! An, which arises via Theorem I.51 from the cosimplicial
anima const ∗ : ∆∆! An. We will never call this functor π0, but colim∆∆op instead, which
is what it really is.

(b) Consider ∆∆ ! Cat1 ⊆ Cat(2)
1 ⊆ Cat∞ sending [n] to itself, considered as a poset. By

(a), this cosimplicial ∞-category induces an adjunction

asscat : sAn Cat∞ : Nr
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(Fabian remarks that “asscat” is short for “associated category” and has nothing to
do with “Arschkatzen”). The right adjoint Nr is called the Rezk nerve and is a very
important construction! If C is an ∞-category, Corollary I.55 provides the explicit
description

Nr
n(C) ≃ HomCat∞

(
[n], C

)
≃ core Fun

(
[n], C

)
.

Beware that if C is a 1-category, then Nr(C) is different from the ordinary nerve
N(C) = ([n] 7! HomCat1([n], C)), since Cat1 ⊆ Cat(2)

1 is not fully faithful. In fact, N(C)
is a discrete simplicial anima, but Nr(C) is usually not. After a brief detour to Bousfield
localisations, we will come back to Rezk nerves in Theorem/Definition I.64.

Bousfield Localisations
Lecture 6

17th Nov, 2020
I.58. Proposition/Definition. — Let L : C D :R be an adjoint pair.
(a) The functor R is fully faithful iff the counit c : LR ⇒ idD is an equivalence.
(b) A morphism f : x ! y in C is taken to an equivalence by L iff it is a left R-local

equivalence, i.e. iff the induced map

f∗ : HomC(y,Rd) −! HomC(x,Rd)

is an equivalence for all d ∈ D. We will often drop the “left” part and just write “R-local
equivalence”.

Moreover, if the equivalent conditions from (a) hold, then:
(c) The unit c! RLc is always a left R-local equivalence.
(d) L : C ! D is a localisation at the left R-local equivalences.
One then says that L is a left Bousfield localisation. In particular, C[{R-local equiv.}−1] is
again locally small. Of course, there’s also a dual notion of right Bousfield localisations.

Proof. Fabian decided to prove (b) first. By Yoneda’s lemma, for Lf : Lx ! Ly to be
an equivalence, it suffices to show that it induces an equivalence after HomD(−, d) for all
d ∈ D. Using the natural adjunction equivalence HomD(L−,−) ≃ HomC(−, R−), we obtain
a homotopy commutative diagram

HomC(y,Rd) HomC(x,Rd)

HomD(Ly, d) HomD(Lx, d)

f∗

∼ ∼

Lf∗

in anima, which immediately proves (b).
Next up, we show (a). Bastiaan found a proof which is considerably simpler than the one

from the lecture, so we shall include his proof here. Observe that the diagram

HomD(d, x) HomD(LRd, x)

HomC(Rd,Rx)

c∗
d

R
∼
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commutes (in πAn) for all d, x ∈ D. Indeed, since Yoneda’s lemma tells us that

evidd
: Nat

(
HomD(d,−),HomD(LRd,−)

) ∼−! HomD(LRd, d)

is an equivalence, it suffices to check commutativity in the special case x = d on the single
element idd ∈ HomD(d, d). But idd is clearly mapped to cd ∈ HomD(LRd, d) in both cases,
proving that the diagram does indeed commute. By Theorem I.19(b) and Yoneda’s lemma
again, c : LR ⇒ idD is an equivalence iff c∗

d : HomD(d, x) ∼−! HomD(LRd, x) is an equivalence
for all x ∈ D. By the diagram above, this holds iff R : HomD(d, x) ∼−! HomC(Rd,Rx) is an
equivalence for all d, x ∈ D, i.e. iff R is fully faithful.

Now for (c). By one of the triangle identities, the composition

Lx
Lux−−! LRLx

cLx−−! Lx

is equivalent to idLx for all x ∈ C. Since we assume that the conditions from (a) hold, cLx is
an equivalence, hence Lux is one too. By (b) this means that ux is an R-local equivalence.

For (d), let E be any test category and consider the adjunction

R∗ : Fun(C, E) Fun(D, E) :L∗

obtained from Observation I.40. Since the counit of (L,R) is an equivalence, the counit
of (R∗, L∗) is an equivalence too (it is induced by the former counit). But the direction of
the adjunction has switched, so now L∗ is fully faithful by (a). We are left to show that
the essential image of L∗ is Fun{R-local equiv.}(C, E), i.e. those functors that invert R-local
equivalences. But any L∗F ≃ F ◦L inverts the R-local equivalences by (b), hence the essential
image of L∗ is contained in Fun{R-local equiv.}(C, E). Conversely, for F : C ! E inverting the
R-local equivalences, we have F ≃ FRL ≃ L∗(FR) since the unit ux : x! RLx is an R-local
equivalence for all x ∈ C by (c). Hence F is contained in the essential image of L∗.

Now that we know when adjunctions are Bousfield localisations, we would like to study
the “converse” question, i.e. when localisations are Bousfield localisations.

I.59. Proposition. — Let W ⊆ π0 core Ar(C) be some collection of morphisms with
associated localisation p : C ! C[W−1]. Then a map τ : px ! y in C[W−1] exhibits x as a
right-adjoint object to y under p iff τ is an equivalence and HomC(−, x) : Cop ! An inverts
all morphisms from W .

In particular, a right-adjoint functor R to p is automatically fully faithful. Note that this
also characterizes the essential image of R as the (left) R-local objects, i.e. those c ∈ C such
that HomC(−, c) : Cop ! An inverts (left) R-local equivalences.

We first prove the following lemma.

I.60. Lemma. — Let p : C ! C[W−1] be a localisation.
(a) For all c ∈ C, the functor HomC[W−1](−, pc) is the left Kan extension of HomC(−, c)

along pop. In diagrams:
Cop An

C[W−1]op

pop

HomC(−,c)

HomC[W −1](−,pc)
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(b) Any functor F : C[W−1]! D is left Kan extended from F ◦ p along p. In diagrams:

C D

C[W−1]

p

F◦p

F

The same is true for functors F : C[W−1]op ! D and left Kan extension along pop. In
fact, pop : Cop ! C[W−1]op is a localisation of Cop at W op.

Warning ! . — Don’t get too excited and think “Yeah, now Theorem I.52 allows me
to compute Hom anima in localisations!”, since the pointwise formula is useless (or rather
tautological) here.

Proof of Lemma I.60. For (a), we apply Yoneda’s lemma twice to obtain

Nat
(
HomC[W−1](−, pc), G

)
≃ G(pc) ≃ Nat

(
HomC(−, c), G ◦ pop)

for all G : C[W−1]op ! D. This is precisely what we want from a Kan extension along pop.
For (b), recall that p∗ : Fun(C[W−1], E)! Fun(C, E) is fully faithful, i.e.

p∗ : Nat(F,G) ∼−! Nat(F ◦ p,G ◦ p)

is an equivalence for all F and G. This again exhibits F as a left Kan extension, along p this
time. For the additional assertion, use the universal property or the explicit construction
from [HCII, Theorem VIII.8].

Proof of Proposition I.59. If HomC(−, x) inverts all arrows from W , then it descends to a
functor F : C[W−1]op ! An, which is left Kan extended from HomC(−, x) by Lemma I.60(b).
But so is HomC[W−1](−, px) by Lemma I.60(a). Hence

HomC(−, x) ≃ HomC[W−1](p−, px) τ∗−! HomC[W−1](p−, y)

is an equivalence since τ is one. This proves that x is indeed a right-adjoint object of y.
For the converse, just read the argument backwards. As Sil and Bastiaan pointed out, we
have to use that p : C ! C[W−1] is essentially surjective (use its universal property or the
construction from [HCII, Theorem VIII.8]), so for τ to be an equivalence it does suffice that
τ∗ : HomC[W−1](p−, px)! HomC[W−1](p−, y) is an equivalence.

For the additional assertions, assume that R is a right adjoint of p. Then the counit
pR ⇒ id consists of morphisms τ as above, hence it is an equivalence, hence R is fully faithful
by Proposition/Definition I.58(a). A morphism in C is an R-local equivalence iff it becomes
an equivalence in C[W−1] by Proposition/Definition I.58(b), so it is clear that the essential
image of R is contained in the R-local objects by what we showed above. But conversely an
R-local object x ∈ C is a right-adjoint object of px via the witness idpx : px! px, hence x is
in the essential image of R.

I.61. Corollary. — If L : C ! D is a left Bousfield localisation and C is complete or
cocomplete, then so is D. More precisely, we have

colim
I

F ≃ L
(

colim
I

RF
)

and lim
I
F ≃ L

(
lim

I
RF
)

for any diagram F : I ! D.
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Proof. We start with the formula for colimits. Compute

HomD

(
L
(

colim
I

RF
)
,−
)

≃ HomC

(
colim

I
RF,R−

)
≃ Nat

(
RF, const(R−)

)
Now R is fully faithful by Proposition/Definition I.58(a), hence so is the postcomposition
functor R∗ : Fun(I,D)! Fun(I, C), which shows

Nat
(
RF, const(R−)

)
≃ Nat(F, const −) .

Hence L(colimI RF ) satisfies the desired universal property for colimI F .
For the limit part, first note that R-local objects are closed under limits. Indeed, if

x ≃ limj∈J xj with each xj an R-local object, then

HomC(−, x) ≃ lim
j∈J

HomC(−, xj)

by the dual of Corollary I.50, hence HomC(−, x) inverts R-local equivalences because each
HomC(−, xj) does. Moreover, R-local equivalences between R-local objects are actual
equivalences by Yoneda’s lemma applied to the full sub-∞-category of C spanned by R-local
objects. Now Proposition/Definition I.58 shows that the unit

u : lim
I
RF ∼−! RL

(
lim

I
RF
)

is an R-local equivalence, hence an actual equivalence as RF takes values in the R-local
objects by the addendum to Proposition I.59. Using this and the fact that R is fully faithful,
we can now compute

HomD

(
−, L

(
lim

I
RF
))

≃ HomC

(
R−, RL

(
lim

I
RF
))

≃ HomC

(
R−, lim

I
RF
)

≃ Nat
(

const(R−), RF
)

≃ Nat(const −, F ) ,

so L(limI RF ) satisfies the desired universal property for limI F .

Before we discuss our first examples of Bousfield localisations, we need to discuss a
proposition which Fabian originally forgot to put here, but which came up later in the
course.

I.61a. Proposition (see [HTT, Proposition 5.2.7.4]). — Let L : C ! C be a functor
together with a natural transformation η : id ⇒ L such that both maps

ηLx : Lx ∼−! LLx and Lηx : Lx ∼−! LLx

are equivalences for all x ∈ C. Then L : C ! im(L) is left-ajoint to the inclusion im(L) ⊆ C
with unit η. In particular, L is a Bousfield localisation and Lη ≃ ηL as natural transformations
(by the triangle identities).

Proof. We will prove the assertion by reduction to the case of 1-categories, for which we
already know this statement. We have to show that η∗

c : HomC(Lc, Ld) ∼−! HomC(c, Ld) is
an equivalence for all c, d ∈ C. For this it suffices to show that for all K ∈ An, the induced
map

π0 HomAn
(
K,HomC(Lc, Ld)

) ∼−! π0 HomAn
(
K,HomC(c, Ld)

)
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is a bijection. But now consider the functor of 1-categories

πL∗ : π Fun(K, C) −! π Fun(K, C)

together with the transformation πη∗ : id ⇒ πL∗ satisfying that πη∗πL∗ : πL∗
∼=⇒ πL∗πL∗

and πL∗πη∗ : πL∗
∼=⇒ πL∗πL∗ are natural equivalences. So we get the same situation as

before, but now π Fun(K, C) is a 1-category. For 1-categories we already know the statement is
true: For example, we’ve seen this on exercise sheet #2 of Higher Categories I, and also Lurie
gives another proof. Plugging in the functors const c, constLc, constLd ∈ Fun(K, C) then
shows that π0 HomAn(K,HomC(Lc, Ld)) ∼−! π0 HomAn(K,HomC(c, Ld)) is an equivalence,
as desired. Thus we have proved that L : C ! im(L) is a Bousfield localisation.

To obtain the additional assertion that Lη ≃ ηL, write down the triangle identities and
note that both sides have the same left inverse, namely the counit evaluated at Lx.

I.62. Example. — “My first Bousfield localisations”:
(a) We now recognize all the left pointing arrows in the diagram from Example I.33(a)

Set An Cat∞⊆ ⊆

π0

⊆

| |

core

as Bousfield localisations. More precisely, π0 and | | are left Bousfield localisations,
whereas core is a right one.

(b) Recall from Example I.15(d) that Top has a Kan enrichment, giving rise to the ∞-
category Nc(Top) of topological spaces. Consider the localisation

p : Nc(Top) −! Nc(Top)
[
{weak homotopy equiv.−1}

]
.

The functor HomNc(Top)(X,−) inverts weak homotopy equivalences if X is a CW
complex (that’s a well-known extended version of Whitehead’s theorem) and every
topological space admits a weak equivalence from a CW complex (“CW approximation”).
Hence the dual of Proposition I.59 implies that p is a right Bousfield localisation.

This also shows that An ≃ Nc(CW) ! Nc(Top)[{weak homotopy equiv.−1}] is an
equivalence. In particular, we get for free that CW approximation is ∞-functorial.

(c) Let R be a ring. Recall from Example I.15(e) that there is an ∞-category K(R) =
Nc(Ch(R)) of chain complexes over R. We define the derived ∞-category of R

D(R) = K(R)
[
{quasi-isos.}−1]

as the localisation of K(R) at the quasi-isomorphisms. Then the fundamental lemma of
homological algebra2 says that for a bounded below C ∈ K(R), any projective resolution

2Here’s the complete argument: We need to show that HomK(R)(P, −) inverts quasi-isomorphisms.
So let φ : C ! D be one. The fundamental lemma, or at least a strong form of it, says that
φ∗ : {homotopy classes of maps P ! C} ∼

−! {homotopy classes of maps P ! D} is bijective. In other
words, φ∗ : H0 HomR(P, C) ∼

−! H0 HomR(P, D) is an isomorphism, where HomR is the internal Hom
in Ch(R). Replacing P by its shifts P [−i] shows the same for φ∗ : Hi HomR(P, C) ∼

−! Hi HomR(P, D).
Now Exercise I.15a shows

πi HomK(R)(−, −) ≃ Hi HomR(−, −)
and we are done.
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P ! C is a left-adjoint object to C. Similarly, for a bounded above C an injective
resolution C ! I is a right-adjoint object. In particular,

Dproj
⩾0 (R) ⊆ K(R) −! D(R)

is fully faithful with essential image the non-negative chain complexes (and similarly for
Dinj

⩽0(R)). But in fact K(R)! D(R) admits both adjoints, so its both a left and a right
Bousfield localisation! This boils down to the classical result of Spaltenstein that there
are enough K-projective and K-injective complexes (again a K that has nothing to do
with K-theory), see [Spa88] (thanks to Sil for the reference). In particular, combining
Exercise I.50b and Corollary I.61 shows that D(R) is both complete and cocomplete.

Also note that the homotopy category πD(R) is equivalent to the usual derived
1-category D(R) by [HCII, Proposition VIII.12].

(d) Given a ring morphism φ : R! S, we can look at the functor

S ⊗R − : Ch(R) −! Ch(S) .

This is simplicially enriched (basically since the enrichment of Ch(R) is defined via tensor
products, and these are associative), hence it defines a functor S ⊗R − : K(R)! K(S).
Now define the derived tensor product as the composition

φ! = S ⊗L
R − : D(R) K-proj.

−−−−−! K(R) S⊗R−
−−−−! K(S) −! D(S) .

The map K-proj. : D(R) ! K(R) is a left adjoint of the right Bousfield localisation
p : K(R)! D(R) and given by taking K-projective resolutions. We have seen in (c) that
p also admits a right adjoint, but that wouldn’t give the correct functor. Also note that
Hi(S ⊗L

RM) = TorRi (S,M) holds for all R-modules M , by unravelling of constructions.
It follows from general homological nonsense that φ! has a right-adjoint φ∗ (the

“forgetful functor”), which has another right adjoint φ∗ = RHomR(S,−). In diagrams:

D(R)
φ!

φ∗
D(S)

φ∗

φ∗
D(R) .

I.63. Proposition/Definition. — For a ring morphism φ : R! S, the following condi-
tions are equivalent:
(a) φ! = S ⊗L

R − : D(R)! D(S) is a left Bousfield localisation.
(b) φ∗ = forget : D(S)! D(R) is fully faithful.
(c) φ∗ = RHomR(S,−) : D(R)! D(S) is a right Bousfield localisation.
(d) The multiplication map S ⊗L

R S ! S is an equivalence in D(S). As Sil points out, we
should actually write S ⊗L

R φ
∗S, but let’s not do that here.

(e) The cofibre cofib(φ) = S/LR, i.e. the pushout

R S

0 S/LR

φ

.

in D(R), satisfies S ⊗L
R (S/LR) ≃ 0.

If these conditions are satisfied, φ is called a derived localisation (or sometimes “Tor-unital”).
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I.63a. Examples. — “My first derived localisations”:
(a) If W ⊆ R is a multiplicative subset in the commutative ring R, then R ! R[W−1]

is a derived localisation. This easily follows from Proposition/Definition I.63(d) since
R[W−1] is flat over R.

(b) For non-commutative rings, one needs the (left or right, who knows?) Ore condition for
R! R[W−1] to be a derived localisation.

(c) If U ⊆ V is an open embedding of affine schemes, then Γ(V,OV ) ! Γ(U,OU ) is a
derived localisation (but not necessarily an ordinary localisation). Indeed, the condition
from Proposition/Definition I.63(d) easily implies that a ring morphism φ : R! S is a
derived localisation iff Rp ! Sq is a derived localisation for all prime ideals q ∈ SpecS
and p ∈ SpecR such that p = φ−1(q). In our case, Rp and Sq correspond to the local
rings OV,v and OU,v for v ∈ V , and these are isomorphic since U is an open subscheme of
V . Hence the morphisms OV,v

∼−! OU,v for v ∈ V are derived localisations for obvious
reasons.

We will later see that K-theory has exact sequences for derived localisations!

Proof of Proposition/Definition I.63. Proposition/Definition I.58 and its dual already show
(a) ⇔ (b) ⇔ (c). For (d) ⇔ (e), first note that S ⊗L

R R
∼−! S is an equivalence. Indeed, R

can be taken as its own projective resolution, hence S ⊗L
R R ≃ S ⊗R R ≃ S.

Now S ⊗L
R −, being a left adjoint, commutes with colimits, which implies that

S S ⊗L
R S

0 S ⊗L
R (S/LR)

S⊗L
Rφ

.

is a pushout square. This immediately implies S ⊗L
R S ≃ S iff S ⊗L

R (S/LR) ≃ 0, as desired.
We finish the proof by showing (b) ⇔ (d). We must show that the counit S ⊗L

R C ! C is
an equivalence for all C ∈ D(S) iff it is an equivalence for S. The “only if” direction being
obvious, let’s assume it is an equivalence for S. Then it is also an equivalence for all shifts
S[i]. But the {S[i]}i∈Z generate D(S) under colimits and S ⊗L

R − commutes with colimits,
so we are done.

The Rezk Nerve and Complete Segal Spaces
Lecture 7

19th Nov, 2020
From now on, a good portion of the lecture will take place in the land of simplicial anima.
Unfortunately, this leads to “∆n” having two different meanings: It could mean the ∞-
category ∆n = N([n]), or the simplicial set ∆n, which we consider as a discrete simplicial
anima via sSet ⊆ sAn. To avoid confusion, we adopt the following convention: The ∞-
category will always be denoted [n], whereas the simplicial anima will be denoted ∆n.

Under the Rezk nerve functor Nr : Cat∞ ! sAn from Example I.57(b), these two are
related via Nr([n]) ≃ ∆n. Indeed, we have

Nr
m

(
[n]
)

≃ HomCat∞

(
[m], [n]

)
≃ core Fun

(
[m], [n]

)
,

and the right-hand side is the discrete set (∆n)m because every isomorphism of functors in
Fun([m], [n]) must be an identity (as [n] itself has no non-identity isomorphisms).
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I.64. Theorem/Definition (Rezk, Joyal–Tierney, Lurie). — The Rezk nerve functor
Nr : Cat∞ ! sAn is fully faithful and its essential image consists of the complete Segal
spaces/anima. Here a Segal anima is a simplicial anima X : ∆∆op ! An such that

Xn ≃ HomsAn(∆n, X) ∼−! HomsAn(In, X) ≃ X ×X0 X1 ×X0 · · · ×X0 X1

is an equivalence for all n (here In ⊆ ∆n denotes the nth spine, i.e. the union of all edges
between consecutive 0-simplices of ∆n). We call X complete if the following equivalent
conditions hold:
(a) Also the restriction X0 ≃ HomsAn(∆0, X) ∼−! HomsAn(J,X) along J ! ∆0 is an

equivalence, where J is the (ordinary nerve of the) free-living isomorphism, considered
as a simplicial set/discrete simplicial anima.

(b) The diagram
X0 X0 ×X0

X3 X1 ×X1

s

∆

. (s,s)
(d{0,2},d{1,3})

is cartesian (note that ∆ denotes a good old honest diagonal and not some simplicial
stuff ).

(c) The degeneracy map s : X0
∼−! X×

1 is an equivalence, where X×
1 ⊆ X1 is the collection

of path components of those g ∈ X1 for which the following holds: Let x = d1(g) and
y = d0(g) and for arbitrary w, z ∈ X0 put

Pw,z X1

∗ X0 ×X0

. (d1,d0)
(w,z)

Moreover, there is a “composition map”

◦ : X1 ×d1,X0,d0 X1 X2
d1−! X1

(d0,d2)
∼

which, after restriction to Pw,x ≃ Pw,x×{x} {g} and Py,z ≃ {g}×{y}Py,z, induces “post-
and precomposition maps”

g∗ : Pw,x −! Pw,y and g∗ : Py,z −! Px,z .

Then we put g ∈ X×
1 iff g∗ and g∗ are equivalences for all w, z ∈ X0.

(d) The simplicial subanima X× given by

[n] 7−! X×
n :=

{
collection of path components in
Xn such that all edges lie in X×

1

}
is constant. Note that X×

0 = X0, so it is actually constant on X0.
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I.65. Some Explanations. — Before we (not so much) talk about the proof, some
explanations are in order.

First of, the Segal condition. Just like Segal sets, Segal anima should be thought of
simplicial anima with “unique spine lifting”, i.e. unique (up to contractible choice) lifting
against In ⊆ ∆n. To see why HomsAn(In, X) ≃ X1 ×X0 · · · ×X0 X1, we must show that
In is an iterated pushout of copies of ∆1 and then invoke Corollary I.50. The pushout
condition is certainly true in sSet. In particular, the discrete set (In)m is an iterated pushout
of copies of (∆1)m, and the maps along the pushouts are taken are injective. Now pushouts
in sAn are computed degreewise by Lemma I.39, the simplicial anima In, ∆1, and ∆0 are
discrete sets in every degree, and Set ⊆ An preserves pushouts along injective maps, so in
this particular special case, the pushout in sSet agrees with the one in sAn. We’ll also link
the Segal condition to monoidal structures soon, see Chapter II.

Now about completeness. As Bastiaan explained to me, the completeness condition
is probably best understood in the words of Emily Riehl: “[The completeness condition]
says that isomorphisms are equivalent to identities.” Although these words were spoken
in a slightly different context, they fit here just wonderfully. For conditions (a) and (c)
it is intuitive that “isomorphisms are equivalent to identities” is what they’re saying, and
condition (d) is basically just the statement that all higher simplices having equivalences as
edges are degenerate. To make it more intuitive why also condition (b) is saying the same
thing, Fabian drew the following picture of a 3-simplex in X:

0

1

2

3

id

id

What (b) is trying to say is that whenever the ∆{0,2}- and ∆{1,3}-edges are degenerate as
indicated, then all edges are degenerate and the 3-simplex itself is equivalent to a degenerate
one. Notice that this is just the higher categorical way of phrasing the requirement that
identity morphisms are closed under the 2-out-of-6-property. This is also equivalent to
all equivalences being identities since the equivalences in an ∞-category are the smallest
collection of arrows containing the identities and closed under the 2-out-of-6-property.

Not a proof of Theorem/Definition I.64. It’s relatively easy to see that Nr(C) for an ∞-
category C is a complete Segal anima: The Segal condition reduces to the claim that
[n] ≃ [1]⊔[0] · · ·⊔[0] [1] in Cat∞, which can be shown as in Example I.38. For completeness, one
unwinds that Nr

1(C)× ⊆ core Ar(C) consists of the equivalences, hence s : Nr
0(C) ∼−! Nr

1(C)×

being an equivalence reduces to [1]! [0] being a localisation. Fabian also recommends to
prove the equivalence of the four conditions as a (not easy, but doable) exercise.

However, the proof that Nr is fully faithful is difficult. The original proof of Joyal–Tierney
can be found in [JT07] and Lurie’s poof is in [Lur09]. The key step is to give a description
of asscat(X) for X a (not necessarily complete) Segal anima: First, there is a canonical
equivalence

core asscat(X) ≃ |X×| , (I.65.1)

where | | ≃ colim∆∆op : sAn! An denotes the colimit functor over ∆∆op (Fabian points out
that this notation is very much consistent with the other kinds of realisation we’ve seen so
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far; see Remark I.66 below). Second, one can show that for every (not necessarily complete)
Segal anima X there are pullback diagrams

Homasscat(X)(x, y) X1

∗ X0 ×X0

. (d1,d0)

(x,y)

(I.65.2)

for all x, y ∈ X0. In particular Homasscat(X)(x, y) ≃ Px,y in the notation of (b).
With (I.65.1) and (I.65.2), the proof of Theorem/Definition I.64 becomes quite easy. To

prove that Nr is fully faithful, we must show that the counit asscat(Nr(C)) ∼−! C is an
equivalence for all C ∈ Cat∞. It is an equivalence on cores because

core asscat
(

Nr(C)
)

≃ | Nr(C)×| and core C ≃ Nr
0(C) ;

since Nr(C) is complete, Nr(C)× is constant on Nr
0(C), hence the colimit over the weakly

contractible category ∆∆op is just | Nr(C)×| ≃ Nr
0(C) by Proposition I.36, as claimed. This

shows that the counit is essentially surjective.
To prove that it is fully faithful, i.e. induces equivalences on Hom anima, observe that

using (I.65.2) it induces the following equivalence of pullback squares:

Homasscat(Nr(C))(x, y) HomC(x, y)

Nr
1(C) core Ar(C)

∗ ∗

Nr
0(C) × Nr

0(C) core C × core C

. .
∼

(x,y)
(x,y)

∼

For the right pullback square, recall the usual pullback diagram for HomC(x, y) can also be
taken in Cat∞ (Example* I.35a(a)) and core(−) preserves pullbacks because it is a right
adjoint. Up to verifying the actual hard stuff ((I.65.1) and (I.65.2)), this finishes the proof
that Nr is fully faithful. To show that it’s image are the complete Segal anima, one can
argue similarly for the unit X ! Nr(asscat(X)).

I.66. Remark. — Note that the notation | | ≃ colim∆∆op is consistent with our notation
for the geometric realisation of simplicial sets: If T : ∆∆op ! Set ⊆ An is a simplicial
set/discrete simplicial anima, then the homotopy colimit of T (considered as a functor
T : ∆∆op ! Set ⊆ sSet, where sSet is equipped with the Kan–Quillen model structure) is
weakly homotopy equivalent to T , so

colim
∆∆op

T ≃
(

hocolim
C[∆∆op]

T
)f

≃ T f ≃ Sing |T |

using Theorem I.34. With the technique that we will introduce in the proof of Lemma IV.7,
one can also show directly that colim∆∆op T is the anima corresponding to the CW complex
|T |. The notation is moreover consistent with | | : Cat∞ ! An in that generally for a
simplicial anima T : ∆∆op ! An we have

| asscat(T )| ≃ |T | .

53



The Rezk Nerve and Complete Segal Spaces

Indeed, this follows from Theorem I.51 as both sides are colimit-preserving functors that
send ∆n 7! ∗ ∈ An for all n ∈ N.

I.67. Lemma/Definition. — Let CSAn ⊆ sAn denote the full sub−∞-category of
complete Segal anima. The functor

comp: sAn asscat
−−−−! Cat∞

Nr

−! CSAn

is called completion and it is a left adjoint to the inclusion CSAn ⊆ sAn.

Proof *. Indeed, if X ∈ sAn and Y ∈ CSAn, so Y ≃ Nr(C) for some ∞-category C, then
HomsAn(compX,Y ) ≃ HomCat∞(asscatX, C) ≃ HomsAn(X,Nr(C)) since Nr is fully faithful
and right-adjoint to asscat : sAn! Cat∞.

Fabian remarks that comp: sAn! CSAn is impossible to control outside of (not neces-
sarily complete) Segal spaces.

I.68. Example. — (a) The ordinary nerve N(C) ∈ sSet ⊆ sAn of a 1-category is a Segal
set and thus also a Segal anima since Set ⊆ An preserves limits. But it is usually not
complete! In fact, we have

N0(C) {set of objects in C}

N1(C) {set of isomorphisms in C}

s

where the right vertical arrow takes x ∈ C to idx. But usually, there are more isomor-
phisms in a category than just the identities, hence N1(C)× is usually larger than N(C)0.
This is also another instance of Emily Riehl’s wise words from I.65: “The completeness
condition says that isomorphisms are equivalent to identities.”

Note however that the composition asscat(N(C))! asscat(Nr(C))! C is an equiva-
lence, so Nr(C) is the completion of N(C) in the sense of Lemma/Definition I.67. Indeed,
it’s clear from (I.65.2) that asscat(N(C))! C induces equivalences on Hom anima, so
it remains to see whether it is essentially surjective. By (I.65.1), it suffices to show
| N(C)×| ≃ core C. But Nn(C)× is given by the set of composable sequences (f1, . . . , fn)
of isomorphisms in C, hence it is the ordinary N(core C). Since this is already a Kan
complex, Remark I.66 shows | N(core C)| ≃ core(C), as required.

(b) The two functors
sAn asscat
−−−−! Cat∞

π
−! Cat(2)

1

sAn sπ0−−! sSet h
−! Cat1

are different, even though both are colimit-preserving and take ∆n 7! [n]. The reason is of
course that Cat1 ⊆ Cat(2)

1 doesn’t preserve colimits. To obtain explicit counterexamples,
you can take constS1 or Nr({finite-dimensional vector spaces}) for example. Both
functors do, however, agree on ordinary nerves N(C) of 1-categories. Nevertheless,
Fabian warns you to never look at the lower functor.

(c) Let sAnconst ⊆ sAn denote the full subcategory of constant simplicial anima. The
adjunction asscat : sAn Cat∞ : Nr restricts to an equivalence

ev0 : sAnconst
∼
∼ An : const .
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Indeed, Nr
n(K) ≃ core Fun([n],K) ≃ Fun(|[n]|,K) ≃ K as |[n]| ≃ ∗.

I.69. Lemma. — For any ∞-category C we can describe Nr(TwAr(C)) as follows:

Nr
n

(
TwAr(C)

)
≃ HomCat∞

(
[n]op ⋆ [n], C

)
≃ HomsAn

(
(∆n)op ⋆∆n,Nr(C)

)
.

Here [n]op ⋆ [n] denotes the usual join of categories, and (∆n)op ⋆∆n is formed as a join in
sSet and then imported into sAn.

Proof. Recall from I.28 that there is a pullback square

TwAr(C) ∗/An

Cop × C An

.

HomC

(depending on your definitions, this is a pullback both in simplicial sets and in Cat∞ or only
in Cat∞). Now we do a computation in several steps, each of which will be justified below:

Nr
n

(
TwAr(C)

)
≃ HomCat∞

(
[n],TwAr(C)

)
(1)
≃ HomCat∞

(
[n], Cop × C

)
×HomCat∞ ([n],An) HomCat∞

(
[n], ∗/An

)
(2)
≃ HomCat∞

(
[n], Cop × C

)
×core(An) core(∗/An)

(3)
≃ HomCat∞

(
[n], Cop × C

)
×core(Cop×C) core

(
(Cop × C) ×An ∗/An

)
(4)
≃
(

HomCat∞

(
[n]op, C

)
× HomCat∞

(
[n], C

))
×core(Cop×C) core TwAr(C)

(5)
≃
(

HomCat∞

(
[n]op, C

)
× HomCat∞

(
[n], C

))
×core(C×C) core Ar(C)

(6)
≃ core Fun

(
[n]op ⊔{0} [1] ⊔{0} [n], C

)
(7)
≃ HomCat∞

(
[n]op ⋆ [n], C

)
(8)
≃ HomsAn

(
(∆n)op ⋆∆n,Nr(C)

)
.

For step (1), we plug in TwAr(C) ≃ (Cop × C) ×An ∗/An and use that HomCat∞([n],−)
preserves pullbacks by the dual of Corollary I.50.

For step (2), we observe that restriction along {0} ↪! [n], i.e. “evaluation at 0”, in-
duces morphisms ev0 : HomCat∞([n], ∗/An) ! HomCat∞({0}, ∗/An) ≃ core(∗/An) and
ev0 : HomCat∞([n],An)! HomCat∞({0},An) ≃ core(∗/An). We claim that these fit into a
pullback diagram

HomCat∞

(
[n], ∗/An

)
core(∗/An)

HomCat∞

(
[n],An

)
core(An)

ev0

.

ev0

in An. To see this, note that Fun([n], ∗/An) ≃ Fun∗([n + 1],An) holds by the join-slice
adjunction (or by inspection), where Fun∗ denotes the full sub-∞-categories of functors
taking 0 7! ∗ ∈ An. Similarly ∗/An ≃ Fun∗([1],An). Now [n+1] can be written as a pushout
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[1] ⊔{1} [1, n + 1] in Cat∞ (where [1, n + 1] denotes the poset {1, . . . , n + 1}). Indeed, by
Theorem I.34 we may compute this pushout as a fibrant replacement of the corresponding
homotopy pushout in sSet. Since {1} ↪! ∆1 is a cofibration, the homotopy pushout is just
the ordinary pushout, and ∆1 ⊔{1} ∆{1,...,n+1} ↪! ∆n+1 is inner anodyne, so [n+ 1] is indeed
the correct pushout in Cat∞. Since HomCat∞(−,An) ≃ core Fun(−,An) takes pushouts to
pullbacks by Corollary I.50, we get

core Fun
(
[n+ 1],An

)
≃ core Fun

(
[1],An

)
×core Fun({1},An) core Fun

(
[1, n+ 1],An

)
,

and this restricts to an equivalence

core Fun∗
(
[n+ 1],An

)
≃ core Fun∗

(
[1],An

)
×core Fun({1},An) core Fun

(
[1, n+ 1],An

)
.

This shows that the pullback diagram above is correct. Plugging it into (1) gives (2).
Step (3) is a formal pullback manipulation together with the fact that core(−) commutes

with pullbacks since it is a right adjoint.
For (4), note that HomCat∞([n], Cop × C) ≃ HomCat∞([n], Cop) × HomCat∞([n], C) and we

have Fun([n], Cop) ≃ core Fun([n]op, C)op. But the (−)op vanishes upon taking cores, hence

HomCat∞

(
[n], Cop) ≃ HomCat∞

(
[n]op, C

)
.

This explains the left factor in the pullback. For the right factor, we simply plug in
TwAr(C) ≃ (Cop × C) ×An ∗/An.

Step (5) follows straight from Exercise I.28a. Step (6) is immediate from Corollary I.50,
and for (7) we need to check that [n]op ⊔{0} [1] ⊔{0} [n], when taken as a pushout in Cat∞, is
given by [n]op ⋆ [n]. This can be done as before: Take the pushout in sSet and verify that
the canonical map to [n]op ⋆ [n] is inner anodyne.

Finally, (8) is immediate once we convinced ourselves that

Nr([n]op ⋆ [n]) ≃ (∆n)op ⋆∆n ,

since Nr is fully faithful by Theorem/Definition I.64. To obtain the equivalence above,
note that HomCat∞([m], [n]op ⋆ [n]) ≃ HomCat1([m], [n]op ⋆ [n]), even though Cat1 ⊆ Cat∞
is not fully faithful in general. Here it works, since every isomorphism of functors in
Fun([m], [n]op⋆[n]) must be an identity (as [n]op⋆[n] has no non-identity isomorphisms). Thus
Nr
m([n]op ⋆ [n]) is given by the discrete set HomsSet(∆m, (∆n)op ⋆∆n) since N: Cat1 ! sSet

is fully faithful and compatible with − ⋆− and (−)op. This shows that Nr([n]op ⋆ [n]) indeed
agrees with (∆n)op ⋆∆n.

I.70. The Quillen Q-Construction. — Let C be an ∞-category and let

Qn(C) ⊆ Fun
(

TwAr([n])op, C
)

be the full sub-∞-category consisting of those functors that take all “squares” in TwAr([n])op

to pullbacks. To make sense of this, recall our description of TwAr([n]) from I.28. In that
way, a functor TwAr([n])op ! C can be pictured as a diagram

. . .
. .

.
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in C (shown here for n = 3), and to be in Qn(C) we require that all squares are pullbacks as
indicated. Note that then in fact all rectangles you can find in this picture must be pullbacks.

The Qn(C) assemble into a simplicial ∞-category Q(C) : ∆∆op ! Cat∞. To see this,
one first shows that Fun(TwAr([−])op, C) : ∆∆op ! Cat∞ gives a functor. It’s clear that all
its ingredients are functorial, except perhaps for TwAr(−). But TwAr(−) : sSet ! sSet is
right-adjoint to (−)op ⋆ (−) : sSet! sSet (indeed, this guy has a right adjoint by Theorem I.2,
now unravel that TwAr(−) as defined in I.26(b) fits the general description of such right
adjoints), which one can show is a left Quillen functor for the Joyal model structure (by
[HCII, Proposition D.5] for example).

Now that we know Fun(TwAr([−])op, C) : ∆∆op ! Cat∞ is a functor, we only need to check
that all the boundary and degeneracy maps preserve the full subcategories Qn(C) described
above. We leave this as an exercise. As you might have guessed, assigning to C the simplicial
∞-category Q(C) is called the Quillen Q-construction.

I.71. Proposition/Definition. —Lecture 8
24th Nov, 2020

Let C be an ∞-category with pullbacks. The simplicial
anima

coreQ(C) : ∆∆op −! An

is a complete Segal space. Its associated category Span(C) ≃ asscat(coreQ(C)) is called the
∞-category of spans in C.

Proof. We will actually prove that Q(C) itself satisfies the Segal and completeness conditions
for simplicial ∞-categories rather than anima (really what this says is that there’s an ∞-
double category Span(2)(C), but never mind that). Then all assertions for coreQ(C) will
follow from the fact that core : Cat∞ ! An preserves limits as it is a right-adjoint.

Recall that the 0-simplices in TwAr([n])op are given by morphisms in the poset [n], i.e.
by relations (i ⩽ j). Now let Jn ⊆ TwAr([n])op be the subposet spanned by all 0-simplices
(i ⩽ j) with j ⩽ i+ 1. In pictures, Jn (for n = 3) looks as follows:

0 ⩽ 0 1 ⩽ 1 2 ⩽ 2 3 ⩽ 3

0 ⩽ 1 1 ⩽ 2 2 ⩽ 3

0 ⩽ 2 1 ⩽ 3

0 ⩽ 3

J3

Then one checks from the pointwise formula for Kan extensions (Theorem I.52) that a functor
F : TwAr([n])op ! C is in Qn(C) iff it is right-Kan extended from F |Jn

. To see this in the
example above, note that Kan extensions can be computed in steps (because right adjoints
compose), so we may first Kan extend to the 0-simplex (0 ⩽ 2), then to (1 ⩽ 3) and then
finally to (0 ⩽ 3). In each step, the Kan extension is given by pullback, as one can see by
restricting the limit from Theorem I.52 to a suitable cofinal sub-∞-category of the respective
slice categories. The case for general n works precisely the same.

In particular, since Jn ⊆ TwAr([n])op is fully faithful, we see that restriction to Jn induces
an equivalence

Qn(C) ∼−! Fun(Jn, C)
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by Corollary I.54. The reason we don’t work with the Jn right away is that they do not form
a cosimplicial ∞-category! So we have to include some redundant junk. However, the Jn are
closed under the maps induced by the Segal maps ei : [1]! [n] (sending [1] to {i, i+1} ⊆ [n]).
These maps induce an equivalence Jn ≃ J1 ⊔J0 · · · ⊔J0 J1 in Cat∞, hence

Qn(C) ≃ Fun(J1 ⊔J0 · · · ⊔J0 J1, C) ≃ Fun(J1, C) ×Fun(J0,C) · · · ×Fun(J0,C) Fun(J1, C)
≃ Q1(C) ×Q0(C) · · · ×Q0(C) Q1(C)

by Corollary I.50, which proves that Q(C) is indeed a Segal object in Cat∞.
For completeness, we have to check the condition from Theorem/Definition I.64(b), i.e.

we need to show that
Q0(C) Q0(C) ×Q0(C)

Q3(C) Q1(C) ×Q1(C)

s

∆

. (s,s)
(d{0,2},d{1,3})

is cartesian. So let P be the pullback. We first check that the induced map Q0(C) ! P
is fully faithful. To see this, first note that the canonical map TwAr([n])op ! TwAr([0])op

induces a fully faithful map s : Fun(TwAr([0])op, C)! Fun(TwAr([n])op, C) for all n. Indeed,
TwAr([0])op ≃ ∗ is an anima, hence s factors over the full subcategory Fun(| TwAr([n])op|, C).
But | TwAr([n])op| ≃ ∗ because TwAr([n])op contains (0 ⩽ n) as an initial element, and now
it’s clear that s is indeed fully faithful. Hence so is s : Q0(C)! Qn(C) for all n.

In particular, this is true for n = 3. Moreover, P ! Q3(C) is fully faithful too because
it is a pullback of the fully faithful map (s, s) : Q0(C) ×Q0(C)! Q1(C) ×Q1(C). Now the
diagram

Q0(C) P

Q3(C)
s

///

and the corresponding two-out-of-three property for fully faithful maps show that Q0(C)! P
is fully faithful too.

Now for essential surjectivity. The actual image of Q0(C)! P consists of the constant
diagrams F : TwAr([3])op ! C, hence (by an easy argument) the essential image contains all
diagrams that map all edges to equivalences. To see that every 0-simplex in P is a diagram
F : TwAr([3])op ! C of that form, we have to show the following:

F (0 ⩽ 0) F (1 ⩽ 1) F (2 ⩽ 2) F (3 ⩽ 3)

F (0 ⩽ 1) F (1 ⩽ 2) F (2 ⩽ 3)

F (0 ⩽ 2) F (1 ⩽ 3)

F (0 ⩽ 3)

(1) (2)
(4) (4)

(2) (1)

(1) (3) (3) (1)

(1) (1)

. .

.
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Suppose we are given a diagram F : TwAr([3])op ! C in which all squares are pullbacks as
indicated and such that the four dashed purple arrows are equivalences. Then all arrows are
equivalences.

Indeed, then the two dashed pink arrows F (0 ⩽ 3)! F (0 ⩽ 1) and F (0 ⩽ 3)! F (2 ⩽ 3)
are equivalences as well, since they are pullbacks the purple arrows. By two-out-of-six, we
see that all arrows labelled “(1)” must be equivalences.

Now the commutative square

F (0 ⩽ 3) F (1 ⩽ 3)

F (0 ⩽ 1) F (1 ⩽ 1)

∼

∼

///

∼
shows that F (0 ⩽ 1) ! F (1 ⩽ 1) is an equivalence. An analogous argument applies to
F (2 ⩽ 3) ! F (2 ⩽ 2). In other words, the two arrows labelled “(2)” are equivalences.
This implies that the two arrows labelled “(3)” are equivalences, since they are pullbacks
of the former. Finally, the two remaining arrows, labelled “(4)”, must be equivalences by
two-out-of-three. We are done.
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Chapter II.

Symmetric Monoidal and
Stable ∞-Categories

II
E1-Monoids and E1-Groups
We start things off slowly by only considering (not necessarily symmetric) monoidal ∞-
categories and E1-spaces.

II.0. Stasheff’s Definition of Coherently Associative Monoids. — The naive way
to define a monoid in An would be to have an object M ∈ An together with a multiplication
map

µ : M ×M −!M .

Now µ induces two different maps M3 !M (“two ways of bracketing”), so there ought to be
a homotopy H : µ ◦ (µ× idM ) ≃ µ ◦ (idM ×µ) between them. But then there are five maps
M4 !M (“five ways of bracketing”), and we see that H induces a loop in HomAn(M4,M).
Since M should be associative up to coherent homotopy, this loop has to be filled. The story
goes on: There are a number of maps M5 !M (too lazy to count them) and now there are
some 3-simplices to be filled and so on.

Although this looks horrible, it is possible to turn these considerations into a precise
definition, and one obtains Stasheff’s A∞-spaces. But we can take a simpler route! Indeed,
thanks to our efforts so far, we now have the luxury of saying: “Well, a coherently associative
monoid is just an ∞-category with only one object.” This leads to the following definition.

II.1. Definition. — Let C be an ∞-category with finite products (in particular, C has a
final object ∗ ∈ C). A cartesian monoid in C is a functor X : ∆∆op ! C such that:
(a) X0 ≃ ∗.
(b) It satisfies the Segal condition, i.e., the Segal maps ei : [1]! [n] define an equivalence

Xn
∼−!

n∏
i=1

X1

Let Mon(C) ⊆ sC be the full sub-∞-category spanned by cartesian monoids. If C = An,
these are also called E1-monoids, A∞-spaces, coherent monoids, special ∆-spaces, . . . . For
C = Cat∞ we simply call them monoidal ∞-categories (note that these can also be encoded
as cocartesian fibrations over ∆∆op).

To make sense of the condition from Definition II.1(b), note that since X0 ≃ ∗ is terminal,
we have X1 ×X0 × · · · ×X0 X1 ≃

∏n
i=1 X1, so this condition really is the Segal condition.

Somewhat weird though is that we don’t impose any completeness conditions, and in fact,

60



E1-Monoids and E1-Groups

cartesian monoids in An are usually not complete Segal spaces! This is in some sense fixed
by the following proposition.

II.2. Proposition. — The completion functor comp: sAn ! CSAn from Lemma/Defi-
nition I.67 restricts to a fully faithful functor

comp: Mon(An) −! ∗/CSAn

with essential image those pointed complete segal spaces (X,x) with π0X0 = ∗.

In other words, monoids really are categories with one object (up to equivalence, but not
up to contractible choice, as Bastiaan pointed out in the lecture), since the target is also
pointed categories with connected base.

Proof of Proposition II.2. The proof is not hard, but quite lengthy, so we break it down into
four major steps. Be aware that Step (3) wasn’t done in the lecture, so any errors in it are
my fault.
(1) There exists a reasonable candidate decomp: ∗/CSAn! Mon(An) of an inverse functor

(“decompletion”).
If (X,x) is a pointed complete Segal space, and if Y ∈ Mon(An) is the “universal way”

to make (X,x) connected and still satisfy the Segal condition, then it’s reasonable to expect
that Yn sits inside a pullback

Yn Xn

∗ Xn+1
0

.

(x,...,x)

for all [n] ∈ ∆∆op. We will see that this gives indeed the correct functor.
Let’s first address the elephant in the room, i.e. how to make the pointwise-defined Yn

into a functor Y : ∆∆op ! An, which in turn should be functorial in X. Since taking pullbacks
is functorial, we’ll have solved both problems at once if we show that the cospan diagram
∗ ! Xn+1

0  Xn is functorial in (X,x) and in [n]. To this end consider X as a functor
∆∆! Anop and colimit-extend it to a functor

| |X : sAn −! Anop .

This can be done functorially in X, as Theorem I.51 shows. In more abstract terms, what we
do here is to identify sAn ≃ Fun(∆∆,Anop)op ≃ FunL(sAn,Anop)op. We define two functors
∆,∆0 : ∆∆! sSet ⊆ sAn via

∆
(
[n]
)

= ∆n and ∆0
(
[n]
)

=
n∐
i=0

∆0 .

Since ∆ and ∆0 are functors between 1-categories (before we compose them with the inclusion
sSet ⊆ sAn), we don’t need to check any higher coherences and immediately obtain that ∆
and ∆0 are indeed functors. Moreover, the canonical map

∐n
i=0 ∆0 ! ∆n sending the ith

component to the ith vertex of ∆n is clearly functorial in [n] ∈ ∆∆, hence it induces a natural
transformation ∆0 ⇒ ∆ (which exhibits ∆0 as the “0-skeleton” of ∆, hence the notation).
Now consider the two composites

sAn ≃ Fun (∆∆,Anop)op ≃ Fun (sAn,Anop)op ∆∗

∆∗
0

Fun (∆∆,Anop)op ≃ sAn ,
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which we denote |∆|(−) and |∆0|(−). The transformation ∆0 ⇒ ∆ induces a transformation
|∆|(−) ⇒ |∆0|(−) going in the other direction, since there has been an (−)op in between.
Upon closer inspection, we find that ∆: ∆∆! sAn is actually nothing else but the Yoneda
embedding, hence Theorem I.51 shows that |∆|(−) ≃ id. Moreover, since | |X preserves
colimits, we easily obtain

Xn+1
0 ≃

∣∣∣∣∣
n∐
i=0

∆0

∣∣∣∣∣
X

,

hence the Xn+1
0 can be organized into a simplicial anima |∆0|X . The transformation

id ≃ |∆|(−) ⇒ |∆0|(−) gives a natural map X ! |∆0|X .
This shows that the maps Xn+1

0  Xn can indeed be made functorial in X and [n]. A
similar argument applies shows that the maps ∗! Xn+1

0 , which assemble into a functorial
map ∆0 ! |∆0|X . We conclude that Y ≃ X ×|∆0|X

∆0 as above is indeed a simplicial
anima and functorial in X. We have Y0 ≃ ∗ by construction and also Yn ≃ Y1 ×Y0 · · · ×Y0 Y1
follows from the fact that X itself satisfies the Segal conditions together with some abstract
pullback nonsense (basically that “limits commute”, see the dual of Proposition I.42). So
Y ∈ Mon(An) and we can finally write down the functor

decomp: ∗/CSAn −! Mon(An) .

This finishes Step (1).
(2) The completion functor comp: Mon(An)! CSAn from Lemma/Definition I.67 factors

over ∗/CSAn! CSAn and its essential image is contained in those pointed complete
Segal spaces (X,x) with π0X0 = ∗.

To get the factorisation, observe that Mon(An) has an initial object, namely ∆0 ∈ sSet ⊆
sAn (in the lecture we called it “const ∗”, but it’s really just ∆0). Indeed, if T ∈ Mon(An),
then

HomMon(An)(∆0, T ) ≃ HomsAn(∆0, T ) ≃ T0 ≃ ∗

by Definition II.1(a). Also comp(∆0) ≃ ∗, so the completion functor really lifts to a functor
Mon(An) ≃ ∆0/Mon(An)! ∗/CSAn, as required.

To check that π0(compT )0 = ∗, recall that (compT )0 ≃ core asscatT ≃ |T×| by (I.65.1).
Now we have to use the following general fact:
(∗) For all X ∈ sAn the map π0X0 ! π0|X| is surjective.
This shows what we want since (T×)0 ≃ T0 ≃ ∗ holds by assumption. To see where (∗)
comes from, observe that π0, being a left adjoint (Example I.33(a)), commutes with colimits.
This shows π0|X| ≃ π0 colim∆∆op X ≃ colim∆∆op π0X, where the colimit on the right-hand
side is a good old colimit taken in sSet. Now {d0, d1 : [1] [0]} ⊆ ∆∆op is 1-cofinal (but not
∞-cofinal!), hence

colim
∆∆op

π0X = Coeq
(
π0X1

d1

d0
π0X0

)
.

This immediately implies (∗) and thus Step (2) is done.
(3) The functors from Step (1) and Step (2) fit into an adjunction

comp: Mon(An) ∗/CSAn : decomp
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Consider T ∈ Mon(An), which is naturally pointed via the unique (up to contractible
choice) map 1T : ∆0 ! T , and let (X,x) be a pointed complete Segal space. Then

Hom∗/CSAn
(

compT, (X,x)
)

≃ Hom∗/sAn
(
(T, 1T ), (X,x)

)
≃ HomsAn(T,X) ×HomsAn(const 1T ,X) {constx}
≃ HomsAn(T,X) ×HomAn(1T ,X0) {x} .

The first equivalence follows from Lemma/Definition I.67 (and the fact that adjunctions
extend to slice categories), the second follows from [HCII, Corollary VIII.6]. The last one
follows by inspection. All of them are functorial in (X,x). Moreover, we have

HomMon(An)
(
T, decomp(X,x)

)
≃ HomsAn

(
T,X ×|∆0|X

∆0)
≃ HomsAn(T,X) ×HomsAn(T,|∆0|X ) HomsAn(T,∆0) .

Since id ⇒ |∆0|(−) is a natural transformation, one quickly checks that the morphism
HomsAn(T,X)! HomsAn(T, |∆0|X) factors over HomsAn(|∆0|T , |∆0|X). But T0 ≃ ∗, hence
|∆0|T ≃ ∆0. Also HomsAn(T,∆0) ≃ ∗. Putting everything together, we can rewrite

HomMon(An)
(
T, decomp(X,x)

)
≃ HomsAn(T,X) ×HomAn(T0,X0) {x} ,

and after another inspection, we see that our calculations of Hom∗/CSAn(compT, (X,x)) and
HomMon(An)(T, decomp(X,x)) agree, as they are supposed to. This finishes Step (3).
(4) The restriction decomp: (∗/CSAn)π0=∗ ! Mon(An) is indeed an inverse to comp,

where (∗/CSAn)π0=∗ ⊆ ∗/CSAn denotes the full subcategory spanned by those (X,x)
with π0X0 = ∗.

Thanks to Step (3), we already have unit and counit transformations id ⇒ decomp ◦ comp
and comp ◦ decomp ⇒ id, so we only need to show that they are equivalences. Let’s start
with the counit. We must show

comp
(

decomp(X,x)
)

≃ (X,x)

for all (X,x) ∈ (∗/CSAn)π0=∗. Observe that compX ≃ X because X is already complete.
Hence it suffices to show asscat(decomp(X,x)) ≃ asscatX (and check that the chosen
base points on both sides correspond, but that’s easy) because comp ≃ Nr ◦ asscat by
Lemma/Definition I.67 and Nr is fully faithful by Theorem/Definition I.64. Using (I.65.1)
and the fact that X× is a constant simplicial anima with value X0 as X is complete, we see
that

π0 core(asscatX) ≃ π0|X×| ≃ π0X0 ≃ ∗ ,

so asscat(decomp(X,x)) ! asscatX is essentially surjective for trivial reasons. Moreover,
we have decomp(X,x)0 ≃ {x} by construction, and (I.65.2) (which is applicable here because
decomp(X,x) is Segal by construction) easily shows

Homasscat(decomp(X,x))(x, x) ≃ Px,x ≃ HomasscatX(x, x) ,

so asscat(decomp(X,x))! asscat(X) is fully faithful too. This shows that the counit is an
equivalence, as claimed. The argument for the unit is similar: We have to show

T ≃ decomp(compT )
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for all T ∈ Mon(An). Since both sides are functors ∆∆op ! An and a natural transformation
between them is already given, we can do this degree-wise by Theorem I.19(b). Since both
sides are cartesian monoids, is suffices to check that the map in degree 1 is an equivalence,
i.e. that T1 ≃ decomp(compT )1. Write (X,x) ≃ compT . By construction we have

decomp(X,x)1 ≃ Px,x and T1 ≃ P1T ,1T
,

where as usual 1T : ∆0 ! T is the natural pointing of T . As observed at the very beginning
of this proof, the spaces Py,z aren’t affected by completion, hence Px,x ≃ P1T ,1T

and we’re
done.

Lecture 9
26th Nov, 2020

Under the equivalence Cat∞ ≃ CSAn from Theorem/Definition I.64, the construction
of decomp from the proof of Proposition II.2 corresponds to a functor ∗/Cat∞ ! Mon(An)
which becomes an equivalence when restricted to the full subcategory (∗/Cat∞)⩾1 ⊆ ∗/Cat∞
spanned by those C with π0 core C ≃ ∗. In diagrams,

∗/Cat∞ Mon(An)

(∗/Cat∞)⩾1

⊆ ∼

Explicitly, this functor sends a pointed ∞-category ({x} ! C) to HomC(x, x) in degree 1
(and then all other degrees are determined by the conditions from Definition II.1). We thus
obtain:

II.3. Corollary. — If C is an ∞-category and x ∈ C, then HomC(x, x) carries a canonical
structure of an E1-monoid.

II.4. Definition. — Let C be an ∞-category with finite products. A cartesian monoid X
in C is called a cartesian group (or E1-group in the case C = An) if the map

(pr1, ◦) : X1 ×X1
∼−! X1 ×X1

(f, g) 7−! (f, f ◦ g)

is an equivalence. Here “◦” is the composition as defined in Theorem/Definition I.64(c). We
denote by Grp(C) ⊆ Mon(C) the full sub-∞-category of cartesian groups.

II.5. Proposition. — The equivalences Mon(An) ≃ (∗/Cat∞) ≃ (∗/CSAn)π0=∗ restrict
to equivalences

Mon(An) Grp(An)

(∗/Cat∞)⩾1 (∗/An)⩾1

(∗/CSAn)π0=∗ (∗/sAnconst)π0=∗

∼

⊇

∼

∼

⊇

∼

⊇

In the lower right corner we use the notation from Example I.68(c).
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Proof sketch. In the lecture we noted only that X ∈ Mon(An) is an E1-group iff the set
π0X1 with its induced ordinary monoid structure is an ordinary group.

To elaborate on this a bit more, first note that we may assume X ≃ HomC(x, x) for
some ∞-category C with π0 core C ≃ ∗, as was argued above. If X is an E1-group, then
π0 HomC(x, x) must be an ordinary group, which implies that all endomorphisms of x are
equivalences, hence all morphisms in C are equivalences as π0 core C ≃ ∗. This proves that C
is an anima by Theorem I.13. Conversely, if C is an anima, either inclusion [1] ↪! J into the
free-living isomorphism induces a trivial fibration Fun(J, C) ∼−! Ar(C). Choosing a section
and composing it with the the other map Fun(J, C)! Ar(C) (induced by the other inclusion
[1] ↪! J) yields an “inversion” map (−)−1 : HomC(x, x) ! HomC(x, x). From this we can
construct an inverse of the map in Definition II.4

II.6. Some Explicit Calculations. — The equivalence Grp(An) ≃ (∗/An)⩾1 is explicitly
given as follows:

B = | | : Grp(An) ∼
∼ (∗/An)⩾1 :Ω .

The use B to denote the functor | | = colim∆∆op is common in the literature, as it is short for
“bar construction”. Fabian doesn’t like it, since he finds it stupid to name something after
the way it was typeset in the pre-LATEX age (where people had to resort to bars to denote
their tensor products). Amusingly though, his preferred notation consists of actual bars . . .
In these notes, however, I’ll show my bad taste and consistently use B.

Anyway, back to the matters at hand. To make sense of why the above equivalence is
indeed given by B = | | and Ω, recall that the composition

Mon(An) comp
−−−! CSAn ev0−! An

sends X 7! |X×|, as follows from (I.65.1) and some unravelling. If X is an E1-group, one
easily verifies X× = X and thus X ∈ Grp(An) is sent to BX = |X|, as claimed. Conversely,
the composition

(∗/An)⩾1
decomp
−−−−−! Grp(An) ev1−! An

sends a pointed connected anima (K, k) to HomK(k, k), as argued previously. So to justify
why (∗/An)⩾1

∼−! Grp(An) should be thought of as a “loop space functor”, we must explain
why ΩkK ≃ HomK(k, k). This can be done by several arguments and I will present a different
one than in the lecture. The loop space is usually defined by the left of the following pullback
diagrams in An:

ΩkK ∗

∗ K

.
k

k

∼−!

HomL
K(k, k) Kk/

∗ K

.

k

The map ∗ ! K can be factored into the left anodyne map ∗ ↪! Kk/ followed by the left
fibration Kk/ ! K, which is even a Kan fibration since K is an anima. Replacing one
of the ∗ ! K accordingly, we obtain the pullback diagram on the right, which is already
a pullback in sSet as one leg is a Kan fibration (see Theorem I.34). Its pullback is thus
HomL

K(k, k) ≃ HomK(k, k) as left-Hom anima coincide with the regular Hom anima by
[HCII, Digression I Corollary D.2].
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In particular, we have proved another result from algebraic topology (or rather deduced
it from the much more general statement of Theorem/Definition I.64, which we didn’t prove,
but never mind that).
II.7. Corollary (Recognition Principle for Loop Spaces, Stasheff). — The loop functor
Ω: ∗/An! An lifts to an equivalence

Ω: (∗/An)⩾1
∼−! Grp(An) .

Note that ev1 : Mon(An)! An preserves limits since Mon(An) is closed under limits in
sAn (the Segal condition is given by a limit and limits commute by the dual of Proposition I.42).
Colimits however are bloody complicated, and even though one can show that Mon(An) is
cocomplete, colimits in it are by far not just colimits of underlying simplicial anima, same as
colimits of ordinary monoids are much more complicated than colimits in sets.
II.8. Proposition. — The inclusion Grp(An) ⊆ Mon(An) has a left adjoint called group
completion and denoted

(−)∞-grp : Mon(An) −! Grp(An) .

It is given by X∞-grp ≃ ΩBX, where B : Mon(An)! (∗/An)⩾1 denotes a functor extending
the B from II.6.
Proof. We know that An ⊆ Cat∞ has a left-adjoint | | : Cat∞ ! An. The unit and counit
are equivalences on ∗ ∈ An, hence the adjunction passes to slices under it. Moreover the
(−)⩾1-parts on both sides are clearly preserved, thus | | descends to a left adjoint

| | : (∗/Cat∞)⩾1 −! (∗/An)⩾1

of the obvious inclusion in the other direction. Now use Proposition II.5 to get the desired
left-adjoint (−)∞-grp : Mon(An) ! Grp(An). The explicit description follows from our
calculations in II.6, and Remark I.66, which ensures that the different meanings of | |
(colim∆∆op or localisation of an ∞-category at all its morphisms) are actually compatible.

A consequence that wasn’t explicitly mentioned, but used later in the course, is the
following:
II.8a. Corollary*. — Without restricting them as in II.6, the functors B and Ω form an
adjunction

B : Mon(An) ∗/An: Ω .

Proof *. For a pointed anima (X,x), let Xx denote the connected component containing x.
Then ΩxX ≃ ΩxXx, so the equivalence Ω: (∗/An)⩾1

∼−! Grp(An) from II.6 extends to a
functor Ω: ∗/An! Grp(An). Now if M ∈ Mon(An) is an E1-monoid, we can compute

HomMon(An)(M,ΩxX) ≃ HomGrp(An)(M∞-grp,ΩxXx)
≃ HomGrp(An)

(
ΩBM,ΩxXx

)
≃ Hom(∗/An)⩾1

(
BM,Xx

)
≃ Hom∗/An

(
BM,X

)
,

which establishes the desired adjunction. The second equivalence follows from Proposition II.8,
the third equivalence uses that Ω: (∗/An)⩾1

∼−! Grp(An) is an equivalence, and the fourth
equivalence follows from the fact that BM is connected (by construction), hence any pointed
map BM ! X only hits the connected component Xx.
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Next we will discuss some examples. We begin with free monoids and groups.

II.9. Proposition. — The evaluation functor ev1 : Mon(An) ! An has a left adjoint
FreeMon : An! Mon(An). It is given explicitly by the “anima of words of arbitrary length”

FreeMon(K)1 ≃
∐
n⩾0

Kn .

Proof *. We didn’t prove this in the lecture, but here’s a very simple argument that Fabian
explained to me. We call a morphism in ∆∆ inert if it is the inclusion of an interval, and active
if it preserves the largest and the smallest element. Note that the Segal maps ei : [1]! [n]
are precisely the inert maps with source [1], and that every map can be uniquely factored
into an inert followed by an active. We let ∆∆op

int ⊆ ∆∆op denote the (non-full) subcategory
spanned by the inert maps. Let’s first verify the following two claims.
(1) Consider the full sub-∞-category FunSeg(∆∆op

int,An) spanned by the “reduced Segal func-
tors”, i.e. those X : ∆∆op

int ! An satisfying X0 ≃ ∗ and Xn ≃
∏n
i=1 X1 via the Segal

maps. Then evaluation at [1] induces an equivalence

ev1 : FunSeg(∆∆op
int,An) ∼−! An .

(2) Consider the left-Kan extension functor Lani : Fun(∆∆op
int,An) ! Fun(∆∆op,An) along

i : ∆∆op
int ! ∆∆op.Then Lani preserves reduced Segal functors.

To show (1), we verify that right-Kan extension along the inclusion j : {[1]}! ∆∆op
int defines

an inverse. Using the pointwise formulas from Theorem I.52 together with the fact that the
inert maps [1]! [n] are precisely the Segal maps, we see that Ranj indeed takes values in
the reduced Segal functors, and that Ranj ◦ ev1 ≃ id. To show ev1 ◦ Ranj ≃ id, observe that
j is fully faithful and use Corollary I.54. This proves (1).

To prove (2), let X : ∆∆op
int ! An be reduced Segal. By Theorem I.52,

(LaniX)n ≃ colim
([k]![n])∈∆∆op

int/[n]
Xk ≃ colim

([k]![n])∈∆∆op
int/[n]

Xk
1 .

An object [k]! [n] of ∆∆op
int/[n] corresponds to a map [n]! [k] in ∆∆. Any such map can be

uniquely factored into an inert [n′]! [k] followed by an active α : [n]! [n′]. This allows us
to decompose ∆∆op

int/[n] into a disjoint union
∐
α Cα, indexed by all active maps α : [n]! [n′]

with source [n]. Moreover, each Cα has a terminal object, which is given by α itself (or rather
the corresponding object αop : [n′]! [n] in ∆∆op

int/[n]).
For n = 0 this shows (LaniX)n ≃ ∗, since id[0] : [0] ! [0] is the only active map

with source [0]. For n = 1, we get a unique active map [1] ! [n] for all n, which shows
(LaniX)1 ≃

∐
k⩾0 X

k
1 . For general n, we get

(LaniX)n ≃
∐

k1,...,kn⩾0
Xk1+···+kn

1 .

Upon inspection, this shows that LaniX is again reduced Segal. We’ve thus proved (2).
Combining (1) and (2) shows that FreeMon : An ! Mon(An) is given by Lani ◦ Ranj . But
then the calculations above show FreeMon(K)1 ≃

∐
n⩾0 K

n, as claimed.
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By the explicit construction of FreeMon, the diagram

Set Mon(Set)

An Mon(An)

Free

FreeMon

commutes. But be aware that this is not automatic, and in fact we’ll see it very much breaks
once we impose commutativity (see pages 88 and 101). As some first examples, one has
FreeMon(∗) ≃ N and FreeMon(∅) ≃ ∗, which is initial in Mon(An).

II.10. Proposition. — The evaluation functor ev1 : Grp(An) ! An has a left-adjoint
FreeGrp : An! Grp(An) too. Explicitly, it is given by the composite

An −! ∗/An Σ
−! ∗/An Ω

−! Grp(An)
X 7−! X ⊔ ∗ .

In other words, the free E1-group on X is FreeGrp(X) ≃ ΩΣX+, where X+ = X ⊔ ∗. As
usual, the suspension functor Σ: An! An is given by the pushout diagram

X ∗

∗ ΣX
.

II.10a. Remark*. — For the proof, we’ll need a functor Σ: ∗/An! ∗/An instead. It is
induced by its unpointed variant, of course, but we can also define it by taking the above
pushout in ∗/An. In fact, it doesn’t matter whether the pushout is taken in ∗/An or An
since ∗/An! An commutes with weakly contractible colimits (but not with arbitrary ones,
which I erroneously claimed in an earlier version of these notes; for example, it doesn’t
preserve the initial object). Indeed, if I is any diagram shape, then a quick calculation shows
Fun(I, ∗/An) ≃ (const ∗)/Fun(I,An). For the adjunction

colim
I

: Fun(I,An) An : const

to descend to slice categories below const ∗ and ∗, we need that these objects are mapped to
each other and that unit/counit are equivalences on them. If I is weakly contractible, then
colimI(const ∗) ≃ |I| ≃ ∗ by Proposition I.36 and the required conditions are easily checked.
Therefore, the adjunction above descends to an adjunction

colim
I

: Fun(I, ∗/An) ≃ (const ∗)/Fun(I,An) ∗ /An : const

in this case. If you think about this for a moment, this is exactly what we need to show that
∗/An! An commutes with colimits over I.

Similarly, once we have chosen a basepoint x ∈ X, it doesn’t matter whether we take the
defining pullback of ΩxX in ∗/An or in An (and then equip it with its natural basepoint).
This can be seen as above, or simply by the fact that ∗/An! An has a left adjoint, so we
can apply Observation I.41. However, in contrast to Σ, we can’t define Ω as a functor on An,
since there is no canonical choice of basepoint.
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Proof sketch of Proposition II.10. The existence of a left adjoint would be immediate from
Propositions II.8 and II.9, but we can give a direct argument that also yields the explicit
description. We have seen in II.6 that the diagram

Grp(An) An

(∗/An)⩾1

B

ev1

Ω
///

commutes. Observe that (−)+ = − ⊔ ∗ : An! ∗/An is a left adjoint of the forgetful functor
∗/An ! An (this is basically trivial) and that Σ: ∗/An ∗ /An :Ω are adjoints (this we
leave as an exercise—just play around with the defining pushouts/pullbacks, which can be
taken in ∗/An by Remark* II.10a). Finally, Ω: (∗/An)⩾1 Grp(An) :B is an adjunction
(even an equivalence) by II.6. The assertion now follows from the fact that left adjoints
compose.

II.11. Example. — (a) The evaluation functor ev1 : Mon(An)! An factors canonically
over ∗/An! An, and as it turns out, the resulting functors

ev1 : Mon(An) −! ∗/An and ev1 : Grp(An) −! ∗/An

both have left adjoints. For a pointed anima (X,x), we denote the corresponding left
adjoint objects by FreeMon(X,x) and FreeGrp(X,x) and think of them as the “free
E1-monoid/group with unit x”. We have

FreeMon(X,x)∞-grp ≃ FreeGrp(X,x) ≃ ΩΣX

The first equivalence follows from the fact that left adjoints compose. The second
equivalence can be seen along the lines of the proof of Proposition II.10, without us
needing to know that FreeMon(X,x) exists.

If (X,x) is connected, one actually has FreeMon(X,x) ≃ FreeGrp(X,x). Indeed, as
we’ve seen in the proof of Proposition II.5, we only need to check that the ordinary
monoid π0 FreeMon(X,x)1 is already an ordinary group. Playing around with universal
properties, we see that π0 FreeMon(X,x)1 is the free ordinary monoid on the set π0X
with unit [x], hence just {[x]} itself since X is connected, hence it already is a group.

(b) By Proposition II.9, FreeMon(S1) ≃
∐
n⩾0 Tn is an infinite union of tori Tn =

∏n
i=1 S1

and thus a reasonable geometric object. However, Proposition II.10 implies

FreeGrp(S1) ≃ ΩΣ(S1
+) ≃ Ω(S2 ∨ S1) ,

and the homotopy groups of the right-hand side are not fully known to this day. Similarly,
using the pointed variant from (a) above, we get

FreeMon(S1, ∗) ≃ FreeGrp(S1, ∗) ≃ ΩΣ(S1, ∗) ≃ ΩS2

(c)Lecture 10
1st Dec, 2020

It is completely formal to see that ev1 : Mon(An) ! An and ev1 : Grp(An) ! An are
represented by FreeMon(∗) and FreeGrp(∗) ≃ FreeMon(∗)∞-grp respectively. What’s not
formal, however, is that FreeMon(∗) ≃ N and FreeGrp(∗) ≃ ΩS1 ≃ Z, regarded as discrete
simplicial anima. This really needs Propositions II.9 and II.10.
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Moreover, we’ll see (pages 88 and 101) that the analogous functors are no longer
represented by N and Z once we impose commutativity, even though they are the free
E1-monoid/group on a point and happen to be commutative. In fact they are “too
commutative to be free commutative monoids” (*sphere spectrum intensifies*).

(d) Let’s for some reason compute the pushout

N N

∗ N//2

·2

.

in Mon(An). The answer is N//2 ≃ ΩRP2. To see this, first observe that the functor
π0 : Mon(An)! Mon(Set) commutes with colimits, so π0(N//2) = Z/2 since we know
how to compute pushouts in Mon(Set). But Z/2 is a group, so N//2 ∈ Grp(An) by
Proposition II.5. In particular, since the group completion functor (−)∞-grp commutes
with colimits, we get N//2 ≃ Z//2, i.e., the diagram

Z Z

∗ N//2

·2

.

is a pushout in Grp(An). Translating to ∗/An via Proposition II.5 gives a diagram

S1 S1

D2 RP2

·2

.

(we have replaced ∗ by the disk D2 to make one leg of the pushout into a cofibration so
that it can be computed by an ordinary pushout of CW complexes by Theorem I.34)
and translating back using II.6 shows N//2 ≃ ΩRP2, as claimed.

(e) Every monoidal 1-category (C,⊗) gives rise to a monoidal ∞-category, i.e. an object in
Mon(Cat(2)

1 ) ⊆ Mon(Cat∞). We will produce this by straightening a suitable cocartesian
fibration p⊗ : C⊗ ! ∆∆op of 1-categories. Define C⊗ ∈ Cat(2)

1 as follows: Its objects are

obj(C⊗) =
∐
n⩾0

obj(C)n ,

i.e. given by tuples (n, x1, . . . , xn) with [n] ∈ ∆∆ and xi ∈ C. We’ll usually abbreviate
x = (x1, . . . , xn) and simply write (n, x). Morphisms are defined as

HomC⊗
(
(n, x), (m, y)

)
=

(α, f)

∣∣∣∣∣∣
α : [m]! [n] in ∆∆ and f = (f1, . . . , fm)
where fj : xα(j−1)+1 ⊗ · · · ⊗ xα(j) ! yj
are morphisms in C for all j = 1 . . . ,m

 .

If α(j − 1) + 1 > α(j) for some j, then xα(j−1)+1 ⊗ · · · ⊗ xα(j) is the empty tensor
product, which is the tensor unit 1C ∈ C by definition.
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The composition of (α, f) : (n, x) ! (m, y) and (β, g) : (m, y) ! (k, z) is given as
follows: Its first component is α ◦ β : [k]! [n]. For the second component, observe that
we can write

xαβ(j−1)+1 ⊗ · · · ⊗ xαβ(j) =
β(j)−β(j−1)⊗

i=1

(
xα(β(j−1)+i−1)+1 ⊗ · · · ⊗ xα(β(j−1)+i)

)
.

The ith tensor factor on the right maps to yβ(j−1)+i via fβ(j−1)+i. Tensoring them
together and postcomposing with gj : yβ(j−1)+1⊗· · ·⊗zj provides the desired composition
of f and g. This finishes the construction of C⊗.

The functor p⊗ : C⊗ ! ∆∆op just extracts [n] from (n, x) and α from (α, f). The fibres
C⊗
n of p⊗ are then obviously given by Cn. To show that p is a cocartesian fibration of

1-categories, we must provide cocartesian lifts of morphisms in ∆∆op. Given α : [m]! [n]
in ∆∆ and (n, x) ∈ C⊗, we claim that the identities can be regarded as a morphism

α∗ : (n, x) −!
(
m,xα(0)+1 ⊗ · · · ⊗ xα(1), . . . , xα(m−1)+1 ⊗ · · · ⊗ xα(m)

)
.

It’s straightforward to check that α∗ is a cocartesian lift of α (note that the daunting
homotopy pullbacks in Definition I.24 become just good old pullbacks of sets/discrete
anima, since we are dealing with 1-categories).

It remains to check that St(p⊗) satisfies the conditions from Definition II.1. As seen
above, St(p⊗)0 ≃ C⊗

0 ≃ C0 ≃ ∗ is a point, as desired. To verify the Segal condition, let’s
organize the world a little bit. Recall that a map in ∆∆ is called inert if it is the inclusion
of an interval and active if it preserves the largest and the smallest element. The Segal
maps ei : [1] ! [n] are precisely the inert maps with source [1]. We claim that for a
general inert map α : [m]! [n], the induced functor (given by taking cocartesian lifts)

α∗ : Cn ≃ C⊗
n −! C⊗

m ≃ Cm

simply sends (x1, . . . , xn) ∈ Cn to (xα(1), . . . , xα(m)) ∈ Cm with no tensor products
occuring. Thus the Segal condition follows immediately.

As a slogan, “inerts induce forgetful functors on fibres”, whereas “actives don’t forget,
they just tensor”.

(f) The construction from (e) also works if C is Kan enriched. In this case one can again
construct a cocartesian fibration p⊗ : C⊗ ! ∆∆op, but of Kan-enriched categories this
time (where ∆∆op receives its discrete enrichment). Then Nc(C⊗) ! Nc(∆∆op) ≃ ∆∆op

straightens to a monoidal ∞-category as well. Fabian wouldn’t tell us what a cocartesian
fibration of Kan-enriched categories is though, since this would take—not a lot, but too
much—time.

Example II.11(e) allows us to construct many interesting examples. All examples will
turn out to be commutative (see Example II.21a), but that doesn’t matter for now.

II.12. Algebraic K-Theory. — Let R be a ring and consider Mod(R) as a monoidal
category under ⊕. Moreover, let Proj(R) denote the sub-groupoid of spanned by finite
projective R-modules (“vector bundles on SpecR”) and their isomorphisms. This inherits a
(symmetric) monoidal structure by Example II.11(e), so we obtain

Proj(R) ∈ Mon
(
Grpd(2)

1
)

⊆ Mon(An) .
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II.12a. Definition (Quillen). — The projective class anima (or algebraic K-theory space)
of a ring R is defined as

k(R) := Proj(R)∞-grp ∈ Grp(An) ,

and the higher projective class groups (or higher K-groups) of R are given by

Ki(R) = πi
(
k(R)1, ∗

)
.

The reason we write k(R) is that the notation K(R) is reserved for the K-theory spectrum
which we will eventually define. Note immediately that

K0(R) = π0
(

Proj(R)∞-grp) =
(
π0 Proj(R)

)grp =
{

iso. classes of finite
projective R-modules

}grp
,

where (−)grp : Mon(Set) ! Grp(Set) denotes the ordinary group completion. This shows
that K0(R) is precisely what we wanted it to be way back in the introduction, Definition 0.6.
We will soon(ish, Corollary III.7) see that also K1(R) can be described as in Definition 0.8.

II.13. Hermitian K-Theory/Grothendieck–Witt Theory. — Let R be a ring, M an
R⊗R-module and σ : M !M an involution that is flip-linear, i.e. σ((a⊗b)m) = (b⊗a)σ(m).
Moreover, assume that M is finite projective when considered as an R-module via the
map R ≃ Z ⊗ R ! R ⊗ R (one can check that it doesn’t matter if we choose this map or
R ≃ R⊗ Z! R⊗R) and that the map

R ∼−! HomR(M,M)
r 7−!

(
m 7! (r ⊗ 1)m

)
is an isomorphism. A pair (M,σ) subject to these conditions is called an invertible module
with involution over R (beware that this is non-standard terminology).

For a finite projective R-module P ∈ Proj(R) consider the group HomR⊗R(P ⊗ P,M) of
M -valued R-bilinear forms on P . This is acted upon by Z/2 via conjugation with the flip of
P ⊗ P and σ on M . Define the groups of symmetric and quadratic forms on P as

SymR(P,M) := HomR⊗R(P ⊗ P,M)Z/2

QuadR(P,M) := HomR⊗R(P ⊗ P,M)Z/2 ,

where (−)Z/2 denotes the invariants of the Z/2-action and (−)Z/2 denotes the coinvariants
(i.e. take the coequalizer rather than the equalizer). Finally, let the group of even forms on
P be

EvenR(P,M) := im (Nm: QuadR(P,M)! SymR(P,M)) ,

where Nm denotes the norm map which can be defined on general abelian groups with a
Z/2-action: If X ∈ Z/2-Ab is an abelian group with Z/2 acting via an involution τ : X ! X,

Nm: XZ/2 −! XZ/2

[x] 7−! x+ τ(x) .

A symmetric form q ∈ SymR(P,M) is called unimodular if the induced map

q∗ : P ∼−! HomR(P,M) =: DM (P )
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is an isomorphism. The right-hand side should be thought of the “M -valued dual” of
P . This is reasonable because the assumptions on M are chosen precisely to ensure that
DM : Proj(R)op ∼−! Proj(R) is an equivalence with inverse Dop

M .
Similarly, an even or quadratic form is called unimodular if their image in SymR(P,M)

(via the inclusion or via Nm) is unimodular. For r ∈ {sym, quad, even} we denote

Unimodr(P,M) =

 groupoid of unimodular r-forms, i.e. pairs
(P, q), where q is a unimodular r-form on P ,

and isomorphisms between them


This is a symmetric monoidal 1-groupoid via ⊕, hence induces a symmetric monoidal anima
by Example II.11(e).

II.13a. Definition (Karoubi). — For r ∈ {sym, quad, even}, the Grothendieck–Witt anima
of (R,M) is given by

gwr(R,M) := Unimodr(R,M)∞-grp .

Lecture 11
3rd Dec, 2020

To make the rather technical definitions of symmetric, quadratic, and even forms a
bit clearer, we discussed some examples. Choose R a commutative ring, let M = R and
make it an R ⊗ R-module via the multiplication map µ : R ⊗ R ! R. Choosing either
σ = idR or σ = − idR, we we see that SymR(P,M) returns the usual notion of symmetric or
skew-symmetric R-bilinear forms on P .

If R = C, we can also equip M = C with a C ⊗ C-module structure via

C ⊗ C id ⊗(−)
−−−−−! C ⊗ C µ

−! C ,

where (−) : C! C denotes complex conjugation, as usual. In this case, SymC(P,C) amounts
to hermitian or skew-hermitian forms on P , depending on whether σ = idC or σ = − idC.

II.13b. Exercise. — Show that QuadR(P,M) is in bijection with the set of all pairs
(b, q) ∈ SymR(P,M) × HomSet(P,MZ/2) satisfying

b(p, p) = Nm
(
q(p)

)
and q(rp) = (r ⊗ r)q(p)

for all p ∈ P and r ∈ R. Under this bijection, the map Nm: QuadR(P,M)! SymR(P,M)
simply forgets q.

What Exercise II.13b means depends a little on R. We always assume that R is commu-
tative.
(a) If σ = idM , then MZ/2 = M = MZ/2 and Nm is simply multiplication by 2. So if M

has no 2-torsion, then q is already defined by b and the equation b(p, p) = Nm(q(p)).
Hence the norm map Nm: QuadR(P,M) ! SymR(P,M) is an isomorphism onto its
image, which means that quadratic forms and even forms are in bijection in this case.

(b) If σ = − idM , then MZ/2 = M/2 and MZ/2 = M [2] = 2-torsion of M . Hence
Nm: MZ/2 !MZ/2 is the zero map. IfM [2] = 0, then b(p, p) = 0 for all b ∈ SymR(P,M)
and all p ∈ P , hence Nm: QuadR(P,M) ! SymR(P,M) is surjective, because under
the identification from Exercise II.13b, (b, 0) is always a preimage of b. Thus all sym-
metric forms are even, but in general an even form may have lots of quadratic forms
that map to it.

(c) If 2 ∈ R× is a unit and σ = idM , then Nm: QuadR(P,M) ! SymR(P,M) is an
isomorphism and the notions of symmetric, quadratic, and even forms all agree.
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II.14. Topological K-Theory. — Let’s define four ordinary categories as follows:

VectR =
{

finite-dim. R-vector spaces,
R-linear homeomorphisms

}
, EuclR =

{
finite-dim. R-vector spaces,
arbitrary homeomorphisms

}
,

VectC =
{

finite-dim. C-vector spaces,
C-linear homeomorphisms

}
, SphR =

{
finite-dim. R-vector spaces,
proper homotopy equiv’s

}
.

We didn’t include VectC in the lecture, but in hindsight we really should have. These four
categories can be Kan-enriched: For each category C among them, we let FC(U, V )n be the set
of continuous maps |∆n| × U ! V such that {d} × U ! V is a morphism in C for all points
d ∈ |∆n| of the topological n-simplex. Moreover, all of them carry a Kan-enriched (symmetric)
monoidal structure via the usual product ×. Hence we may apply the construction from
Example II.11(f), to obtain monoidal anima

VectR , VectC , EuclR , and SphR .

Observe that while VectR, VectC, and EuclR are already groupoids, SphR is not. But
it becomes an anima after taking the coherent nerve, since homotopy equivalences have
homotopy inverses. Also observe that the one-point compactification (−)∗ of topological
spaces induces equivalences

HomSphR(U, V ) ≃ Homcore(∗/An)(U∗, V ∗)

for all finite-dimensional R-vector spaces U, V ∈ SphR. Writing U = Rn, V = Rm, we get
that U∗ = Sn and V ∗ = Sm are actually spheres. Hence the name SphR.

II.14a. Definition. — Define the following E1-groups:

ko = Vect∞-grp
R , ku = Vect∞-grp

C , ktop = Eucl∞-grp
R , and ksph = Sph∞-grp

R .

Before we indulge ourselves in their properties, I’d like to do two reality checks. The first
one is an alternative construction of VectR and VectC.

II.14b. Lemma*. — Let O(n) ⊆ GLn(R) and U(n) ⊆ GLn(C) be the nth orthogonal and
the nth unital group. Then

VectR ≃
∐
n⩾0

BO(n) and VectC ≃
∐
n⩾0

BU(n) .

The groups O(n), GLn(R), U(n) and GLn(C) all admit CW structures, hence they define
E1-groups via

Grp(CW) −! Grp
(

Nc(CW)
)

≃ Grp(An) .
Thus it makes sense to talk of BO(n), BGLn(R), BU(n), and BGLn(C). We can also find
similar descriptions of EuclR and SphR, but let me not get into that.

Proof of Lemma* II.14b*. It’s well-known that O(n) and U(n) are deformation retracts of
GLn(R) and GLn(C), respectively (see [Hat02, Section 3.D] for example). Hence it suffices
to prove stuff for the latter.

Let VectnR ⊆ VectR denote the connected component corresponding to n-dimensional
vector spaces. By II.6 and Theorem I.14, constructing an equivalence BGLn(R) ∼−! VectnR
is the same as constructing an equivalence

GLn(R) ∼−! ΩRnVectnR ≃ HomVectR(Rn,Rn) ≃ FVectR(Rn,Rn) .
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But we easily get FVectR(Rn,Rn)i = HomTop(|∆i|, | GLn(R)|) from the definition above
(where we write | GLn(R)| to indicate that we really mean the topological space, not the
associated anima), hence FVectR(Rn,Rn) = Sing | GLn(R)|, hence the unit map

GLn(Rn) ∼−! Sing | GLn(R)| .

provides the desired equivalence. This is also an equivalence of E1-groups since both Sing and
| | preserve finite products, hence the Segal condition. The complex case works completely
analogous.

II.14c. Lemma*. — If G is a topological group with the homotopy type of a CW complex,
then BG (as constructed in II.6) and BG (the classifying space for principal G-bundles)
coincide.

Proof *. There are probably lots of ways to see this, but what convinced me was that
ΩBG ≃ G also holds on the topological side of things (see [Die08, Example (14.4.7)]), hence
both BGs are mapped to G under the equivalence Ω: (∗/An)⩾1

∼−! Grp(An).

From Lemmas II.14b, II.14c, and the classification of principal G-bundles we find that

π0 HomAn(X,VectR) = π0VectR(X) and π0 HomAn(X,VectC) = π0VectC(X)

are the sets of isomorphism classes of real and complex vector bundles on X whenever X is a
CW complex (it doesn’t really make sense to talk about vector bundles over anima). Taking
this a step further, we can generalise our constructions from above and produce monoidal
anima

VectR(X) , VectC(X) , EuclR(X) , and SphR(X) ,

of real vector bundles, complex vector bundles, Rn-fibre bundles, and spherical fibrations
over X, respectively. These satisfy (either by construction and the argument above, or simply
by definition; it’s up to you to decide)

VectR(X) ≃ HomAn(X,VectR) , EuclR(X) ≃ HomAn(X, EuclR) ,
VectC(X) ≃ HomAn(X,VectC) , SphR(X) ≃ HomAn(X,SphR) .

Now observe that HomAn(X,−) : An! An preserves products, hence Segal conditions. Thus
it preserves E1-monoids, and by an easy check also E1-groups (since we only need that
π0 HomAn(X,−) sends E1-groups to ordinary groups). Hence Definition II.14a and the
universal property of group completion induces comparison maps

VectR(X)∞-grp −! HomAn(X, ko) , EuclR(X)∞-grp −! HomAn(X, ktop) ,
VectC(X)∞-grp −! HomAn(X, ku) , SphR(X)∞-grp −! HomAn(X, ksph) .

Be aware that in general these aren’t equivalences in general! This is only true when X is a
finite CW complex (or a retract of such), as we will see in Corollary III.15 once we have the
group completion theorem available.

Now put ko∗(X) := π∗ HomAn(X, ko) and define ku∗(X), ktop∗(X), and ksph∗(X)
similarly. These groups are pretty important invariants in geometric topology! For example,
ko∗(X) and ku∗(X) are what’s usually called real and complex K-theory. In the special case
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X = ∗ they are completely known, thanks to the famous Bott periodicity theorem (which
we’ll see again in a refined version in Theorem III.16):

πn(ku) ≃

{
Z if n ≡ 0 mod 2
0 if n ≡ 1 mod 2

and πn(ko) ≃



Z if n ≡ 0 mod 8
Z/2 if n ≡ 1 mod 8
Z/2 if n ≡ 2 mod 8
0 if n ≡ 3 mod 8
Z if n ≡ 4 mod 8
0 if n ≡ 5 mod 8
0 if n ≡ 6 mod 8
0 if n ≡ 7 mod 8

.

The homotopy groups of ksph are also “known” in that πn(ksph) ≃ πsn is the nth stable
homotopy group of spheres. Finally, we won’t give a description of the homotopy groups of
ktop, but we can at least their “differences” to those of ko and ksph: For n ≠ 4 we have that

πn
(

fib(ko! ktop)
)

≃ Θn

is the group of exotic spheres in dimension n, i.e. exotic smooth structures on Sn. Moreover,

πn
(

fib(ktop! ksph)
)

≃ Lq
n(Z) ≃


Z if n ≡ 0 mod 4
0 if n ≡ 1 mod 4
Z/2 if n ≡ 2 mod 4
0 if n ≡ 3 mod 4

.

yields Wall’s quadratic L-groups of the integers.

E∞-Monoids and E∞-Groups
The “idea” how to impose commutativity is to replace ∆∆op by some other category Lop which
has “flips” in it. Lurie uses Finop

∗ to denote this category, but Fabian decided to honour
Segal’s original notation.

II.15. Definition. — We denote by Lop the 1-category whose objects are finite sets and
whose morphisms are partially defined maps. Write ⟨n⟩ = {1, . . . , n}. There is a functor

Cut: ∆∆op −!
Lop

defined on objects via Cut([n]) = ⟨n⟩. On a morphism α : [m] ! [n] in ∆∆, which then
corresponds to a morphism αop in ∆∆op pointing in the other direction, Cut(αop) : ⟨n⟩! ⟨m⟩
is defined via

Cut(αop)(i) =


undefined if i ⩽ α(0)
j if α(j − 1) < i ⩽ α(j)
undefined if α(n) < i

.

In more invariant words, Cut sends a finite non-empty totally ordered set I ∈ ∆∆op to its set
of Dedekind cuts (i.e. partitions into two non-empty intervals), and a map α : I ! J in ∆∆
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is sent to Cut(αop) = α∗ : Cut(J)! Cut(I) which is given by taking preimages (whenever
these are non-empty, otherwise it’s undefined).

If now C is an ∞-category with finite products, then a cartesian commutative monoid in
C is a functor X : Lop ! C such that X ◦ Cut: ∆∆op ! C is a cartesian monoid in the sense of
Definition II.1. If it is even a cartesian group, then X is called a cartesian commutative group
in C. We let CMon(C),CGrp(C) ⊆ Fun(Lop, C) denote the full sub-∞-categories spanned by
cartesian commutative monoids/groups.
II.15a. — Time to unwind! The functor Cut: ∆∆op !

Lop takes the Segal maps ei : [1]! [n]
in ∆∆ to the maps ρi : ⟨n⟩! ⟨1⟩ defined by

ρi(j) =
{

1 if i = j

undefined else
.

Moreover, the face maps d0, d1, d2 : [1]! [2] in ∆∆ are sent to l,m, r : ⟨2⟩! ⟨1⟩, the unique
maps defined on {1}, {1, 2}, and {2} respectively. So composition in a cartesian commutative
monoid becomes

µ : X1 ×X1 X2
m
−! X1∼

(l,r)
.

But consider the flip map flip: ⟨2⟩! ⟨2⟩ that swaps 1 and 2. Then m ◦ flip = m, r ◦ flip = l,
and l ◦ flip = r hold in Lop, so the diagram

X1 ×X1

X1

X1 ×X1

flip factors

µ

///

µ

commutes. So it really makes sense to think of X as commutative!
II.15b. Exercise. — If C is a 1-category, show that Cut∗ : Fun(Lop, C) ! Fun(∆∆op, C)
restricts to a fully faithful functor CMon(C)! Mon(C). Note that this is false for general
∞-categories, even for C = Cat(2)

1 !
II.15c. — Similar to Example II.11(e), any symmetric monoidal 1-category (C,⊗) gives
rise to an object in CMon(Cat(2)

1 ) ⊆ CMon(Cat∞). Similar to the monoidal case, this is
constructed from a cocartesian fibration p⊗ : C⊗ !

Lop.
Let’s briefly sketch the construction. Objects of C⊗ are pairs (n, x1, . . . , xn), where

⟨n⟩ ∈
Lop and x1, . . . , xn ∈ C. Morphisms (n, x) ! (m, y) comprise the data of a map

α : ⟨n⟩ ! ⟨m⟩ in Lop together with maps fj :
⊗

i∈α−1(j) xi ! yj for all j = 1, . . . ,m.
Composition is defined in the “obvious” way, using the braiding σ, and to see that composition
is associative one has to use σ2 = id. If you are confused by this braiding stuff: In a nutshell,
a braiding of a monoidal category is a choice of isomorphisms σx,y : x⊗y ∼−! y⊗x subject to
some naturality conditions. In this terminology, a symmetric monoidal category is a braided
monoidal category for which σx,y ◦ σy,x = id.

One can check that the cocartesian fibration p⊗
mon : C⊗

mon ! ∆∆op from Example II.11(e)
fits into a pullback diagram

C⊗
mon C⊗

∆∆op Lop

p⊗
mon

.
p⊗

Cut
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It turns out that the diagram

CMon
(
Cat(2)

1
)

Mon
(
Cat(2)

1
)

SymMonCat(2)
1 MonCat(2)

1

Cut∗

∼ ∼

forget

commutes (we never defined the bottom categories, but if you sit down for a while you will
surely come up with suitable a definition of the 2-category of symmetric/arbitrary monoidal
1-categories). However, a monoidal category can have many symmetries, so the horizontal
functors are not at all fully faithful! For example, let (C,⊗) be the category of Z-graded
R-modules equipped with the graded tensor product. Any unit u ∈ R× defines a braiding τu
on C via τu : X ⊗ Y ∼−! Y ⊗X given by τu(x⊗ y) = u|x||y|y ⊗ x on elementary tensors. If
u2 = 1, then this braiding defines a symmetric monoidal structure. In particular, there can
be many of these! So commutativity is a structure, not a property.

Lecture 12
8th Dec, 2020

II.15d. Semi-Additive and Additive ∞-Categories. — An ∞-category is called
semi-additive if it admits finite products and finite coproducts, its initial and terminal object
agree, and for any x, y ∈ C the natural map(

idx 0
0 idy

)
: x ⊔ y ∼−! x× y

is an equivalence. Here 0: x! 0! y denotes the unique (up to contractible choice) map in
HomC(x, y) factoring through an initial/terminal object which we also denote 0 ∈ C. If C is
semi-additive, then we’ll usually denote its unified product and coproduct by ⊕.

We call C additive if also the shear map(
idx idx
0 idx

)
: x⊕ x ∼−! x⊕ x

is an equivalence for all x ∈ C. The typical source of examples is everything that has to do
with abelian groups, so for example K(Z) and the derived category D(Z) are additive.

II.16. Proposition. — If C is a semi-additive ∞-category, then the forgetful maps

CMon(C) ∼−! Mon(C) ∼−! C

are equivalences. If C is additive, then the same holds true for

CGrp(C) ∼−! Grp(C) ∼−! C .

Before we get into the proof, let’s show a consequence.

II.17. Corollary. — If C is an additive ∞-category, then there is a canonical lift

HomC : Cop × C −! CGrp(An) .

If C is only semi-additive, one still gets a lift to CMon(An).
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Proof *. In general, if F : C ! D is a finite product-preserving functor, then the induced
functor F∗ : Fun(Lop, C) ! Fun(Lop,D) preserves the Segal condition and also the con-
dition from Definition II.4, hence it restricts to functors F∗ : CMon(C) ! CMon(D) and
F∗ : CGrp(C)! CGrp(D).

We can’t apply this directly to our situation, since HomC : Cop × C ! An doesn’t preserve
finite products—or rather it is too good at respecting products, as

HomC

(
n⊕
i=1

xi,

n⊕
i=1

yi

)
≃

n∏
i,j=1

HomC(xi, yj) ,

of which the diagonal
∏n
i=1 HomC(xi, yi) is only a factor.

At least HomC(x,−) : C ! An preserves products for all x ∈ C, whence it induces a
functor HomC(x,−)∗ : CGrp(C) ! CGrp(An). But if C is additive, then CGrp(C) ≃ C by
Proposition II.16, which provides the desired lift

HomC(x,−) : C −! CGrp(An) .

To paste these lifts together into a functor HomC : Cop × C ! CGrp(An), consider the
composite

Fun(C,An) −! Fun
(

Fun(Lop, C),Fun(Lop,An)
)
−! Fun

(
CGrp(C),Fun(Lop,An)

)
.

If we restrict to the full subcategory Fun×(C,An) ⊆ Fun(C,An) of finite product-preserving
functors, it lands in Fun(CGrp(C),CGrp(An)), as argued above. Moreover, if C is additive,
then CGrp(C) ≃ C by Proposition II.16. Now HomC : Cop ! Fun(C,An) has image in
Fun×(C,An), hence we may compose it with the above to obtain the desired functor

HomC : Cop −! Fun
(
C,CGrp(An)

)
.

If C is only semi-additive, then the argument still works with CMon(−) instead of CGrp(−)
everywhere. Moreover, one can check (but we won’t do that here) that if we we use the
(semi-)additive structure on Cop instead to do the constructions above, we still end up with
the same functor HomC : Cop × C ! CGrp(An).

Proof sketch of Proposition II.16. The key to the proof is the following claim:
(⊠) Let I ∈ {∆∆op,

Lop}. Given a functor X : I ! C satisfying X0 ≃ 0, then X satisfies the
Segal condition iff it is left-Kan extended from X|I⩽1 along p : I⩽1 ! I.

To conclude the statement of the proposition from (⊠), write Fun(I⩽1, C)0 ⊆ Fun(I⩽1, C)
for the full subcategory of functors F satisfying F (0) ≃ 0. Since 0 ∈ C is initial and terminal,
one easily checks that C ∼−! Fun(I⩽1, C)0, sending x ∈ C to the unique (up to contractible
choice) functor Fx satisfying Fx(0) ≃ 0 and Fx(1) ≃ x, is an equivalence. Moreover,

Fun(I⩽1, C)0 ⊆ Fun(I⩽1, C) Lanp
−−−! Fun(I, C)

is fully faithful by Corollary I.54, and (⊠) precisely says that its essential image is Mon(C)
for I = ∆∆op or CMon(C) for I = Lop. This shows Mon(C) ≃ C ≃ CMon(C), as required. If C
is additive, then the image of x ∈ C under the above composite is automatically a cartesian
group: Indeed, after an easy unravelling, the condition from Definition II.4 translates into
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the condition that the shear map on x be an equivalence, which is guaranteed by C being
additive.

To prove (⊠), first note that we get a natural counit transformation LanpX|I⩽1 ⇒ X for
free, so whether this is an equivalence can be checked on objects. Recall from Theorem I.52
that

LanpX|I⩽1(n) ≃ colim
i∈I⩽1/n

Xi

(it will follow from the discussion below that these colimits exist in C, so the theorem is
indeed applicable). Therefore we have to understand the slice categories

Lop
⩽1/⟨n⟩ and ∆∆op

⩽1/[n] ≃ ([n]/∆∆⩽1)op .

The slice category [n]/∆∆⩽1. Let’s describe [n]/∆∆⩽1 first in words and then in a picture
(whichever you start with will probably confuse you, and then the other thing will hopefully
unconfuse you). Its vertices are given by maps [n]! [1] and [n]! [0] in ∆∆. There’s only one
of the latter kind and it is denoted 0 (in the picture it’s depicted as a black dot on the right).
There are n+ 2 maps [n]! [1]: One that is constantly 0, one that is constantly 1 (depicted
on the top and on the bottom), and n surjective maps (depicted on the left). Moreover,
there’s a bunch of non-degenerate edges. The pink ones are those induced by 0: [0]! [1] and
0: [1]! [1], the purple ones are those induced by 1: [0]! [1] and 1: [1]! [1], and finally
the black ones are induced by the unique morphism [1]! [0].

...

0 . . . 01
0 . . . 11

01 . . . 1

1 . . . 1

0 . . . 0

0...

However, the punchline is that all of this doesn’t really matter, since the dotted part,
consisting of the vertices on the left and 0 on the right, turns out to be final (in the lecture we
claimed that already the vertices on the left are final, but I think that’s not true). To prove
this, verify the criterion from Theorem I.43(b) and use that the slice categories in question
(in fact, slice categories between slice categories) contain the respective arrow starting at 0
as a terminal object. After passing to ∆∆op

⩽1/[n] instead of [n]/∆∆⩽1, the dotted part becomes
cofinal, hence the colimit in question can be taken over the dotted part only. But the 0-vertex
on the right is mapped to X0 ≃ 0 and there are no edges between the vertices on the left,
hence it’s easy to see that the colimit over the dotted part is just X⊕n

1 . This is precisely
what we wanted to show!

The slice category Lop
⩽1/⟨n⟩. The vertices of Lop

⩽1/⟨n⟩ consist of partially defined maps
⟨0⟩! ⟨n⟩ and ⟨1⟩! ⟨n⟩. As ⟨0⟩ = ∅, there is only one such map of the first kind, depicted
by the vertex on the right in the picture below. The vertex in the middle represents the
unique nowhere-defined map ⟨1⟩! ⟨n⟩, and the vertices on the right correspond to the maps
⟨1⟩! ⟨n⟩ which are actually defined on 1.
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...

1
2

n

∅ ∅

. .
.

Again, the dotted part (i.e. everything except the vertex in the middle) is cofinal and the
colimit over it evaluates to X⊕n

1 since the vertex on the right is sent to X0 ≃ 0.

Since D⩾0(Z) is additive, a simple consequence of Proposition II.16 is that the Eilenberg–
MacLane functor from Very Long Example I.56 lifts to a functor

K : D⩾0(Z) −! CGrp(An) .

Indeed, K is a right-adjoint by construction, hence it preserves products, so we can use the
argument from the proof of Corollary II.17 to produce the desired lift. We will soon (in
Example II.25(c)) extend this even further!

So Eilenberg–MacLane anima give rise to E∞-groups. Another source of examples for
E∞-monoids/groups is

CMon(Kan) −! CMon(An) and CGrp(Kan) −! CGrp(An) ,

(again note that Kan! An preserves products), but these are essentially the same examples:
It is a theorem of Dold–Thom, that a connected commutative monoid in Kan complexes has
underlying anima a gem (“generalized Eilenberg–MacLane space”; we defined these things in
Very Long Example I.56). The same then holds for not necessarily connected commutative
groups in Kan complexes, since all connected components are equivalent.

II.18. Proposition. — The realisation functor | | : sAn! An preserves finite products.

Proof. We compute

|M ×N | ≃ colim
[n]∈∆∆op

(Mn ×Nn) ≃ colim
([n],[m])∈∆∆op×∆∆op

(Mn ×Nm)

≃ colim
[n]∈∆∆op

(
Mn × colim

[m]∈∆∆op
Nm

)
≃
(

colim
[n]∈∆∆op

Mn

)
×
(

colim
[m]∈∆∆op

Nm

)
≃ |M | × |N | .

For the second equivalence see Exercise II.18a below. The third equivalence follows from
Proposition I.42 together with the fact that Mn × − commutes with arbitrary colimits.
Indeed, for any X ∈ An the functor X × − : An ! An is a left adjoint of HomAn(X,−).
Applying the same argument to − × colim∆∆op Nm gives the fourth equivalence.

II.18a. Exercise. — Show that the diagonal ∆: ∆∆op ! ∆∆op × ∆∆op is cofinal as a map of
∞-categories. In other words, ∆∆op is sifted.
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Proof *. By Theorem I.43(b) we need to check that ∆∆op ×∆∆op×∆∆op ([m], [n])/(∆∆op × ∆∆op) is
weakly contractible for all [m], [n] ∈ ∆∆op. Note that we may form the slice category as a
1-category, since the nerve functor commutes with limits. Also note that we may replace the
slice category by its opposite Sm,n := ∆∆ ×∆∆×∆∆ (∆∆ × ∆∆)/([m], [n]) for convenience.

Unravelling definitions, we find that objects in Sm,n can be thought of as maps of posets
α : [i]! [m] × [n]. Any such map factors uniquely into a composition [i] ↠ [j] ↪! [m] × [n] of
a surjective and an injective map. This defines a functor r : Sm,n ! Cm,n into the category
Cm,n of non-empty linearly ordered subposets of [m] × [n] (Cm,n is partially ordered by
inclusion). But conversely, any such subposet is given by an injective map [j] ↪! [m] × [n]
for some j ⩽ m+ n+ 1, hence we get an inclusion s : Cm,n ! Sm,n in the reverse direction.
Clearly r ◦ s = idCm,n , whereas the surjections [i] ↠ [j] define a natural transformation
idSm,n

⇒ s ◦ r.
This shows that Sm,n and Cm,n are weakly (and even strongly) homotopy equivalent after

taking nerves. Now if we recall [HCI, Definition V.4.7], we recognize Cm,n as the barycentric
subdivision sd(∆m × ∆n), which is weakly contractible because ∆m × ∆n is.

II.18b. — Recall from Corollary* II.8a that we have an adjunction

B : Mon(An) ∗/An: Ω .

Now B = | | and Ω both preserve finite products—the former by Proposition II.18, the
latter since it is a right-adjoint. So both functors preserve the Segal condition. Therefore, if
we apply Fun(Lop,−) to both sides of the adjunction above, then the resulting adjunction
restricts to another adjunction

B : CMon
(
Mon(An)

)
CMon(∗/An) :Ω (II.18b.1)

Now it is easy to see that the forgetful map CMon(∗/C)! CMon(C) is an equivalence for
any ∞-category C with finite products (and thus a terminal object ∗ ∈ C). We claim that
also

CMon
(
Mon(C)

)
CMon(C)

Mon
(
CMon(C)

)

∼

forget∗
∼

///

∼
forget

(II.18b.2)

commutes (the forgetful functors are given by evaluation in degree 1 of course). Once we
have this, we will obtain the following statement (which comes only later in Fabian’s notes,
hence the gap in numbering).

II.21. Corollary. — There is a commutative diagram of horizontal adjunctionts

CMon(An) CMon(An)

Mon(An) ∗/An

B

Cut∗
Ω

ev1

B

Ω

Moreover, we have the following analogues of II.6 and Proposition II.8:
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(a) Restricting B to the full subcategory CGrp(An) ⊆ CMon(An) gives a fully faithful
functor B : CGrp(An)! CMon(An).

(b) Both functors B,Ω: CMon(An)! CMon(An) actually take values in CGrp(An).
(c) ΩB : CMon(An)! CGrp(An) is left-adjoint to CGrp(An) ⊆ CMon(An).

Proof *. We construct the diagram and prove commutativity first. The bottom row is already
known. After identifying CMon(∗/An) ≃ CMon(An) and CMon(An) ≃ CMon(Mon(An)),
the upper row becomes (II.18b.1). To see that the diagram commutes, we first check that
the these identifications transform the forgetful functor CMon(Mon(An))! Mon(An) into
Cut∗ : CMon(An)! Mon(An). Indeed, this follows easily from (II.18b.2). Now both vertical
arrows are of the form forget : CMon(−)! (−), from which commutativity of the diagram
is clear.

Next we check (b). Let M ∈ CMon(An). To check ΩM ∈ CGrp(An), it suffices to check
Cut∗ ΩM ∈ Grp(An) (that’s just how E∞-groups are defined). But Cut∗ ◦ Ω ≃ Ω ◦ ev1 and
the right-hand side takes values in Grp(An) by II.6. To show BM ∈ CGrp(An), it similarly
suffices to check that the ordinary monoid π0(BM)1 is an ordinary group, as argued in the
proof of Proposition II.5. But in fact π0(BM)1 ≃ ∗, since B : Mon(An)! ∗/An takes values
in (∗/An)⩾1 and the diagram above commutes. This shows (b).

In particular, the top row adjunction restricts to an adjunction

B : CGrp(An) CGrp(An) :Ω .

To show (a), it suffices therefore to check that the unit id ⇒ ΩB is an equivalence. Equiva-
lences of E∞-groups can be detected on underlying E1-groups (in fact, even on underlying
anima, i.e. after applying ev1, since the Segal condition will do the rest). So it suffices that
Cut∗ ⇒ Cut∗ ΩB is an equivalence. But Cut∗ ΩB ≃ Ω ev1 B ≃ ΩB Cut∗, and if G is an
E∞-group, then

ΩB Cut∗ G ≃ (Cut∗ G)∞-grp ≃ Cut∗ G

by Proposition II.8. This finishes the proof of (a).
Let C ⊆ CGrp(An) denote the essential image of B|CGrp(An). Then B : CGrp(An) ∼−! C

is an equivalence, hence its right adjoint Ω: C ! CGrp(An) is an equivalence too. For
M ∈ CMon(An) and G ∈ CGrp(An) we may thus compute

HomCGrp(An)(ΩBM,G) ≃ HomCGrp(An)(ΩBM,ΩBG)
≃ HomC(BM,BG)
≃ HomCMon(An)(M,ΩBG)
≃ HomCMon(An)(M,G) ,

where we also used G ≃ ΩBG twice. This shows (c).

II.21a. Example. — Some consequences:
(a) Corollary II.21(c) shows that group completion in Mon(An) and CMon(An) is compati-

ble. Hence all examples from II.12 to II.14, i.e.

k(R) , gwr(R) , ko , ku , ktop , and ksph ,

are canonically E∞-groups. Indeed, they arise as group completions of certain E1-
monoids, all of which have canonical E∞-monoid refinements by II.15c.
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(b) It follows from Corollary II.21(a) that ΩBX ≃ X for all X ∈ CGrp(An). Since it’s
well-known that Ω shifts homotopy groups down, we see that B shifts homotopy groups
up. That is, if e ∈ X1 denotes the identity element, then

πi
(
(BX)1

)
≃

{
πi−1(X1, e) if i > 0
∗ if i = 0

(in particular, we don’t need to specify a basepoint for (BX)1 since it is connected).
(c) We get a commutative solid diagram

D⩾0(Z) CGrp(An)

D⩾0(Z) CGrp(An)

[1]=Σ

K

/// BΩ

K

Ω

in Cat∞. So B preserves Eilenberg–MacLane anima and only shifts the homotopy
groups up by 1.

To see commutativity, first note that the diagram with the dotted vertical arrows
commutes (where Ω = (τ⩾1−)[−1] : D⩾0(Z) ! D⩾0(Z) is defined as in Philosophical
Nonsense I.18). Indeed, Ω is given by a pullback which is preserved by the right-adjoint
functor K (being a right adjoint is still true for the lift K : D⩾0(Z) ! CGrp(An),
simply by construction and our Observation I.40 that adjunctions extend to functor
categories). By abstract nonsense, commutativity of the dotted diagram induces a
natural transformation BK ⇒ K(−[1]). Whether this is an equivalence can be checked
on objects C ∈ D⩾0(Z). But whether B(KC) ! K(C[1]) is an equivalence can in
turn be checked on homotopy groups of underlying anima. But from (b) we see that
homotopy groups of both B(KC) and K(C[1]) are those of KC, shifted up by one.

Now towards the proof of (II.18b.2). Let’s denote by Cat×
∞ ⊆ Cat∞ the (non-full) sub-

∞-category spanned by ∞-categories with finite products and functors preserving these. Let
furthermore Catadd

∞ ⊆ Catsemi-add
∞ ⊆ Cat×

∞ denote the full sub-∞-categories spanned by the
additive and semi-additive ∞-categories respectively.

II.19. Theorem. — If an ∞-category C has products, then CMon(C) and CGrp(C) are
semi-additive and additive, respectively. Furthermore, the functors

CMon: Cat×
∞ −! Catsemi-add

∞

CGrp: Cat×
∞ −! Catadd

∞

are right-adjoint to the inclusions Catsemi-add
∞ ⊆ Cat×

∞ and Catadd
∞ ⊆ Cat×

∞ respectively.

Using Theorem II.19 we get an easy proof of (II.18b.2). First note that the two maps

CMon
(
CMon(C)

)
CMon(C)

∼
forget∗

∼
forget

agree and are equivalences. Indeed, CMon(−)! (−) is the counit of the adjunction from
Theorem II.19, hence an equivalence since the left adjoint Catsemi-add

∞ ⊆ Cat×
∞ is fully faithful.
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This shows that both functors are equivalences. Moreover, by writing down the triangle
identities we find that both maps are inverses (once from the right, once from the left) to the
unit CMon(C) ! CMon(CMon(C)), hence they must agree. This almost shows (II.18b.2),
except that we want to replace one CMon by a Mon. To do this, note that Proposition II.16
implies CMon(CMon(C)) ≃ Mon(CMon(C)). Moreover CMon(Mon(C)) ≃ Mon(CMon(C))
follows by straightforward inspection, as both sides can be interpreted as full subcategories
of Fun(∆∆op ×

Lop, C). Hence we are done.
Note that our argument can not be extended to show that the two forgetful functors

Mon(Mon(C)) Mon(C) agree. This is still true, but much harder to show. Moreover, if C
is a 1-category, then Mon(Mon(C)) ≃ CMon(C), a fact that is usually called the Eckmann–
Hilton trick. This is false for ∞-categories! What is true instead is

CMon(C) ≃ lim
n∈Nop

Mon(n)(C) ,

where Mon(n)(−) = Mon(Mon(. . . (Mon(−)) . . . )) is the n-fold iteration of Mon(−). The
transition morphisms Mon(n)(C) ! Mon(n−1)(C) are given by forgetting one Mon. There
are n choices to do so, but it turns out that they all agree, generalizing our claim about
Mon(Mon(C)) Mon(C).

For the proof of Theorem II.19, we need a criterion for semi-additivity.

II.20. Lemma (compare [HA, Proposition 2.4.3.19], which is stronger). — Let C be a
category with finite products. Then C is semi-additive if the following conditions hold:
(a) The terminal object ∗ ∈ C also is initial.
(b) We have a natural transformation µ : (∆: x 7! x× x) ⇒ idC such that both compositions

x ≃ x× ∗ idx×0
−−−−! x× x

µx−! x

x ≃ ∗ × x
0×idx−−−−! x× x

µx−! x

are homotopic to idx for all x ∈ C, and the diagram

(x× x) × (y × y) (x× y) × (x× y)

x× y
µx×µy

idx ×flip×idy

µx×y

commutes up to homotopy for all x, y ∈ C.

II.20a. Remark*. — Lurie only requires that the first of the two compositions in
Lemma II.20(b) is homotopic to idx, and Fabian may or may not have done the same in the
lecture. However, the second one doesn’t follow from the first, and we’ll really need both to
be homotopic to idx in the proof. In fact, if only the first composition were to be homotopic
to idx, we could take µx to be pr1 : x× x! x for all x ∈ C (it’s clear that this also makes
the diagram above commute), and then we could show that every ∞-categories with finite
products and a zero object is semi-additive. This can’t be true!

Proof of Lemma II.20. Let c, d ∈ C. We want to show that the maps

c ≃ c× ∗ idc ×0
−−−−! c× d and d ≃ ∗ × d

0×idd−−−−! c× d
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exhibit c × d as a coproduct of c and d. That is, we need to show that the natural
transformation

φ : HomC(c× d,−) ∼=⇒ HomC(c,−) × HomC(d,−)
induced by these maps is an equivalence. This can be checked on objects. Given a ∈ C, we
construct an inverse ψa to φa as follows:

ψa : HomC(c, a) × HomC(d, a) ×
−! HomC(c× d, a× a) µa−! HomC(c× d, a)

Note that we do not claim that the ψa combine into a natural transformation ψ which is
inverse to φ, only that ψa is inverse to φa, since it suffices to have φ a pointwise equivalence.
Let’s prove φa ◦ ψa ≃ id first. This follows essentially from the first condition in (b), but
since this sparked some confusion in the lecture, I’ll try to give a much more detailed proof
than in the lecture and be as precise as possible (hopefully this doesn’t make things worse).
We begin by drawing a tiny diagram:

HomC(c, a) × HomC(d, a)

HomC(c× ∗, a× ∗) × HomC(∗ × d, ∗ × a)

HomC(c× d, a× a) HomC(c× ∗, a× a) × HomC(∗ × d, a× a)

HomC(c× d, a) HomC(c× ∗, a) × HomC(∗ × d, a) HomC(c, a) × HomC(d, a)

∼×

id∼

(I) (III)

µa (II) µa×µa

∼

If we can show that this diagram commutes up to homotopy, then walking around its
perimeter will show φa ◦ ψa ≃ id. The cell labelled (III) commutes up to homotopy
because the composition of the three downward pointing arrows and the rightward pointing
arrow is induced by µa ◦ (ida ×0) : a ≃ a × ∗ ! a × a ! a in the first factor and by
µa ◦ (0 × ida) : a ≃ ∗ × a! a× a! a in the second factor, both of which are homotopic to
ida by assumption.

To see that the cell labelled (II) commutes up to homotopy, it suffices to check this
after composition with pr1 : HomC(c × ∗, a) × HomC(∗ × d, a) ! HomC(c × ∗, a) and after
composition with pr2 : HomC(c × ∗, a) × HomC(∗ × d, a) ! HomC(∗ × d, a). We only give
the argument for pr1, since the argument for pr2 will be analogous. After composition with
pr1, we end up with two maps HomC(c × d, a × a) ! HomC(c × ∗, a). Both are given by
precomposition with c× ∗! c× d and postcomposition with µa : a× a! a, but in different
orders. However, it doesn’t matter (up to homotopy) in which order we postcompose and
precompose, which proves commutativity of (II).

Finally, to see that (I) commutes, we look at the diagram (and its obvious analogue where
c× ∗ is replaced by ∗ × d)

HomC(c, a) × HomC(d, a) HomC(c× d, a× a)

HomC(c, a) × HomC(∗, a) HomC(c× ∗, a× a)

HomC(c, a) × HomC(∗, ∗) HomC(c× ∗, a× ∗)

×

×

∼

×
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This commutes “by naturality of the ×-construction on morphism anima”. The bottom left
vertical arrow is an equivalence since ∗ is initial, so HomC(∗,−) ≃ ∗. In particular, this shows
HomC(c, a) × HomC(∗, ∗) ≃ HomC(c, a). Under this identification, the bottom row becomes
the morphism HomC(c, a) ! HomC(c × ∗, a × ∗) from (I) and the two left vertical arrows
compose to the projection pr1 : HomC(c, a) × HomC(d, a)! HomC(c, a). This shows that (I)
commutes indeed and therefore that φa ◦ ψa ≃ id.

Now we prove ψa ◦φa ≃ id. First we check that ψa ◦φa is homotopic to the map induced
by precomposition with

c× d ≃ (c× ∗) × (∗ × d) −! (c× d) × (c× d) µc×d
−−−! c× d .

To show this, we draw another moderately large diagram:

HomC(c, a) × HomC(d, a) HomC(c× d, a)

HomC(c× d, a× a) HomC
(
(c× d) × (c× d), a× a)

)
HomC(c× d, a) HomC

(
(c× ∗) × (∗ × d), a

)
HomC

(
(c× d) × (c× d), a

)

(IV) ∆
µc×d

(V)

µa (VI)
µa

The cell labelled (V) commutes up to homotopy because µ : ∆ ⇒ id is a natural transformation
(and I believe Fabian is right that we really need this here—if we were to use Lurie’s weaker
condition, it would only commute on π0). If we choose the dotted arrow to be induced by
c×d ≃ (c×∗)× (∗×d)! (c×d)× (c×d), then also (VI) commutes up to homotopy because
it doesn’t matter in which order precomposition with said morphism and postcomposition
with µa are applied. Finally, (IV) commutes by inspection. Walking around the perimeter
of this diagram now proves that ψa ◦ φa is really induced by precomposition with the map
from above.

Now we finally use the second condition from (b) to obtain a homotopy-commutative
diagram

c× d (c× ∗) × (∗ × c) (c× d) × (c× d) c× d

(c× ∗) × (∗ × d) (c× c) × (d× d)

∼

∼

µc×d

idc ×flip×idc ∼ µc×µd

in C. Using the first condition from (b) we see that the composition of the lower three arrows
is homotopic to idc × idd. Hence the morphism we precompose with is homotopic to the
identity on c× d, which shows ψa × φa ≃ id, as required.

Proof of Theorem II.19. We first prove that CMon(C) is semi-additive. Of course we would
like to apply Lemma II.20, so we must produce the corresponding data on CMon(C). First of
all, note that const ∗ : Lop ! C is both terminal and initial in CMon(C). It is even terminal
in Fun(Lop, C) because ∗ ∈ C is terminal and limits in functor categories are computed
pointwise (Lemma I.39). To see that it is initial, let X ∈ CMon(C) and compute

Nat(const ∗, X) ≃ HomC

(
∗, lim

⟨n⟩∈
Lop

Xn

)
≃ HomC(∗, X0) ≃ HomC(∗, ∗) ≃ ∗ ,
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where we used that ⟨0⟩ ∈
Lop is an initial object and thus spans a final subset in the sense of

Definition I.44 (and yes, our terminology here isn’t optimal, but then again there is no good
terminology at all).

Next we need to construct functorial maps µM : M×M !M for all M ∈ CMon(C). Con-
sider the map × : Lop×

Lop !
Lop given by crossing the sets and crossing the morphisms (note

that this wouldn’t work with ∆∆op). It induces a functor Fun(Lop, C)! Fun(Lop,Fun(Lop, C)),
and one easily checks that the Segal condition is preserved, i.e. we get a functor

Double : CMon(C) −! CMon
(
CMon(C)

)
.

Unravelling definitions, we find that Double(−)1 : CMon(C)! CMon(C) is naturally equiva-
lent to the identity and Double(−)2 : CMon(C) ! CMon(C) is naturally equivalent to the
diagonal ∆: M 7!M ×M . Hence we can take µM : M ×M !M to be the multiplication
m : Double(M)2 ! Double(M)1, i.e. the map induced by m : ⟨2⟩! ⟨1⟩ in Lop (see Defini-
tion II.15). Since the µM are induced by a map in Lop, it’s clear that they assemble into a
natural transformation µ. Also the required conditions for µ are straightforward to check.

This shows that CMon(C) is semi-additive by Lemma II.20. Hence the same holds for
its full subcategory CGrp(C) ⊆ CMon(C) since this is closed under finite products. To show
that CGrp(C) is additive, we need to check that the shear map is an equivalence for all
objects G ∈ CGrp(C). But in view of the fact that the codiagonal G×G! G is induced by
µG (this follows by unravelling the explicit inverse in the proof of Lemma II.20), hence by
multiplication on Double(G), this gets translated into the fact that Double(G) is a cartesian
commutative group itself, which is again easy to check.

Finally, we need to show that CMon: Cat×
∞ ! Catsemi-add

∞ and CGrp: Cat×
∞ ! Catadd

∞ are
right adjoints. If we denote R = CMon and η : R ⇒ id the forgetful natural transformation
(given by evaluation in degree 1), then Proposition II.16 and the fact that CMon(C) is
semi-additive show that ηR : R ◦ R ∼=⇒ R and Rη : R ◦ R ∼=⇒ R are natural equivalences.
Thus we may apply the dual of Proposition I.61a to see that R is a right adjoint to the
inclusion im(R) ⊆ Cat×

∞ of its essential image. But im(R) = Catsemi-add
∞ : Indeed, “⊆” was

checked above, whereas “⊇” follows from Proposition II.16 again. The argument for CGrp is
completely analogous.

Lecture 13
10th Dec, 2020

Free E∞-Monoids. — Similar to Proposition II.9, the forgetful functor CMon(An)! An
as a left adjoint FreeCMon : An! CMon(An). On objects X ∈ An, it is given by

FreeCMon(X)1 ≃
∐
n⩾0

Xn
hSn

,

i.e. we take free words in X, but we need to homotopy-quotient out the action of the
symmetric group Sn, which the notation (−)hSn

is supposed to do. In general, given a
functor F : BG! C, where C is an ∞-category with colimits and G is a discrete group, we
put

FhG ≃ colim
BG

F .

On Xn, the Sn-action is given by “permuting factors”. More precisely, we may apply II.6 to
see that giving a functor BSn ! core(An) sending the unique 0-simplex of BSn to Xn is
the same as giving a functor Sn ! ΩXn core(An) ≃ Homcore(An)(Xn, Xn). But each factor
permutation is a map in Homcore(An)(Xn, Xn), hence there’s indeed a canonical map from
the discrete anima Sn into it.
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To prove the formula above, we can proceed as in the proof* of Proposition II.9: Call a
map in Lop inert if it is a bijection (where it is defined), and active if it is defined everywhere.
With this terminology, the proof* of Proposition II.9 can be copied, except for the following
small change: In the decomposition Lop

int/⟨1⟩ ≃
∐
α Cα, the categories Cα no longer have the

active map α : ⟨n⟩ ! ⟨1⟩ as a terminal object; instead, {α : ⟨n⟩ ! ⟨1⟩} together with its
automorphisms spans cofinal subcategory. This subcategory is equivalent to the anima BSn,
as follows immediately from II.6. Thus we get indeed FreeCMon(X)1 ≃

∐
n⩾0 X

n
hSn

.
As an example,

FreeCMon(∗)1 ≃
∐
n⩾0

BSn ≃
(
{finite sets, bijections},⊔

)
=: S,

where the right-hand side is the symmetric monoidal 1-groupoid of finite sets and bjections
between them, whose tensor product is given by disjoint union. In particular, even though
FreeMon(∗) ≃ N is the free monoid on a point and commutative, it’s not the free commutative
monoid on a point.

Spectra and Stable ∞-Categories
Let CGrp(An)⩾i ⊆ CGrp(An) be the full sub-∞-category spanned by those X with πjX1 = 0
for j < i. We have seen in Corollary II.21 that B : CGrp(An)! CGrp(An) is fully faithful
with right adjoint Ω. Moreover, we’ve seen during the proof that B actually has essential
image in CGrp(An)⩾1. In fact, its essential image is CGrp(An)⩾1! To see this, it suffices to
check that the counit c : BΩX ∼−! X is an equivalence for all X ∈ CGrp(An)⩾1. This can
be checked on underlying anima, i.e. after ev1, and then again on homotopy groups. Since Ω
shifts homotopy groups down and B shifts them up, we get that c∗ : πi(BΩX)1

∼−! πiX1 is
an isomorphism for i > 0. For i = 0 it is one as well as both sides are connected.

Iterating this argument, we find that the i-fold application B(i) = B ◦ · · · ◦ B is an
equivalence

B(i) : CGrp(An) ∼−! CGrp(An)⩾i .

Moreover, since ΩB ≃ id by Corollary II.21(a), we get ΩB(i+1) ≃ B(i). This yields a fully
faithful functor

B∞ : CGrp(An) −! lim
Nop

(
. . .

Ω
−! CGrp(An) Ω

−! CGrp(An) Ω
−! CGrp(An)

)
(the limit being taken in Cat∞ of course) with essential image

lim
Nop

(
. . .

Ω
−! CGrp(An)⩾2

Ω
−! CGrp(An)⩾1

Ω
−! CGrp(An)

)
.

II.22. Definition. — We say that an ∞-category C has finite limits if it has finite products
and pullbacks (one can check that this is equivalent to having limits over all finite simplicial
sets). If this is the case, then a suspension functor Ω: ∗/C ! ∗/C can be defined and we put

Sp(C) := lim
Nop

(
. . .

Ω
−! ∗/C Ω

−! ∗/C
)

called the ∞-category of spectrum objects in C. If C = An, we obtain Sp = Sp(An), the
∞-category of spectra.
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II.23. Proposition. — Suppose C has finite limits. Then the forgetful functor

Sp
(
CGrp(C)

) ∼−! Sp(C)

is an equivalence.

Proof sketch. Topologists hate this proof. First observe that Sp(CGrp(C)) ≃ CGrp(Sp(C)).
This is because

lim
Nop

(
. . .

Ω
−! Fun(Lop, ∗/C) Ω

−! Fun(Lop, ∗/C)
)

≃ Fun
(Lop, lim

Nop

(
. . .

Ω
−! ∗/C Ω

−! ∗/C
))

(here we use that Fun(D,−) : Cat∞ ! Cat∞ commutes with limits since it is right-adjoint
to D × − and also that Ω in functor categories can be computed pointwise by Lemma I.39)
and one checks that the Segal condition and the group condition are preserved.

Therefore, we will be done by Proposition II.16 once we show that Sp(C) is an additive
category. Of course we will employ Lemma II.20 again. Clearly (∗, ∗, . . . ) ∈ Sp(C) is both
initial and terminal. Also Sp(C) again has finite limits, inherited from ∗/C because limits
in limits can be computed degreewise (combine the fact that Hom anima in limits are
limits of Hom anima with Corollary I.50 and Proposition I.42). Moreover, we know that
Ω: Sp(C) ∼−! Sp(C) is an equivalence by construction and factors as

Ω: Sp(C) −! Grp
(
Sp(C)

) ev1−! Sp(C)

(I didn’t find this quite obvious, so I decided to sketch a proof in Remark* II.23a below).
Finally, to apply Lemma II.20, we must produce functorial morphisms µX : X × X ! X
with the properties stated there. For this, we use X ≃ Ω(Ω−1X)1 and take µX to be induced
by the multiplication on Ω(Ω−1X) ∈ Grp(Sp(C)).

Up to checking the various conditions, this shows that Sp(C) is semi-additive. For
additivity we must check that the shear map is an equivalence on every X ∈ Sp(C). Similar
to the proof of Theorem II.19 this follows from the fact that Ω(Ω−1X) is a cartesian group
rather than just a monoid.

II.23a. Remark*. — For any ∞-category D with finite limits and a zero object ∗ ∈ D
(i.e. an object that is both initial and terminal) the functor Ω: D ! D factors as

Ω: D −! Grp(D) ev1−! D

This can be bootstrapped from the case D = ∗/An which we already know from II.6. The
first step is to enhance the Yoneda embedding to a fully faithful functor D ! Fun(Dop, ∗/An).
To this end we consider Fun(Dop,An)! Fun(Ar(Dop),Ar(An))! Fun(∗/Dop,Ar(An)) and
check that its image lands in the “correct fibre”, i.e. in Fun(∗/Dop, ∗/An) if we restrict the
source to finite limits-preserving functors (where the Yoneda embedding lands).

On Fun(Dop, ∗/An) we have loop functor Ω: Fun(Dop, ∗/An)! Fun(Dop, ∗/An) as well,
and it is simply given by postcomposition with Ω: ∗/An! ∗/An. Hence it factors as

Fun
(
Dop,Grp(∗/An)

)
Grp

(
Fun(Dop, ∗/An)

)
Fun(Dop, ∗/An) Fun(Dop, ∗/An)

ev1

∼

Ω

Ω

Since the Yoneda embedding preserves limits, we get a lift Ω: D ! Grp(Fun(Dop, ∗/An))
and one checks that it lands in the full sub-∞-category Grp(D), as required.
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II.23b. Homotopy Groups of Spectra. — Because Nop ⊆ Zop is final in the sense of
Definition I.44, we can also write Sp(C) ≃ limZop(∗/C Ω ). This gives evaluation functors

Ω∞−i : Sp(C) −! C .

for all i ∈ Z. Note ΩΩ∞−iX ≃ Ω∞−(i−1)X ≃ Ω∞−iΩX, so this somewhat weird notation
actually makes sense. In the case C = An, we can now define homotopy groups for X ∈ Sp as

πi(X) = π0(Ω∞+iX) .

If we think of a spectrum X as a sequence X = (X0, X1, X2, . . . ), where Xi = Ω∞−iX,
together with equivalences Xi ≃ ΩXi+1, then we see that πi(X) ≃ π0(X−i) ≃ πj(Xj−i) for
all j ⩾ 0 (we don’t need to specify any base points, since the Xi are pointed anima) because
Ω: ∗/An! ∗/An shifts homotopy groups down.

It’s probably clear to all of you, but let me also mention that equivalences of spectra can
be detected on homotopy groups:

II.23c. Lemma*. — A map f : X ! Y of spectra is an equivalence in Sp iff it induces
isomorphisms f∗ : π∗(X) ∼−! π∗(Y ) on homotpy groups.

Proof *. Write Xi = Ω∞−i and Yi = Ω∞−i as above. Then f is an equivalence in Sp iff each
Ω∞−if : Xi ! Yi is an equivalence in An. Indeed, the inverses of Ω∞−if will again assemble
into a compatible system of morphisms and hence into an inverse of f . Whether Ω∞−if is
an equivalence in An can be detected on homotopy groups. In fact, both Xi is an element
of CGrp(An), so all its connected components are equivalent, and the same is true for Yi.
Hence, instead of considering homotopy groups with arbitrary base points, it suffices to check
that π0(X)! π0(Y ) is a bijection and πj(Xi)! πj(Yi) (with the canonical choice of base
points) are group isomorphisms for all j > 0.

Now πj(Xi) ≃ πj−i(X) for all j ⩾ 0, and the same holds for Y , hence it suffices to have
isomorphisms f∗ : π∗(X) ∼−! π∗(Y ), as claimed.

II.23d. Summary of What We Know So Far. — Let’s explicitly record the following
facts we already learned in the proof of Proposition II.23 and afterwards:
(a) Sp(C) has finite limits (because ∗/C has) and limits in Sp(C) are computed degreewise,

i.e. Ω∞−i : Sp(C)! C preserves limits.
(b∗) The only reason this doesn’t work for colimits as well is that the degreewise colimits

might not be compatible with the Ω-maps any more, so they don’t necessarily define
an element of Sp(C). If that happens to be the case, then the degreewise colimit is in
fact the colimit in Sp, by the same argument as for limits (combine the fact that Hom
anima in limits are limits of Hom anima with Corollary I.50 and Proposition I.42).

(c) Ω: Sp(C) ∼−! Sp(C) is an equivalence.
(d) Sp(C) is additive.

II.24. Corollary (Recognition principle for infinite loop spaces, Boardman–Vogt, May,
Segal). — The functor

B∞ : CGrp(An) −! Sp
is fully faithful with essential image those X ∈ Sp with πiX = 0 for i < 0 (as a slogan,
E∞-groups are spectra with no negative homotopy groups). Also πi(B∞X) = πi(X1, ∗) for
all E∞-groups X ∈ CGrp(An) and all i ⩾ 0.
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Proof *. The target of B∞ is Sp(CGrp(An)) ≃ Sp by Proposition II.23. We have seen
that B∞ is fully faithful and identified its essential image before Definition II.22. Clearly,
any element X of the limit characterising the essential image satisfies πiX = 0 for i < 0.
Conversely, if X satisfies this condition, then πjΩ∞−iX ≃ πj−iX, which vanishes for j < i.
Remembering Sp ≃ Sp(CGrp(An)), this shows Ω∞−iX ∈ CGrp(An)⩾i, so X lies in the
essential image of B∞. The final assertion is clear since πi(B∞X) ≃ πi(Ω∞B∞X) ≃ πi(X1, ∗)
holds by definition.

II.25. Example. — Let C always have finite limits. Here are “my first spectra”:
(a) If Ω: ∗/C ∼−! ∗/C is an equivalence, then Sp(C) ≃ C (because in that case we’re

taking a constant limit over Nop, which is weakly contractible, so that limit is C by
Proposition I.36). For example, Sp(D(Z)) ≃ D(Z) or, even more silly, Sp(Sp) ≃ Sp.

(b) Let’s compute Sp(D⩾0(R)) for a ring R. Recall that the loop functor on D⩾0(R) is
defined as ΩC ≃ τ⩾0(C[−1]) ∈ D⩾0(R). Then the functor

D(R) ∼−! Sp
(
D⩾0(R)

)
C 7−!

(
τ⩾0C, (τ⩾−1C)[1], (τ⩾−2C)[2], . . .

)
is an equivalence. The inverse functor sends a sequence (C0, C1, . . . ) with equivalences
σi : Ci ≃ (τ⩾1Ci+1)[−1] to colimN Ci[−i]. The structure maps Ci[−i]! Ci+1[−(i+ 1)]
in this colimit are constructed from the σi in the obvious way.

(c) Consider the Eilenberg–MacLane functor K : D⩾0(Z)! An. Being a right adjoint, it
preserves finite limits, and in particular loop spaces. Hence it upgrades canonically to a
functor

Sp
(
D⩾0(Z)

)
Sp(An)

D(Z) Sp

Sp(K)

H

the Eilenberg–MacLane spectrum functor. By construction, the diagram

D(Z) Sp

CGrp(An)
K(τ⩾−i−)[i]

H

Ω∞−i

commutes. If C ∈ D⩾0(Z), then HC = (K(C),K(C[1]),K(C[2]), . . . ) and we have
πi(HC) = Hi(C). If C is an abelian group A concentrated in degree 0, we obtain the
Eilenberg–MacLane spectrum HA = (K(A, 0),K(A, 1),K(A, 2), . . . ).

(d) We have Sp(Anop) ≃ ∗, because it is a sequential limit over (∅/Anop) ≃ (An/∅)op ≃ ∗
(since there is no map X ! ∅ in An except id∅ : ∅! ∅). Also

Sp
(
(∗/An)op) ≃ lim

Nop

(
. . .

Ω
−! (∗/An)op Ω

−! (∗/An)op
)

≃ lim
Nop

(
. . .

Σ
−! ∗/An Σ

−! ∗/An
)op

≃ ∗ ,

since only contractible spaces can be an infinite suspension (as all homotopy groups
must be vanish).
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II.26. Homology and Cohomology of Spectra. — Via the Eilenberg–MacLane spec-
trum functor H, the adjunction C̃• : ∗/An D⩾0(Z) :K from Very Long Example I.56 can
be upgraded to another adjunction

C• : Sp D(Z) :H .

The new C• is defined by the formula C•(X) ≃ colimi∈N C̃•(Ω∞−iX)[−i] on objects. To see
where the transition maps in this colimit come from, recall that Ω = [−1] is the loop functor in
D(Z). Together with C̃(∗) ≃ 0, this provides a natural transformation C̃•(Ω −) ⇒ C̃•(−)[−1],
which yields the required transition maps.

To check that C• is a left adjoint, it suffices to do so on objects by Corollary I.32 (in
particular, this will show that C• is a functor at all), where we can compute

HomD(Z)
(
C•(X), D

)
≃ lim
i∈Nop

HomD(Z)
(
C̃•(Ω∞−iX), D[i]

)
≃ lim
i∈Nop

Hom∗/An
(
Ω∞−iX,K(D[i])

)
≃ lim
i∈Nop

Hom∗/An(Ω∞−iX,Ω∞−iHD) ,

and the last term is HomSp(X,HD) since Hom anima in Sp (in fact, in arbitrary limits of
∞-categories) can be computed as a limit over the Hom anima in each degree. Also all
equivalences are clearly functorial in D ∈ D(Z).

Now define the homology and the cohomology of X ∈ Sp with coefficients in A ∈ Ab to be

H∗(X,A) := H∗
(
C•(X) ⊗L

Z A
)

= colim
i∈N

H∗(Ω∞−iX,A) ,

H∗(X,A) := H∗
(
RHomZ(C•(X), A)

)
.

In the special case X ≃ S[Y ] for some anima Y , it turns out that H∗(S[Y ], A) = H∗(Y,A)
and H∗(S[Y ], A) = H−∗(Y,A) coincide with singular homology and (up to a sign swap)
singular cohomology. See Lemma II.31d below. In Corollary* II.55b we’ll also find out that
H∗(X,A) = TorS∗(X,HA) and H∗(X,A) ≃ Ext∗

S(X,HA) can be interpreted as “Tor and Ext
over the sphere spectrum”.

! Warning. — Don’t confuse the homology or cohomology of a spectrum with the
homology or cohomology theory associated to a spectrum, which we’ll introduce in Defini-
tion II.35 below. Also, neither H∗(HC,A) for a complex C ∈ D(Z) nor H∗(B∞M,A) for
some M ∈ CGrp(An) are easy to compute in general!

II.27. Proposition/Definition. — Suppose C is an ∞-category with a zero object (i.e.
a simultaneously initial and terminal object 0 ∈ C). Then the following conditions are
equivalent:
(a) C has finite limits and Ω: C ∼−! C is an equivalence.
(b) C has finite colimits and Σ: C ∼−! C is an equivalence.
(c) C has finite limits and finite colimits and a commutative square in C is a pushout square

iff it is a pullback square.
Such ∞-categories are called stable ∞-categories.

Proof. The implications (c) ⇒ (a), (b) are clear: Applying the pushout-pullback condition
to the pushout square defining Σ and the pullback square defining Ω shows that the unit
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id ∼=⇒ ΩΣ and counit ΣΩ ∼=⇒ id are natural equivalences, so Σ and Ω must be equivalences
of ∞-categories.

For (a) ⇒ (c), the same argument as in the proof of Proposition II.23 shows that C is
additive (write X as ΩY in Grp(C) and apply Lemma II.20). So we only need to check that
pushouts exist and coincide with pullbacks. Let P ⊆ Fun(∆1 × ∆1, C) be the full subcategory
spanned by pullback squares. We claim:
(⊠) The restriction P ∼−! Fun(Λ2

0, C) is an equivalence.
To prove (⊠), we construct an inverse functor. Given a diagram F : Λ0 ! C, which we can
view as a span c a! b in C, we construct the following moderately large diagram:

Ωa Ωc 0

Ωb x g 0

0 f a b

0 c

. .

. . .

.

All squares are pullbacks as indicated. The fact that Ωa, Ωb, and Ωc appear in the top left
corner follows by combining suitable pullback squares into larger pullback rectangles.

The inverse functor now sends

F =

 a b

c

 7−! Ω−1

 Ωa Ωb

Ωc x

.


(technically we have only defined the inverse on objects, but its clear how to make it functorial
since limits are functorial).

To construct pushouts using (⊠), let F : Λ2
0 ! C be a span c a! b as above. We know

that it can be uniquely (up to contractible choice) extended to a pullback square, where the
bottom right corner is some object d ∈ C. The same goes for the trivial span consisting of
identities x = x = x for some x ∈ C, and in this case the object we have to add is x again of
course. Hence

Nat

 a b

c

,

x x

x

 ≃ Nat

 a b

c d

. ,

x x

x x

.

 ≃ HomC(d, x)

because ∆1 × ∆1 has terminal vertex (1, 1). This computation shows that d is a pushout of
the given span. Moreover, we get the property that pushouts agree with pullbacks for free.
This finishes the proof of (a) ⇒ (c). For (b) ⇒ (c) just dualize everything.

An immediate consequence of Proposition/Definition II.27 is that Sp(C) is stable for all
∞-categories C with finite limits. In particular, it holds for Sp and D(R) for any ring R by
Example II.25(b) (but it’s also true for K(R)). Moreover, Fun(I, C) is stable whenever C is.
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II.28. Corollary. —Lecture 14
15th Dec, 2020

For a functor F : C ! D between stable ∞-categories the following
are equivalent:
(a) F preserves finite limits.
(b) F preserves finite colimits.

Proof. Since C and D are additive, F preserves finite coproducts iff it preserves finite
products. Since also pushout squares and pullback squares coincide, F preserves the former
iff it preserves the latter. This suffices to get all finite colimits and limits.

II.29. Definition. — (a) Let F : C ! D be a functor between ∞-categories with finite
limits. We call F left exact if it preserves finite limits.

(b) We denote by Catlex
∞ ⊆ Cat∞ the (non-full) sub-∞-category spanned by these. Dually,

Catrex
∞ ⊆ Cat∞ is the full sub-∞-category spanned by right-exact functors, i.e. finite

colimit-preserving functors between ∞-categories with finite colimits.
(c) Finally, we denote by Catst

∞ the full subcategory of both Catlex
∞ and Catrex

∞ spanned by
the stable ∞-categories.

For example, the functor Ω∞ : Sp(C)! C is left exact for every C with finite limits. Also
note that Ω∞ factors canonically over CGrp(C). This needs doesn’t need an argument as in
Remark* II.23a, simply recall that Sp(C) ≃ Sp(CGrp(C)) by Proposition II.23.

II.29a. Remark*. — Before we move on, I would like to point out a subtlety that’s
perhaps easy to overlook: In Theorem II.30 below, we’ll investigate the functor

Sp(−) : Catlex
∞ −! Catst

∞ .

But why is it a functor though? My own knee-jerk reaction was “well, limits are functorial”,
but that’s not the problem. The problem is that Ω: ∗/C ! ∗/C is also supposed to be
functorial in C! Essentially this leads to the following question:
(⊠) Let CatI-ex

∞ ⊆ Cat∞ be the (non-full) subcategory spanned by ∞-categories with I-
shaped limits and functors preserving these. Why do the maps limI : Fun(I, C)! C for
C ∈ CatI-ex

∞ assemble into a natural transformation

lim
I

: Fun(I,−) =⇒ (−)

of functors CatI-ex
∞ ! Cat∞?

There are a few more steps involved to show that Ω is natural too. Namely one has to
produce natural transformations (−) ⇒ ∗/(−) ⇒ Fun(Λ2

2, ∗/(−)), but I’ll leave that to you.
To show (⊠), let’s first produce the “adjoint” transformation const : (−) ⇒ Fun(I,−).

Since the adjunction
− × I : Cat∞ Cat∞ : Fun(I,−)

extends to Fun(CatI-ex
∞ ,Cat∞) by Observation I.40, we may equivalently give a transformation

− × I ⇒ (−). Here the projection to the first factor is an obvious candidate and it is indeed
the correct one.

We may view the natural transformation const as a functor CatI-ex
∞ ! Ar(Cat∞). Its

image lies in the full subcategory spanned by those [1]! Cat∞ that represent left-adjoint
functors (because limI is a pointwise right adjoint). But in fact, more is true (and that’s
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the crucial point). Consider objects (L : C ! D) and (L′ : C′ ! D′) in Ar(Cat∞) as well as a
morphism between them, which we view as a solid diagram

C C′

D D′

L L′R R′

If L and L′ are left adjoints, then the dotted arrows exist, but the resulting new square only
commutes up to a natural transformation, not up to natural equivalence in general. We let
ArL(Cat∞) be the non-full sub-∞-category spanned by those squares for which the adjoint
square does in fact commute. Then CatI-ex

∞ ! Ar(Cat∞) already factors over ArL(Cat∞)
since morphisms in CatI-ex

∞ preserve I-shaped limits.
Now note that under the equivalence Uncocart : Ar(Cat∞) ∼−! Cocart([1]), the non-

full sub-∞-category ArL(Cat∞) corresponds to Bicart([1]), the ∞-category of bicartesian
fibrations over ∆1 with morphisms that preserve both cocartesian and cartesian edges (we
know from [HCII, Proposition XI.10] that bicartesian fibrations correspond to adjunctions,
and the additional condition unravels to the condition that cartesian edges are preserved as
well). Now we can apply the cartesian straightening Stcart : Bicart([1])! Fun([1]op,Cat∞)
to get a functor CatI-ex

∞ ! Fun([1]op,Cat∞). After currying around, this gives a map
[1]op ! Fun(CatI-ex

∞ ,Cat∞) which finally provides the desired transformation.

II.30. Theorem. — The functor Sp(−) : Catlex
∞ ! Catst

∞ is right-adjoint to the inclusion
Catst

∞ ⊆ Catlex
∞ , the counit being given by Ω∞ : Sp(C) ! C. In particular, if C is a stable

∞-category, we get a canonical lift

Sp

Cop × C An
Ω∞

HomC

homC

of the HomC functor.

Fabian remarks that Catst
∞ ⊆ Catlex

∞ also has a left adjoint given by colim(∗/C Ω ) but
we probably won’t ever use this. More interestingly, we can apply Theorem II.30 to the
stable ∞-categories D(R) and K(R) for any ring R:

II.30a. Corollary. — The Hom functors on D(R) and K(R) have canonical refinements
over Sp, given by

homD(R)(C,D) ≃ H
(
RHomR(C,D)

)
and homK(R)(C,D) ≃ H

(
HomR(C,D)

)
.

Proof sketch*. To prove the left equivalence, it suffices to check that we get HomD(R)(C,D)
after applying Ω∞ (and that everything is functorial in C and D, but this will be clear). So
we compute

Ω∞H
(
RHomR(C,D)

)
≃ K

(
RHomR(C,D)

)
≃ HomAn

(
∗,K(RHomR(C,D))

)
≃ HomD(Z)

(
Z[0], RHomR(C,D)

)
≃ HomD(R)

(
Z[0] ⊗L

Z C,D
)

≃ HomD(R)(C,D) ,
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using C•(∗) ≃ Z and the derived tensor-Hom adjunction. The right equivalence can be proved
analogously, but one should first check that C• : An! D⩾0(Z) already factors over K⩾0(Z)
and gives rise to the same Eilenberg–MacLane functor K : K⩾0(Z)! An. We haven’t done
this, but one can simply modify the construction in Very Long Example I.56 (details left to
the reader).

Proof of Theorem II.30. By the dual of Proposition I.61a, all we need to show is that the
two functors Ω∞ : Sp(Sp(C)) ∼−! Sp(C) and Ω∞

∗ : Sp(Sp(C))! Sp(C) are equivalences. But
we know that Ω∞ is one by Example II.25(a). Also Ω∞

∗ is an equivalence too because it is a
“coordinate flip” of Ω∞. By that, we mean the following: Plugging in the definitions, we can
write Sp(Sp(C)) as a limit indexed by Nop × Nop. Using the dual of Proposition I.42, we can
flip that diagram around, swapping Ω∞ and Ω∞

∗ , which proves the latter is an equivalence
as well.

For the “in particular”, we need another small argument similar to the proof* of Corol-
lary II.17, since HomC : Cop×C ! An isn’t left exact. Every HomC(x,−) : C ! An is, however,
hence the adjunction provides us with canonical lifts homC(x,−)! Sp for all x ∈ C when
C is a stable ∞-category. To show that these combine into a functor homC : Cop × C ! An,
consider the full subcategory Funlex(C,An) ⊆ Fun(C,An) spanned by left exact functors. We
claim that

Ω∞
∗ : Funex(C,Sp) ∼−! Funlex(C,An)

is an equivalence. Indeed, it becomes one after applying core(−) by the adjunction we’ve just
proved. To show that it is an equivalence after core Ar(−), we can use the same argument
once we convince ourselves that Ar Funex(C,Sp) ≃ Funex(C,Ar(Sp)) (use that limits in arrow
categories are pointwise by Lemma I.39) and that Ar(Sp) ≃ Sp(Ar(An)) (use that Ar(−)
commutes with limits).

Now the Yoneda embedding Cop ! Fun(C,An) has image in Funlex(C,An) ≃ Funex(C,Sp)
and we get our desired homC after currying.

II.31. Spectra and Prespectra. — We already know that Sp is complete and that the
functor Ω∞−i : Sp! An preserves limits for all i, see the summary before Corollary II.24.
We also know from Proposition/Definition II.27 that Sp has finite colimits because it is stable.
But in fact, Sp is even cocomplete! To see this, we will write Sp as a Bousfield localisation
of a suitable cocomplete ∞-category of prespectra and apply Corollary I.61.

Prespectra can be introduced in general. So let C be an ∞-category with finite limits
and (thus) a terminal object ∗ ∈ C. We let

PSp(C) ⊆ Fun(N2, ∗/C)

be the full subcategory of functors that “vanish away from the diagonal”. So the objects of
PSp(C) can be pictured as lattice diagrams

...
...

...

∗ ∗ X2 · · ·

∗ X1 ∗ · · ·

X0 ∗ ∗ · · ·
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The diagonal squares induce morphisms ΣXi ! Xi+1 (provided C has pushouts) or equiva-
lently Xi ! ΩXi+1. If the latter were to be isomorphisms, we would recover Sp(C), as we’ll
see in a moment.

To construct a fully faithful embedding Sp(C) ↪! PSp(C), write N2 = colimn∈N N2
⩽(n,n)

as an ascending union of finite pieces N2
⩽(n,n) and consider the diagram

PSp(C) lim
n∈Nop

Fun
(
N2

⩽(n,n), ∗/C
)

Sp(C) lim
n∈Nop

∗/C

⊆

∼

η=lim ηn

We need to explain where the upward-pointing arrow η = lim ηn comes from: The morphisms

ηn : ∗/C −! Fun
(
N2

⩽(n,n), ∗/C
)

send an object X ∈ ∗/C to the right Kan extension of the following functor:

∗ · · · ∗

∗ ∗ ...

... ∗ ∗

∗ · · · ∗ X

︸ ︷︷ ︸
n+1

︸
︷︷

︸
n+1N2

⩽(n,n)

Note the blank spots along the diagonal, except for the (n, n)th entry! So we right-Kan
extend along the inclusion N2

⩽(n,n)∖{(0, 0), . . . , (n−1, n−1)} ⊆ N2
⩽(n,n). Since this inclusion

is fully faithful, Corollary I.54 (combined with Proposition/Definition I.58(a)) shows that ηn
is fully faithful, and thus also the limit η over all ηn gives a fully faithful map between the
limits. One easily checks that the image of η lands in the full subcategory PSp(C) and thus
we get the desired fully faithful functor Sp(C) ↪! PSp(C).

As another consequence of the maps ηn being defined by right Kan extension, we obtain
canonical equivalences

HomPSp(C)(X,Y ) ≃ lim
n∈Nop

Hom∗/C(Xn, Yn)

for all X ∈ PSp(C) and Y ∈ Sp(C) (just compute the left-hand side as a Hom anima in
limn∈Nop Fun(N2

⩽(n,n), ∗/C) and use the universal property of right Kan extension).
Note that PSp(C) inherits all limits and colimits from ∗/C. Also Sp(C) ⊆ PSp(C) is

closed under limits, but not colimits. To show that Sp(C) is cocomplete (under appropriate
conditions), we need to show that it is in fact a Bousfield localisation of PSp(C). This is
done by the following proposition.
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II.31a. Proposition. — If ∗/C has sequential colimits and Ω: ∗/C ! ∗/C commutes with
them, then the inclusion Sp(C) ⊆ PSp(C) has a left adjoint (−)sp : PSp(C) ! Sp(C). On
objects it is given by

Ω∞−i(Xsp) ≃ colim
n∈N

ΩnXn+i ,

where the transition maps are induced by the morphisms Xi ! ΩXi+1 that where constructed
on the previous page.

Before we prove Proposition II.31a, we’ll discuss some consequences. First, to be able to
apply it in the case C = An, we show:

II.31b. Lemma. — The loop space functor Ω: ∗/An! ∗/An for pointed anima commutes
with sequential colimits. In particular, Sp is a Bousfield localisation of PSp and therefore
cocomplete by Corollary I.61.

Since we are already at it, here are two more useful assertions that weren’t mentioned in
the lecture.
(a∗) The functors Ω∞−i : Sp! ∗/An commute with sequential colimits for all i ∈ Z.
(b∗) The functors πi : Sp ! Ab for i ∈ Z and πi : ∗/An ! Set for i ⩾ 0 commute with

sequential colimits. In the latter case, also recall that sequential colimits in Grp (for
i = 1) or Ab (for i ⩾ 2) are computed on underlying sets.

Proof *. First of, N is weakly contractible, hence the colimits can be formed in An instead
(Remark* II.10a). We can replace any sequential diagram (X1 ! X2 ! . . . ) in An by
a diagram (X ′

1 ↪! X ′
2 ↪! . . . ) Kan such that all transition maps are cofibrations; then

Theorem I.34 allows us to compute the colimit in Kan instead. Now write Ω ≃ F∗((S1, ∗),−)
as the pointed mapping space out of S1 (or any simplicial model for it, it doesn’t even need
to be Kan) and observe that the right-hand side commutes with filtered colimits in Kan
because S1 is compact. This shows the first assertion.

Now that we know Ω: ∗/An ! ∗/An commutes with filtered colimits, we may apply
the summary before Corollary II.24 to see that sequential colimits in Sp can be computed
degreewise, proving (a∗). Hence in (b∗) it suffices to show the assertion for ∗/An. We can
write πi ≃ π0 : F∗((Si, ∗),−). As in the first part, F∗((Si, ∗),−) commutes with filtered
colimits in Kan, and π0 : Kan! Set preserves arbitrary colimits since it is a left adjoint.

II.31c. Remark*. — Both assertions of Lemma II.31b remain true if we replace “sequential
colimits” by “filtered colimits”, where an indexing ∞-category I is filtered if every map
K ! I from a finite simplicial set K extends to a map K▷ ! I from its cone.

In fact, the proof can more or less be carried over: Filtered ∞-categories are weakly
contractible (one can use the filteredness condition to show πi(Ex∞ I, ∗) = 0 for all i and
all basepoints), we can again replace the given diagram by some cofibrant diagram in the
correct model structure on Fun(C[I], sSet), and then use that F∗((Si, ∗),−) preserves filtered
colimits by compactness.

Similarly to our construction of the embedding Sp(C) ⊆ PSp(C), one can show that we
have an adjunction

Σ̃∞ : ∗/C PSp(C) : ev(0,0) .

if C has finite colimits. On objects c ∈ ∗/C (which is all we need by Corollary I.32), we define
Σ̃∞c as follows: Recall

PSp(C) ⊆ lim
n∈Nop

Fun
(
N2

⩽(n,n), ∗/C
)
,
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so we may imagine Σ̃∞c as a sequence ((Σ̃∞c)0, (Σ̃∞c)1, (Σ̃∞c)2, . . . ). The nth piece (Σ̃∞c)n
is then defined to be the left Kan extension of the of the following picture:

c ∗ · · · ∗

∗ ∗ ...

... ∗ ∗

∗ · · · ∗

︸ ︷︷ ︸
n+1

︸
︷︷

︸

n+1N2
⩽(n,n)

Again, note the blank spots along the diagonal, so the Kan extension is along the inclusion
N2

⩽(n,n) ∖ {(1, 1), . . . , (n, n)} ⊆ N2
⩽(n,n) this time.

Combining this with Proposition II.31a, we see that Ω∞ : Sp ! ∗/An has a left ad-
joint Σ∞ = (Σ̃∞)sp : ∗/An ! Sp. Plugging in the explicit formulas for Kan extension
(Theorem I.52) to compute Σ̃∞, we get

Ω∞Σ∞(X,x) ≃ colim
n∈N

ΩnΣn(X,x)

for all (X,x) ∈ ∗/An. The left-hand side is sometimes denoted Q(X,x), but that has nothing
to do with the Quillen Q-construction from page 56).

We will denote the composite

S[−] : An (−)+
−−−! ∗/An Σ∞

−! Sp .

In particular, we obtain S := S[∗] ≃ Σ∞(S0, ∗), the legendary sphere spectrum. Plugging in
the adjunctions we know gives HomSp(S,−) ≃ HomAn(∗,Ω∞ −) ≃ Ω∞, so S represents the
functor Ω∞ : Sp! An. Using Lemma II.31b(b), the homotopy groups of S are given by

πi(S) = colim
n∈N

πiΩnΣn(S0, ∗) = colim
n∈N

πi+n(Sn, ∗) ,

i.e. the stable homotopy groups of spheres. In contrast to the vastly complicated problem of
computing these, the homology of S (defined as in II.26) is rather boring:

II.31d. Lemma. — For any abelian group A, the homology of S with coefficients in A is
given by

Hi(S, A) =
{
A if i = 0
0 else

.

More generally, we have C•(S[X]) ≃ C•(X) for all X ∈ An (where the C•(−) on the left-hand
side is the one from II.26, and the C•(−) on the right-hand side was defined in Very Long
Example I.56), so in particular,

H∗
(
S[X], A

)
= H∗(X,A) and H∗(S[X], A

)
= H−∗(X,A) .
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Proof *. Fabian claimed the proof needs a bit of homotopy theory to compute H∗(ΩnSn, A)
in low degrees, but I believe there is also a straightforward way that doesn’t need anything.
By construction (see II.26) we have

C•S ≃ colim
i∈N

C̃•(Ω∞−iS)[−i] ≃ colim
i∈N

colim
n∈N⩾i

C̃•(Ωn−iSn)[−i] ,

where we used that C̃• : ∗ /An! D(Z) commutes with colimits. Moreover, the homology
functors H∗ : D(Z)! Ab commute with filtered colimits, hence

H∗(S, A) ≃ H∗
(
C•(S) ⊗L

Z A
)

≃ colim
i∈N

colim
n∈N⩾i

H̃∗+i(Ωn−iSn, A)

≃ colim
n∈N

colim
i∈N⩽n

H̃∗+i(Ωn−iSn, A)

≃ colim
n∈N

H̃∗+n(Sn, A) ,

where we used that i = n is terminal in N⩽n to get the third isomorphism. The bottom term
clearly vanishes for ∗ ≠ 0 and equals A for ∗ = 0, as we wished to show. The additional
assertion follows from the fact that C•(−) : An ! D(Z) and C•(S[−]) : An ! D(Z) both
preserve colimits and agree on ∗ ∈ An (as we just checked), hence they must be equal by
Theorem I.51.

II.32. Corollary (Baratt–Priddy–Quillen). — The functor ev1 : CGrp(An)! ∗/An has a
left adjoint FreeCGrp : ∗/An! CGrp(An) given by

FreeCMon(X,x)∞-grp ≃ FreeCGrp(X,x) ≃ Ω∞Σ∞(X,x) .

Here Ω∞ : Sp⩾0
∼−! CGrp(An) denotes the inverse of B∞ : CGrp(An) ∼−! Sp⩾0, which we

recall is an equivalence by Corollary II.24.

Proof *. We didn’t spell this out in the lecture since there isn’t much to do: It’s evident
that Σ∞ : ∗/An ! Sp lands in the full subcategory Sp⩾0, hence it’s also a left-adjoint to
Ω∞ : Sp⩾0 ! ∗/An. After applying the other Ω∞ (i.e. the inverse of B∞) we obtain the
second equivalence. For the first equivalence, recall that Corollary II.21 actually shows that
the E1-group completion of an E∞-monoid has a canonical E∞-group structure.

Applying Corollary II.32 to the unnumbered example on page 88, we see that

S∞-grp =
(
{finite sets, bijections},⊔

)∞-grp ≃ FreeCMon(∗)∞-grp ≃ Ω∞S ,

an example that Fabian already terrified us with in the introduction. In particular, we see
that even though FreeGrp(∗) ≃ Z is a free group on a point and commutative, it fails rather
drastically to be the free commutative group on a point.

Proof of Proposition II.31a. By Corollary I.32, it suffices to check that Xsp as defined there
is really a spectrum and a left-adjoint object to X for all X ∈ PSp(C). To check that Xsp is
a spectrum, we compute

ΩXsp
i+1 ≃ Ω colim

n∈N
ΩnXn+i+1 ≃ colim

n∈N
Ωn+1Xn+i+1 ≃ colim

n∈N
ΩnXn+i ≃ Xsp

i
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(and all of this is functorial) since Ω commutes with sequential colimits. To check that Xsp

is really a left-adjoint object of X, we compute

HomSp(C)(Xsp, Y ) ≃ lim
i∈Nop

Hom∗/C (Xsp
i , Yi)

≃ lim
i∈Nop

(
colim
n∈N

ΩnXn+i, Yi

)
≃ lim
i∈Nop

Hom∗/C

(
colim
n∈N⩾i

Ωn−iXn,Ωn−iYn

)
≃ lim
i∈Nop

lim
n∈Nop

⩾i

Hom∗/C
(
Ωn−iXn,Ωn−iYn

)
≃ lim
n∈Nop

lim
j∈N⩽n

Hom∗/C
(
ΩjXn,ΩjYn

)
≃ lim
n∈Nop

Hom∗/C(Xn, Yn)

≃ HomPSp(C)(X,Y ) .

The first two equivalences are just plugging in definitions. For the third equivalence, we do
an index shift by −i and use Ωn−iYn ≃ Yi since Y is a spectrum. The fourth equivalence is
Corollary I.50. For the fifth equivalence, we substitute j = n− i and use that limits commute
(by the dual of Proposition I.42). Since j has “negative slope in i”, we really take the limit
over j ∈ N⩽n; the missing (−)op is not a typo (and crucial for the next argument). The sixth
equivalence now follows from the fact that j = 0 is initial in 0 ∈ N⩽n. Finally, the seventh
equivalence is the formula for HomPSp(C)(X,Y ) that we deduced just before the formulation
of Proposition II.31a.

Our next goal is to define a more “Segal style” model for Sp(C). To do this, we construct
another ∞-category op. Fabian remarks that this symbol is not the \mathbb-version of the
Roman letter F, but of the archaic Greek letter Digamma, which was the letter after Gamma
and Delta in the ancient Greek alphabet, so Lop, ∆∆op, and op fit together nicely. Wikipedia
claims, however, that Digamma was only the sixth letter and that Epsilon came between it
and Delta. Nevertheless, I’ll obediently stick to Fabian’s notation.

II.33. Definition. — Let op ⊆ ∗/An be the smallest sub-∞-category containing S0 and
closed under finite colimits. There’s a functor Lop ! op sending ⟨n⟩ to ⟨n⟩+ (i.e. we add
a basepoint to the discrete anima ⟨n⟩) and any partially defined map α : ⟨m⟩! ⟨n⟩ to the
map α+ : ⟨m⟩+ ! ⟨n⟩+ which is α wherever it is defined and sends everything else to the
basepoint.

Finally, if C is an ∞-category with finite limits and (thus) a terminal object ∗ ∈ C, we
define S̃p(C) ⊆ Fun( op, ∗/C) to be the full subcategory of excisive and reduced functors, i.e.
those taking pushouts to pullbacks and ∗ = ⟨0⟩+ to ∗ ∈ ∗/C. We might as well define S̃p(C)
as the full sub-∞-category of Fun( op, C) (rather than Fun( op, ∗/C)) spanned by reduced
and excisive functors, since every reduced functor F : op ! C lifts canonically to ∗/C.

Note that S̃p(C) is stable: It has finite limits inherited from ∗/C and Ω is an equivalence
with inverse induced by precomposition with Σ: op ! op. Hence the criterion from
Proposition/Definition II.27(a) is fulfilled.
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II.34. Proposition. — With assumptions as in Definition II.33, there is a natural
equivalence of ∞-categories

S̃p(C) ∼−! Sp(C)
F 7−!

(
F (S0), F (S1), . . .

)
.

Proof sketch. There are multiple ways to prove this. One can directly show that S̃p(C)
satisfies the universal property from Theorem II.30. Or one can simply check that both

evS0 : S̃p
(
S̃p(C)

) ∼−! S̃p(C) and evS0,∗ : S̃p
(
S̃p(C)

) ∼−! S̃p(C)

are equivalences and then apply the same reasoning (in particular, use Proposition I.61a) as
in the proof of that theorem.

We will sketch a third way by constructing an inverse functor. For this, we use the following
general construction: Let Anfin ⊆ An denote the smallest sub-∞-category containing ∗ and
closed under finite colimits. Let D be any ∞-category with finite limits and finite colimits.
For d ∈ D we put

X ⊗ d := colim
X

const d and dX := lim
X

const d .

These exist by assumption and are functorial in X and d. If (X,x) ∈ op and D is pointed,
i.e. has a zero object, then we put

(X,x) ⊗ d := cofib
(

colim
{x}

const d! colim
X

d

)
.

The inverse functor Sp(C) ! S̃p(C) now sends a spectrum E ∈ Sp(C) to the functor
Ω∞(− ⊗E) : op ! ∗/C. Note that Sp(C) has finite colimits since it is stable, so the functor
− ⊗ E : op ! Sp(C) is well-defined.

Here’s a proposition that was added in the 16th lecture.

II.34a. Proposition. — In addition to the assumptions from Definition II.33, suppose
that ∗/C has sequential colimits and that Ω: ∗/C ! ∗/C commutes with them. Then the
inclusion S̃p(C) ⊆ Fun∗( op, ∗/C) into the reduced functors has a left adjoint, sending a
reduced functor F : op ! ∗/C to

F sp ≃ colim
n∈N

ΩnF (Σn −) .

The transition maps in this colimit are induced by the natural transformations F ⇒ ΩF (Σ −),
which exist since F is reduced.

Proof sketch*. This essential argument is copied from Fabian’s notes, [A&HK, Chapter II
p. 71]. As usual, by Corollary I.32 all we need to do is to verify that the formula above
indeed defines a left-adjoint object of F . If E : op ! ∗/C is already reduced and excisive,
then E ≃ ΩE(Σ −). Using this and a calculation as in the proof of Proposition II.31a, one
easily shows Nat(F,E) ≃ Nat(F sp, E).
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It remains to see, however, that F sp is indeed excisive (and that’s the hard part of the
proof). Since Ω commutes with filtered colimits, we get F sp ≃ ΩF sp(Σ −). Now consider an
arbitrary pushout square in op and extend it to a diagram

A C ∗

B D Q ∗

∗ P ΣA ΣB

∗ ΣC ΣD

. .

. . .

. .

The upper left 2 × 2-square induces a map F sp(B) ×F sp(D) F
sp(C)! ΩF sp(ΣA) ≃ F sp(A)

and one can check that this is an inverse to the canonical map in the other direction. This
shows that F sp turns pushouts into pullbacks, as required.

The functors − ⊗ E and E(−) for spectra that were constructed in the proof of Proposi-
tion II.34 are interesting in their own right. Observe for example that

X ⊗HA ≃ H
(
C•(X) ⊗L

Z A
)

since one can (and we will) show both sides are colimit-preserving functors An! Sp with
value HA on ∗ ∈ An, hence they are equal by Theorem I.51 and the fact that Sp is cocomplete.
This motivates the following definition.

II.35. Definition. — Let E ∈ Sp and X ∈ An. The homology and cohomology theory
associated to E are defined by

E∗(X) = π∗(X ⊗ E) = π∗

(
colim
X

E
)

and E∗(X) = π∗(EX) = π∗

(
lim
X
E
)
.

We’ll check in Corollary* II.55b that E∗(−) and E∗(−) satisfy the Eilenberg–Steenrod
axioms. It’s also a common convention to define the cohomology theory associated to E as
E∗(X) = π−∗(EX) instead. However, we will see that Fabian’s sign convention is superior.

Some Foreshadowing. — We can also extend the tensor product (or smash product)
− ⊗ − to all of Sp by defining

E ⊗ E′ := colim
i∈N

(
(Ω∞−iE′) ⊗ E

)
[−i]

(where [−i] = Ωi is the intrinsic loop functor on Sp). It turns out that this defines a symmetric
monoidal structure on Sp behaving like − ⊗L

Z − on D(Z), although not even symmetry is in
any way obvious from the definition. Proving this will be the content of the next few lectures.
Along the way (see II.53) we will also see that X ⊗E and EX can be equivalently described
as S[X] ⊗ E and homSp(S[X], E), respectively.

If M is an E∞-monoid, it’s usually very hard to understand its group completion
M∞-grp. But we can understand S[M∞-grp] ∈ Sp. This is still good enough to compute
H∗(M∞-grp, A) or even E∗(M∞-grp), which will be the content of the “group completion
theorem”, Theorem III.6. Once we have this, we’re in business to compute some K-groups!
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An Interlude on ∞-Operads
∞-Operads and Symmetric Monoidal ∞-Categories

Lecture 15
17th Dec, 2020

Recall that a morphism in Lop is inert if it is a bijection (where it is defined) and active
if it is defined everywhere. This yields two subcategories Lop

act and Lop
int. Recall also that

symmetric monoidal ∞-categories are precisely the objects of CMon(Cat∞), which is a full
subcategory of Cocart(Lop) via cocartesian unstraightening.

II.36. Definition. — A (multicoloured and symmetric) ∞-operad (in anima) is a functor
p : O !

Lop of ∞-categories such that the following conditions hold:
(a) Every inert in Lop has cocartesian lifts with arbitrary sources (in the invariant sense of

Definition I.24(b)).
(b) The functor O : Lop

int ! Cat∞ arising by cocartesian straightening satisfies the Segal
condition. That is, O0 ≃ ∗ and On ≃

∏n
i=1 O1 via the Segal maps ρ1, . . . , ρn : ⟨n⟩! ⟨1⟩.

(c) Let x, y ∈ O with p(x) = ⟨m⟩ and p(y) = ⟨n⟩. By (b), we can write y ≃ (y1, . . . , yn) for
some yi ∈ O1. Then we require that the diagram

HomO(x, y)
n∏
i=1

HomO(x, yi)

HomLop
(
⟨m⟩, ⟨n⟩

) n∏
i=1

HomLop
(
⟨m⟩, ⟨1⟩

)

(ρ1,...,ρn)

.p p

(ρ1,...,ρn)

is a pullback. Note that ince the bottom arrow is an injective map of discrete sets, the
top arrow must be an inclusion of path components!

We call a morphism f : x! y in O inert if it is a p-cocartesian lift of an inert morphism inL. We call f active if it is a (not necessarily p-cocartesian) lift of an active morphism. We
also call O1 the underlying ∞-category of O.

Finally, the ∞-category Op∞ of ∞-operads is the (non-full) sub-∞-category of Cat∞/
Lop

spanned by the ∞-operads and by functors which preserve inert morphisms.

II.37. First Steps with ∞-Operads. — Some trivial examples of ∞-operads are given
by

Lop
int −!

Lop , ∗ ⟨0⟩
−−!

Lop , and id : Lop −!
Lop .

In general, a rich source of further examples is given by symmetric monoidal ∞-categories.

II.37a. Symmetric Monoidal ∞-Categories as ∞-Operads. — The cocartesian
unstraightening induces a functor

(−)⊗ = Uncocart : CMon(Cat∞) −! Op∞ .

To see this, note that conditions Definition II.36(a) and (b) are trivially satisfied, so we only
have to check (c). We’ve already remarked that the bottom row of the diagram in question
is an injection of discrete anima, hence we must show that the top row is an inclusion of
the corresponding path components. So let α : ⟨m⟩ ! ⟨n⟩ be some morphism and denote
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by Homα
O(x, y) the path component over α. Let x! α∗(x) be a p-cocartesian lift of α and

consider the diagram

HomOn(α∗x, y)
n∏
i=1

HomO1

(
(α∗x)i, yi

)

Homα
O(x, y)

n∏
i=1

Homρi◦α
O (x, y)

∼

∼ ∼

That the vertical arrows are equivalences follows easily from the fact that x ! α∗x is
p-cocartesian and the pullback diagram in Definition I.24(a). The top arrow is an equivalence
by the Segal condition. Hence the bottom arrow is an equivalence as well, which is what we
wanted to show. Thus (−)⊗ has its image in contained in Op∞ ⊆ Cat∞/

Lop, as claimed.
However, (−)⊗ is not fully faithful, and it’s a good thing it isn’t, since it allows us to

define lax symmetric monoidal functors. Morphisms in CMon(Cat∞) are strongly symmetric
monoidal functor, i.e. they have to preserve the tensor product. In contrast to that, we
define a lax symmetric monoidal functor C ! D to be a map of ∞-operads C⊗ ! D⊗. We
can now define ∞-categories SymMonCat∞ ≃ CMon(Cat∞) and SymMonCatlax

∞ ⊆ Op∞ to
be the essential image of (−)⊗ (with the convention that essential images are always full
sub-∞-categories).

A quick reality check: As the terminology suggests, a lax monoidal functor F : C⊗ ! D⊗

comes with a natural transformation

F (−) ⊗D F (−) =⇒ F (− ⊗C −)

in Fun(C × C,D). This is a consequence of the following random lemma* (which wasn’t in
the lecture).

II.37b. Lemma*. — Let p : C ! ∆1 and q : D ! ∆1 be cocartesian fibrations. Their
straightenings correspond to functors Stcocart(p) ≃ α : C0 ! C1 and Stcocart(q) ≃ β : D0 ! D1
in Cat∞. Let furthermore functors F0 : C0 ! D0 and F1 : C1 ! D1 be given. Then there is a
pullback diagram

Nat(β ◦ F0, F1 ◦ α) HomCat∞/∆1(C,D)

∗ HomCat∞(C0,D0) × HomCat∞(C1,D1)

.

(F0,F1)

Proof sketch*. This should be a consequence of [Lur09], but I think I can also give a direct
(but terribly uninvariant) proof. A map C ! D in Cat∞/∆1 is the same as a map C♭ ! D♮

in sSet+/(∆1)♯, or more precisely,

HomCat∞/∆1(C,D) ≃ core Fm(∆1)♯(C♭,D♮)

is the core of the simplicial set of marked maps. The idea is now to construct a nice
marked simplicial set which is marked equivalent to C♭ in the cocartesian model structure on
sSet+/(∆1)♯. Let

Cyl♭(α) = C♭0 × (∆1)♭ ⊔C♭
0×{1} C♭1 × {1}
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be the mapping cylinder of α, and let Cyl♮(α) be defined analogously, but with (∆1)♯ instead
of (∆1)♭. Then Cyl♮(α) is marked equivalent to C♮ (but not fibrant in the cocartesian model
structure). Indeed, the straightening functor

St+ : sSet+/(∆1)♯ −! FunsSet(C[∆1], sSet+)

is a left adjoint, hence commutes with colimits, so St+(Cyl♮(α)) is the pushout (and homotopy
pushout) of (∅! C0) ⇒ (id : C0 ! C0) along (∅! C0) ⇒ (∅! C1), and this pushout clearly
agrees with St+(C♮) ≃ α : C0 ! C1. Since St+ is a Quillen equivalence, this shows that
Cyl♮(α) and C♮ are indeed marked equivalent.

This implies that Cyl♭(α) and C♭ are marked equivalent too. To make this precise, either
use that the underlying simplicial set of St+(X) only depends on that of X, and then analyse
the markings on St+(C♭) and St+(Cyl♭(α)). Or use that Cyl♮(α) ! C♮ is the inclusion
of a fibrewise left deformation retraction (up to replacing it by a cofibration, see [HCII,
Lemma X.37]) and observe that in this particular case this stays true if we remove the
markings of the non-equivalence edges.

So we may replace C♭ by Cyl♭(α). Now consider the following inclusions of elements in
sSet+/(∆1)♯, where marked edges are highlighted in yellow:

C0 C1Cyl♭(α)

0 1(∆1)♮

⊆
C0 C1

C0

Cyl♭(α)

C0 × (∆1)♯

0 1(∆1)♮

⊆
C0 C1

C0

Cyl♭(α)

Cyl♭(α)
C0 × (∆1)♯

0 1(∆1)♮

///

⊇
C0 C1

C0

Cyl♭(α)
C0 × (∆1)♯

0 1(∆1)♮

All of these are marked equivalences. Hence we may further replace Cyl♭(α) by the marked
simplicial set on the right, which we denote X. The given map F0 : C0 ! D0 extends uniquely
(up to contractible choice) to a marked map F : C0 × (∆1)♯ ! D♮, which automatically
satisfies F|C0×{1} ≃ β ◦ F0. Hence maps C♭ ! D♮ with given values on C0 and C1 correspond
to maps X ! D♮ with given values on C0 × (∆1)♯ and C1, which in turn correspond to maps
Cyl♭(α)! D1 with given values on C0 × {0} and C1 × {1}. If you think about this and make
it a little more precise, you get the desired pullback diagram.

II.37c. A Recognition Criterion. — How can we decide whether a given ∞-operad is a
symmetric monoidal ∞-category, i.e. in the essential image of (−)⊗ : CMon(Cat∞)! Op∞?
We must check that p : O !

Lop has cocartesian lifts of active maps. By the Segal condition
and the fact that has p-cocartesian lifts for all inert morphisms, it suffices to check that it
has p-cocartesian lifts for the unique active maps fn : ⟨n⟩! ⟨1⟩ (we leave it as an exercise to
work out a proper argument). This can in turn be reformulated as follows: For elements
(a1, . . . , an) ∈ On and b ∈ O1 define the multi-morphism space

Homact
O
(
(a1, . . . , an), b

)
HomO

(
(a1, . . . , an), b

)
∗ HomLop

(
⟨n⟩, ⟨1⟩

).

fn
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If a morphism g : (a1, . . . , an) ! a over fn is p-cocartesian, then the precomposition
g∗ : HomO1(a,−) ∼=⇒ Homact

O ((a1, . . . , an),−) is an equivalence of functors O1 ! An. The
converse, however, is not quite true in the sense that if g∗ is an equivalence, then g is only
locally p-cocartesian by the criterion from [HCII, Chapter IX p. 23]. The way to think about
this is that “a ≃ a1 ⊗ · · · ⊗ an”. So if p is a locally cocartesian fibration, then these tensor
products exist. But for them to be associative, we need (after some unravelling) that locally
p-cocartesian lifts compose. By [HCII, Proposition IX.13], this is precisely the condition we
need for the locally cocartesian fibration p to be a cocartesian fibration!

Summarising, we obtain the following criterion:
(⊠) An ∞-operad p : O !

Lop is a symmetric monoidal ∞-category iff the following two
conditions hold:
(a) For all ⟨n⟩ ∈

Lop and all (a1, . . . , an) ∈ On there exists an “a ≃ a1 ⊗ · · · ⊗ an” in
O1 representing the multi-morphism space, i.e. there’s a map g : (a1, . . . , an)! a
over fn : ⟨n⟩! ⟨1⟩ such that

g : HomO1(a,−) ∼=⇒ Homact
O
(
(a1, . . . , an),−

)
is an equivalence.

(b) The “tensor product” from (a) is associative, i.e.

a1 ⊗ a2 ⊗ a3 ≃ (a1 ⊗ a2) ⊗ a3 ≃ a1 ⊗ (a2 ⊗ a3) .

The moral of this story is that, intuitively, an ∞-operad O is the data you need to make
an “∞-category in which you specify what a map out of a tensor product should be”. Whether
such a category exists should equivalent to whether O ≃ C⊗ for some C ∈ CMon(Cat∞).

II.37d. Dual ∞-Operads. — There is an entirely dual theory of dual ∞-operads (be
aware that’s not the same thing as ∞-cooperads; in fact, all four combinations of (∅/dual)
∞-(∅/co)operads exist and are distinct things). A dual ∞-operad is a functor to L = (Lop)op

satisfying Definition II.36(a), (b), and (c) for cartesian lifts. The resulting ∞-category dOp∞
is equivalent to Op∞ via (−)op : Op∞

∼−! dOp∞. Note, however, that this doesn’t preserve
underlying ∞-categories. Instead it fits into a diagram

Op∞ dOp∞

Cat∞ Cat∞

∼

(−)1 (−)1

(−)op

The image of the cartesian unstraightening Uncart : CMon(Cat∞) ! dOp∞ is denoted
SymMonCatoplax

∞ , thought of as symmetric monoidal ∞-categories with oplax monoidal
functors. Just as in II.37a, an oplax symmetric monoidal functor F : C⊗ ! D⊗ comes with a
natural transformation F (− ⊗C −) ⇒ F (−) ⊗D F (−).

II.37e. Sub-∞-Operads. — Let O !
Lop be an ∞-operad and D ⊆ O1 a full sub-∞-

category. Define D⊗ ⊆ O to be the full sub-∞-category spanned by the d ≃ (d1, . . . , dn)
with di ∈ D. Then D⊗ !

Lop is an ∞-operad with underlying ∞-category D.
Since I didn’t find this completely obvious that D⊗ is an ∞-operad, here’s a full argument.

The conditions from Definition II.36(b) and (c) are immediately inherited from O. To check
the remaining condition (a), we must check that whenever d! d′ is a cocartesian lift of an
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inert morphism in Lop with d ∈ D⊗, then also d′ ∈ D⊗. Say d ∈ D⊗
n and let d ≃ (d1, . . . , dn).

Then the components di ∈ D⊗
1 are precisely the endpoints of cocartesian lifts d ! di of

ρi : ⟨n⟩! ⟨1⟩. Since cocartesian lifts compose (see [HCII, Proposition IX.5]), we see that the
components of d′ are a subset of the components of d, hence d′ ∈ D⊗ as well. This shows
that D⊗ is indeed an ∞-operad.

In the case where O ≃ C⊗ is a symetric monoidal ∞-category, it’s naturally to ask
whether D⊗ is one as well. Fabian gave two criteria for this in the lecture:
(a) Suppose that d⊗d′ ∈ D for all d, d′ ∈ D and 1C ∈ D. Then D⊗ is a symmetric monoidal

∞-category and the inclusion D ⊆ C is strongly monoidal. If it has, moreover, a right
adjoint R : C ! D, then R can be extended to a map of ∞-operads R⊗ : C⊗ ! D⊗ such
that R⊗ is right-adjoint to the inclusion D⊗ ⊆ C⊗. In particular, R has a canonical lax
symmetric monoidal refinement.

(b) Suppose that D ⊆ C has a left adjoint L : C ! D with the property that whenever
L(f) : L(x) ∼−! L(y) is an equivalence, then L(f ⊗ idz) : L(x ⊗ z) ∼−! L(y ⊗ z) is an
equivalence too for all z ∈ C. Then D⊗ is symmetric monoidal and L extends to a map
L⊗ : C⊗ ! D⊗ of ∞-operads such that L⊗ is left-adjoint to D⊗ ⊆ C⊗. Moreover, L is
strongly symmetric monoidal and D ⊆ C is lax symmetric monoidal.

I’d like to add the following closely related assertion, which wasn’t mentioned in the lecture,
although we’ll need it later. It roughly says that whether a left adjoint is strongly monoidal
can be checked on objects.
(c∗) Let R⊗ : D⊗ ! C⊗ be a map of ∞-operads . If the underlying functor R : D ! C has a

left adjoint L : C ! D satisfying

L(1C) ≃ 1D and L(c1 ⊗C c2) ≃ L(c1) ⊗D L(c2)

for all c1, c2 ∈ C, then L extends to a map L⊗ : C⊗ ! D⊗ of ∞-operads, which is
left-adjoint to R⊗ and strongly symmetric monoidal.

The proofs of (a), (b), and (c∗) are pretty straightforward, but a bit tedious.

Proof of (a)*. The fact that D⊗ is a symmetric monoidal ∞-category and that D ⊆ C is a
strongly monoidal functor (i.e. D⊗ ⊆ C⊗ preserves all cocartesian edges) follows from the
recognition criterion sketched in II.37c. To construct R⊗, we employ Corollary I.32 as usual
to see that R⊗ can be constructed pointwise. So let c ∈ C⊗ and write c = (c1, . . . , cn). We
put R⊗(c) = (R(c1), . . . , R(cn)) and claim that the natural map ηc : c! R⊗(c) (induced by
the unit maps ηci

: ci ! R(ci) for R) witnesses it as a right-adjoint object of c. That is, we
must show that

ηc,∗ : HomC⊗(d, c) ∼−! HomD⊗
(
d,R⊗(c)

)
is an equivalence for all d ∈ D⊗. By Definition II.36(c) it suffices to show the same for
ηci,∗ : HomC⊗(d, ci) ∼−! HomD⊗(d,R(ci)). But whether this is an equivalence of anima
can be checked on (derived) fibres over HomLop(⟨n⟩, ⟨1⟩). Given α : ⟨n⟩ ! ⟨1⟩ in Lop,
choose a cocartesian lift d ! α∗d to D⊗, which is also cocartesian in C⊗ by construction.
Then the fibres over α are given by Homα

C⊗(d, ci) ≃ HomC(α∗d, ci) and Homα
D⊗(d,R(ci)) ≃

HomD(α∗d, ci), hence ηci,∗ is indeed an equivalence since R : C ! D is a right adjoint of the
inclusion D ⊆ C. This shows that R⊗ exist as a map in Cat∞. It’s clear from the construction
that it’s also a map in Cat∞/

Lop. Finally, since cocartesian lifts of inert morphisms just
“forget” some of the factors, they are preserved by R⊗, whence it is a map of ∞-operads.
This shows (a).
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Proof of (b)*. First observe that the condition on L can be strengthened as follows: If we
are given equivalences L(fi) : L(xi) ∼−! L(yi) in D for all i = 1, . . . , n, then also

L(f1 ⊗ · · · ⊗ fn) : L(x1 ⊗ · · · ⊗ xn) ∼−! L(y1 ⊗ · · · ⊗ yn)

is an equivalence. To show that D⊗ is a symmetric monoidal ∞-category, we use the
recognition criterion from II.37c: Given (d1, . . . , dn) ∈ D⊗

n and any d ∈ D, we have

Homact
D⊗

(
(d1, . . . , dn), d

)
≃ Homact

C⊗

(
(d1, . . . , dn), d

)
≃ HomC(d1 ⊗ · · · ⊗ dn, d)
≃ HomD

(
L(d1 ⊗ · · · ⊗ dn), d

)
,

hence composing (d1, . . . , dn)! d1⊗· · ·⊗dn with the unit map d1⊗· · ·⊗dn ! L(d1⊗· · ·⊗dn)
in C⊗ gives a locally cocartesian lift of fn : ⟨n⟩! ⟨1⟩ to D⊗, which verifies the first condition
of the recognition criterion. For the second condition, we must check L(L(x ⊗ y) ⊗ z

)
≃

L(x⊗ y ⊗ z). But x⊗ y ! L(x⊗ y) becomes an equivalence after applying L, as L2 ≃ L,
hence this follows from the assumption on L. This proves that D⊗ is symmetric monoidal.

To construct L⊗, we proceed as in (a) and define it pointwise via L⊗(c1, . . . , cn) =
(L(c1), . . . , L(cn)). By the same tricks as above, showing that this is indeed a right-adjoint
object of (c1, . . . , cn) reduces to showing

Homα
C⊗

(
(c1, . . . , cn), d

)
≃ Homα

D⊗

(
(L(c1), . . . , L(cn)), d

)
for all d ∈ D and all α : ⟨n⟩! ⟨1⟩. Let (c1, . . . , cn)! c be a cocartesian lift of α to C⊗. Then
Homα

C⊗((c1, . . . , cn), d) ≃ HomC(c, d) and also c ≃ ci1 ⊗ · · · ⊗ cim , where i1, . . . , im ∈ ⟨n⟩ are
the elements where α is defined. The assumption on L then implies

L(c) ≃ L
(
L(ci1) ⊗ · · · ⊗ L(cim)

)
,

because each cij ! L(cij ) becomes an equivalence after applying L. Hence a cocartesian
lift of α to D⊗ is given by (L(c1), . . . , L(cn)) ! L(c) and Homα

D⊗((L(c1), . . . , L(cn)), d) ≃
HomD(L(c), d). Now HomC(c, d) ≃ HomD(L(c), d) because L : C ! D is left-adjoint to the
inclusion D ⊆ C, which finally shows the desired equivalence. It’s clear from the construction
that L⊗ preserves cocartesian edges, whence L is indeed strongly symmetric monoidal.

Proof of (c∗). The condition on L implies L(c1 ⊗C · · · ⊗C cn) ≃ L(c1) ⊗D · · · ⊗D L(cn) for all
c1, . . . , cn ∈ C. We define L⊗ pointwise as in (b). By the same arguments as given there, all
we need to check is that

Homα
C⊗

(
(c1, . . . , cn), R(d)

)
≃ Homα

D⊗

(
(L(c1), . . . , L(cn)), d

)
for all c1, . . . , cn ∈ C, d ∈ D and all α : ⟨n⟩ ! ⟨1⟩. If α is defined at i1, . . . , im ∈ ⟨n⟩, then
(c1, . . . , cn)! ci1 ⊗C · · · ⊗C cim is a cocartesian lift of α to C⊗, hence

Homα
C⊗

(
(c1, . . . , cn), R(d)

)
≃ HomC

(
ci1 ⊗C · · · ⊗C cim , R(d)

)
.

The same argument for D⊗ together with the condition on L implies

Homα
D⊗

(
(L(c1), . . . , L(cn)), d

)
≃ HomD

(
L(c1 ⊗C · · · ⊗C cn), d

)
,

whence we are done by the fact that L and R are adjoints. This shows that L⊗ is an adjoint
of R⊗, as desired. It’s straightforward to check that L⊗ is a map over Lop and preserves
cocartesian edges, hence L is indeed strongly symmetric monoidal.
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Fabian also mentioned that in general, there is an equivalence of ∞-categories

{oplax monoidal left adjoints C ! D} ≃ {lax monoidal right adjoints D ! C} .

This is not trivial since lax and oplax structures are defined in different fibration pictures. The
first written proofs appeared in November 2020 by Rune Haugseng [Hau20] and independently
by Fabian, Sil, and Joost Nuiten [HLN20].

II.37f. Derived Tensor Products. — Let’s apply II.37e(a) to get a symmetric monoidal
structure on the derived category D(R) of a commutative ring R. One can check that the
Kan-enriched category Ch(R) from Example I.15(e) is symmetric monoidal under − ⊗R −
as a Kan-enriched category. Hence its coherent nerve K(R) is a symmetric monoidal ∞-
category. Now recall from Example I.62(c) that D(R) is a Bousfield localisation of K(R).
More precisely, D(R) can be embedded fully faithfully into K(R) as the full sub-∞-category
D(R)K-proj ⊆ K(R) of K-projective complexes, i.e. those C such that HomK(R)(C,−) inverts
quasi-isomorphisms. Clearly the tensor unit R[0] is K-projective (as is any bounded below
degree-wise projective complex) and if C and D are K-projective, then so is C ⊗R D as
HomK(R)(C ⊗R D,−) ≃ HomK(R)(C,HomR(D,−)) inverts quasi-isomorphisms too.

We may thus apply II.37e(a) to obtain a symmetric monoidal structure − ⊗L
R − on

D(R). The localisation functor K(R) ! D(R) (“taking K-projective resolutions”) is lax
symmetric monoidal in the sense explained in II.37a. In particular, there are canonical maps
C ⊗L

R D ! C ⊗R D for all C,D ∈ K(R).

The Cocartesian and Cartesian Symmetric Monoidal Structures
If an ∞-category C has finite products (and hence, in particular, a terminal object), then
taking products should define a symmetric monoidal structure on C, called the cartesian
monoidal structure. Similarly, on an ∞-category with finite coproducts there should be a
cocartesian monoidal structure. Constructing these guys will be our next immediate goal. Of
course, all of this is part of our greater plan to construct the symmetric monoidal structure
on Sp.

While Lurie writes down explicit simplicial sets to construct the desired ∞-operads, we
will cheat a bit and use complete Segal spaces instead. That this works is based on the
following lemma.

II.38. Lemma. — Let E be an ∞-category. For a presheaf X ∈ P(E), consider the slice
category E/X with respect to the Yoneda embedding Y E : E ! P (E) and {X}! P(E) (in the
notation of Lemma* I.53a this would have been Y E/X instead). The canonical functor

P(E/X) ∼−! P(E)/X ,

constructed as the unique colimit-preserving extension of Y E : E/X ! P(E)/X via Theo-
rem I.51, is an equivalence of ∞-categories.

Proof. Before we start, observe that P(E)/X is indeed cocomplete since one immediately
checks that it inherits colimits from P(E). We will use the following criterion:
(⊠) Let F : C ! D be a functor from a small ∞-category to a cocomplete ∞-category. Let

| |F : P(C) D : SingF denote the adjunction resulting from Theorem I.51. Then | |F
is an equivalence if the following three conditions hold:
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(a) F is fully faithful.
(b) HomD(F (c),−) : D ! An commutes with colimits for all c ∈ C.
(c) SingF : D ! P(C) is conservative.

We prove (⊠) first. Condition (b) implies that SingF commutes with colimits. Indeed, this
can be checked pointwise by Theorem I.19(b) since there always is a natural transformation
colimI SingF ⇒ SingF colimI . Moreover, colimits in P(C) are computed pointwise. Plugging
in the explicit description of SingF that Corollary I.55 offers us, we must thus check that
colimI HomD(F (c), di) ≃ HomD(F (c), colimI di) for all c ∈ C and di ∈ D. This is (b).

Now since F is fully faithful, the unit idP(C) ⇒ SingF | |F is an equivalence on repre-
sentables. Indeed, the right-hand side sends c ∈ C to HomD(F −, F (c)) ≃ HomC(−, c) by
Corollary I.55 again. Now both sides preserve colimits and every presheaf on C can be written
as a colimit of representatives by Lemma* I.53a, hence the unit is an equivalence everywhere.
By the triangle identities and the fact that SingF is conservative by (c), this implies that the
counit | SingF −|F ⇒ idD is an equivalence as well. This finishes the proof of (⊠).

Now to check that (⊠) is applicable for C = E/X and D = P(E)/X. We already argued
that P(E)/X is cocomplete. It’s easily checked that E/X ! P(E)/X is fully faithful since it’s
induced by the fully faithful Yoneda embedding, so (a) holds. To check (c), let α : F ! F ′

be a morphism in P(E)/X such that α∗ : HomP(E/X)(−, F ) ! HomP(E/X)(−, F ′) is an
equivalence on representable presheaves. We must check that α is an equivalence itself. But if
α∗ is an equivalence on representables, then the Yoneda lemma implies that α : F (e)! F ′(e)
is an equivalence for all e ∈ E (except those e ∈ E for which X(e) = ∅ since these aren’t
contained in the image of E/X ! E , but in that case we have F (e) = ∅ = F ′(e) too since F
and F ′ come with a map to X), hence α is an equivalence of presheaves.

Finally, we have to check (b). Given a representable object HomE(e,−) ! X and an
arbitrary object F ! X of P(E)/X, the Yoneda lemma and [HCII, Corollary VIII.6] provide
a pullback square

HomP(E)/X
(

HomE(e,−), F
)

HomP(E)
(

HomE(e,−), F
)

F (e)

∗ HomP(E)
(

HomE(e,−), X
)

X(e)

.

∼

∼

Clearly F (e) commutes with colimits in F because colimits in functor categories are computed
pointwise (Lemma I.39). Hence it suffices to check that colimits in An commute with pullbacks.
In other words, if f : K ! L is any morphism of anima, then f∗ : An/L! An/K preserves
colimits. But Right(K) ≃ An/K since every morphism to K can be factored into a right
anodyne and a right fibration, and likewise for L, so we are done since we verified in
Lemma* I.42a that f∗ : Right(L)! Right(K) has a right adjoint f∗.

II.38a. — Applying Lemma II.38 to E = ∆∆ and X = Nr(C) ∈ sAn for some ∞-category
C, we obtain P(∆∆/Nr(C)) ≃ sAn/Nr(C). We will usually abbreviate the left-hand side as
P(∆∆/C). If you think about it, this makes a lot of sense: Objects of ∆∆/Nr(C) are maps ∆n !
Nr(C) of simplicial anima. But Nr : Cat∞ ! sAn is fully faithful by Theorem/Definition I.64,
so we may equivalently think of maps [n]! C.

We can now specify objects of (or functors to) Cat∞/C as objects of (or functors to)
P(∆∆/C) and then compose with

P(∆∆/C) ≃ sAn/Nr(C) asscat
−−−−! Cat∞/C .
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This will be done quite a number of times on the next few pages.

Lecture 16
22nd Dec, 2020

II.38b. — To check that an object on the left is complete Segal, we will check the relative
Segal condition. A map Y ! X in sAn is called relative Segal if the diagram

HomsAn(∆n, Y ) HomsAn(In, Y )

HomsAn(∆n, X) HomsAn(In, X)

.

is a pullback in An. If X is a Segal anima, then the lower row is an equivalence. Thus Y is a
Segal anima too if Y ! X is relative Segal.

Likewise, a morphism Y ! X is called relatively complete Segal if it is relative Segal and
the diagram

HomsAn(∆0, Y ) HomsAn
(
∆3/(∆{0,2} ∪ ∆{1,3}), Y

)
HomsAn(∆0, X) HomsAn

(
∆3/(∆{0,2} ∪ ∆{1,3}), X

).

Again, if this holds and X is a complete Segal anima, then so is Y (here we use a slight
reformulation of Theorem/Definition I.64(b)).

With that let’s dive into cocartesian monoidal structure:

II.39. Construction. — Let Lop
⊔ ⊆ ⟨1⟩/

Lop be the full subcategory spanned by the
“defined maps” (for every n there’s a unique nowhere-defined map ⟨1⟩ ! ⟨n⟩; this is the
only one we exclude). For any ∞-category C define p⊔ : C⊔ !

Lop via II.38a applied to the
presheaf FC⊔ : ∆∆/Lop ! An, which is given by

FC⊔
(
[n]! Lop) ≃ HomCat∞

(
[n] ×Lop

Lop
⊔ , C

)
on objects (and turned into a functor of ∞-categories in the obvious way).

II.40. Proposition. — With notation as in Construction II.39:
(a) The presheaf FC⊔ defines a complete Segal anima over Nr(Lop) via Lemma II.38.
(b) p⊔ : C⊔ !

Lop is always an ∞-operad with underlying category C.
(c) An active morphism (a1, . . . , an)! b in C⊔ is locally p⊔-cocartesian iff the maps ai ! b

exhibit b as the coproduct of the ai.
(d) In particular, p⊔ : C⊔ !

Lop is a symmetric monoidal category iff C has finite coproducts.

Proof sketch. The proof of (a) was left as an exercise, so here’s what I figured out. To show
that FC⊔ is Segal, consider the diagram

HomsAn(∆n, FC⊔) HomsAn(In, FC⊔)

HomsAn
(
∆n,Nr(Lop)

)
HomsAn

(
In,Nr(Lop)

)∼
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The bottom row is an equivalence since Nr(Lop) is Segal. To show that the top row is an
equivalence as well, it suffices to check that it induces equivalences on all (derived) fibres.
Unravelling what that means (using the computation of Hom anima in slice categories from
[HCII, Corollary VIII.6]), we need to check that

HomsAn/Nr(Lop)(∆n, FC⊔) ∼−! HomsAn/Nr(Lop)(In, FC⊔) ≃
n∏
i=1

HomsAn/Nr(Lop)(∆1, FC⊔)

is an equivalence for all choices of ∆n ! Nr(Lop). Recall that sAn/Nr(Lop) ≃ P(∆∆/Lop)
by Lemma II.38. Using this together with the Yoneda lemma and the definition of FC⊔ , our
assertion translates into

HomCat∞

(
[n] ×Lop

Lop
⊔ , C

) ∼−!
n∏
i=1

HomCat∞

(
[1] ×Lop

Lop
⊔ , C

)
.

In other words, we must prove that [n] ×Lop
Lop

⊔ is an iterated pushout of [1] ×Lop
Lop

⊔ in
Cat∞. One way to do this is to simply check by hand that

In ×N(Lop) N(Lop
⊔ ) ↪−! ∆n ×N(Lop) N(Lop

⊔ )

is an inner anodyne map of simplicial sets. This shows that FC⊔ is Segal. Completeness can
be shown analogously, whence we have proved (a).

To prove (b), we must investigate the fibres of p⊔ : C⊔ !
Lop. So fix some ⟨n⟩ ∈ Nr(Lop).

Since FC⊔ is complete Segal by (a), we get FC⊔ ≃ Nr(asscatFC⊔) ≃ Nr(C⊔). Because Nr

preserves limits, we may as well compute the corresponding fibre of FC⊔ ! Nr(Lop) and
then take asscat(−) again. To do this, we claim that the following diagram commutes:

P(∆∆/Lop) sAn/Nr(Lop)

sAn

∼

evaluation at
constant maps

−×Nr(Lop){⟨n⟩}

The right diagonal arrow sends a simplicial anima X over Nr(Lop) to X ×Nr(Lop) {⟨n⟩} (i.e.
to the fibre we’re interested in). The left diagonal arrow sends a presheaf F : ∆∆/Lop ! An
to a simplicial anima Y defined by Yk ≃ F (const ⟨n⟩ : [k]! Lop). To show commutativity,
we may use Theorem I.51, whence it suffices to check that both ways around the diagram
agree on representable presheaves and preserve colimits. The former is straightforward to
check (although it took me some time to wrap my head around this). For the latter, it’s
clear that the left diagonal arrow preserves colimits, and for the right diagonal arrow we can
use that colimits in anima commute with pullbacks (as seen in the proof of Lemma II.38)
and that colimits and pullbacks in sAn are computed pointwise.

Let’s apply our newfound knowledge to p⊔ : C⊔ !
Lop. It’s straightforward to check that

the diagram
[k] × ⟨n⟩

Lop
⊔

[k] Lop

pr1
.

const ⟨n⟩
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is a pullback diagram. In particular, the fibre of p⊔ : C⊔ !
Lop over ⟨n⟩ is the associated

category of a simplicial anima Y given by

Yk ≃ FC⊔
(

const ⟨n⟩ : [k]! Lop) ≃ HomCat∞

(
[k] ×Lop

Lop
⊔ , C

)
≃ HomCat∞

(
[k] × ⟨n⟩, C

)
≃ HomCat∞

(
[k], Cn

)
Up to checking some functoriality stuff, this shows Y ≃ Nr(Cn), so the fibre of p⊔ : C⊔ !

Lop

over ⟨n⟩ is Cn. This shows that p⊔ satisfies Definition II.36(b).
Two more conditions are to check. Let x, y ∈ C⊔ and let α : p⊔(x) ! p⊔(y) be some

morphism in Lop. Then the fibre Homα
C⊔(x, y) := HomC⊔(x, y) ×HomLop (p⊔(x),p⊔(y)) {α} of

Homα
C⊔(x, y) over α has a particularly simple description: If we think of α as a functor

α : [1]! Lop, then Homα
C⊔(x, y) fits into a pullback

Homα
C⊔(x, y) HomCat∞

(
[1] ×Lop

Lop
⊔ , C

)
∗ HomCat∞

(
[0] ×Lop

Lop
⊔ , C

)
× HomCat∞

(
[0] ×Lop

Lop
⊔ , C

). (d1,d0)

(x,y)

To prove this, use Yoneda’s lemma, the computation of Hom anima in slice categories from
[HCII, Corollary VIII.6], and the fact that Nr : Cat∞ ! sAn is fully faithful to compute

HomCat∞

(
[1] ×Lop

Lop
⊔ , C

)
≃ FC⊔(α : [1]! Lop)
≃ HomP(∆∆/Lop)

(
α : [1] −! Lop, FC⊔

)
≃ HomsAn/Nr(Lop)

(
Nr(α) : ∆1 ! Nr(Lop), FC⊔

)
≃ HomsAn(∆1, FC⊔) ×HomsAn(∆1,Nr(Lop)) {Nr(α)}
≃ HomCat∞

(
[1], C⊔)×HomCat∞ ([1],

Lop) {α} .

With this and an analogous computation for HomCat∞([0] ×Lop
Lop

⊔ , C), the above pullback
square is straightforward to verify. Let’s use this to check that p⊔ : C⊔ !

Lop has cocartesian
lifts for inert morphisms. So let α : ⟨m⟩ ! ⟨n⟩ be inert, and x ∈ C⊔ a lift of ⟨m⟩. Then x
corresponds to a map [0] ×Lop

Lop
⊔ ! C and a lift of α corresponds to a map [1] ×Lop

Lop
⊔ ! C,

where the pullback is formed using α : [1]! Lop. So we need to solve a lifting problem

[0] ×Lop
Lop

⊔ C

[1] ×Lop
Lop

⊔

d1

in such a way that the solution is a p⊔-cocartesian lift of α. Since α is inert, i.e. an isomorphism
where it is defined, [1] ×Lop

Lop
⊔ consists of a disjoint union of copies of [1] (their number

corresponds to the number of elements of ⟨m⟩ where α is defined) and [0] (corresponding
to the elements of ⟨m⟩ where α isn’t). We define the desired lift [1] ×Lop

Lop
⊔ ! C to be

degenerate on every copy of [1], noting that it is already defined on their starting points and
on the additional copies of [0].

To show that this gives a cocartesian lift, we must check the condition from Defini-
tion I.24(a), i.e. that

HomC⊔(y, z) ∼−! HomC⊔(x, z) ×HomLop (⟨n⟩,⟨k⟩) HomLop
(
⟨m⟩, ⟨k⟩

)
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is an isomorphism for all z ∈ C⊔ and p⊔(z) = ⟨k⟩. This can be checked on (derived) fibres
over any β ∈ HomLop(⟨m⟩, ⟨k⟩). The fibre of the left-hand side is Homβ

C⊔(y, z). The fibre
of the right-hand side is the same as that of HomC⊔(x, z) ! HomLop(⟨n⟩, ⟨k⟩) over β ◦ α,
which is Homβ◦α

C⊔ (x, z). That these two are equivalent is straightforward to check from the
constructions, using the pullback diagram above. This proves that p⊔ : C⊔ !

Lop satisfies
Definition II.36(a). The condition from Definition II.36(c) can be checked in the same way.
This proves (b).

For (c), it suffices to check the recognition criterion from II.37c. By definition, we have

Homact
C⊔

(
(a1, . . . , an),−

)
≃ Homfn

C⊔

(
(a1, . . . , an),−

)
.

The pullback [1] ×Lop
Lop

⊔ formed using fn : [1]! Lop is precisely the cone over a discrete set
with n elements. Using this and the pullback diagram above, one easily verifies

Homfn

C⊔

(
(a1, . . . , an),−

)
≃

n∏
i=1

HomC(ai,−) .

Hence any representing object of Homact
C⊔ ((a1, . . . , an),−) is a coproduct of the ai, whence

(c) follows. Part (d) is an immediate consequence of (c) and the discussion in II.37c, as
coproducts are clearly associative.

Proposition II.40 allows us to define the cocartesian monoidal structure on an ∞-category
with finite coproducts. To construct the cartesian monoidal structure, once can consider
((Cop)⊔)op ∈ dOp∞. If C has finite products, so Cop has finite coproducts, then the dual ∞-
operad ((Cop)⊔)op defines a symmetric monoidal ∞-category and we can define p× : C× !

Lop

via
C× = Uncocart (Stcart((Cop)⊔)op) .

II.41. Construction. — There is also a direct construction of p× : C× !
Lop, but this is

a bit tricky, which perhaps isn’t very surprising since ∞-operads would like to specify maps
out of a tensor product, whereas products would like to have maps into them specified. We
define a 1-category Lop

× as follows: Its objects are pairs (n, S), where S ⊆ ⟨n⟩ is a subset,
and morphisms (n, S) ! (m,T ) are given by morphisms α : ⟨n⟩ ! ⟨m⟩ in Lop such that
α−1(T ) = S. Let p̃× : C̃× !

Lop be given by II.38a applied to the presheaf FC×∆∆/Lop ! An,
which is in turn given by

FC×
(
[n]! Lop) ≃ HomCat∞

(
[n] ×Lop

Lop
× , C

)
.

The same analysis as in the proof of Proposition II.40(a) shows that the fibre of p̃× : C̃× !
Lop

over ⟨n⟩ is given by
C̃×
n ≃ Fun

(
(power set of ⟨n⟩)op, C

)
.

Now let C× be the full subcategory of C̃× which is fibrewise spanned by those functors
F : (power set of ⟨n⟩)op ! C satisfying F (S) ≃

∏
i∈S F ({i}).

II.42. Proposition. — With notation as in Construction II.39:
(a) The presheaf FC× defines a complete Segal anima via Lemma II.38.
(b) p× : C× !

Lop is always a cocartesian fibration with C×
1 ≃ C (but not necessarily an

∞-operad).
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(c) If C has finite products, then p× : C× !
Lop satisfies the Segal condition, hence it is a

symmetric monoidal ∞-category with underlying ∞-category C. Moreover, in this case
we have

Homact
C×

(
(a1, . . . , an),−

)
≃ HomC×(a1 × · · · × an,−) .

Proof. Similar to Proposition II.40 and omitted. Fabian’s script [A&HK, Proposition II.42]
has some details.

Monoids over an ∞-Operad. — If p : O !
Lop and p′ : O′ !

Lop are ∞-operads, let
FunOp∞(O,O′) be the full sub-∞-category of FunLop(O,O′) spanned by the ∞-operad maps.
Here FunLop(O,O′) is given by the pullback

FunLop(O,O′) Fun(O,O′)

∗ Fun(O,Lop)

.
p′

∗

p

as usual. If C has products, then FunOp∞(Lop, C×) ≃ CMon(C). In fact, this can be stated
in much greater generality, which we’ll do in Theorem II.43 below: Define the ∞-category
of O-monoids to be the full subcateroy OMon(C) ⊆ Fun(O, C) spanned by those functors
F : O ! C satisfying the Segal condition. That is, the maps (a1, . . . , an) ! ai in O are
supposed to induce equivalences F (a1, . . . , an) ∼−!

∏n
i=1 F (ai).

Also note that there is a section Lop !
Lop

× sending ⟨n⟩ 7! (n, ⟨n⟩). It induces canonical
maps HomCat∞([n] ×Lop

Lop
× , C) ! HomCat∞([n] ×Lop

Lop, C) ≃ HomCat∞([n], C), hence a
map FC× ! Nr(C) of simplicial anima and therefore a map C× ! C.

II.43. Theorem. — If C has finite products, then the map C× ! C constructed above
induces an equivalence

FunOp∞(O, C×) ∼−! OMon(C)

is an equivalence. If C has finite coproducts and Homact
O (∅, x) ≃ ∗ for all x ∈ O (so that O is

unital, see Lemma/Definition II.45a below) then the restriction

FunOp∞(O, C⊔) ∼−! Fun(O1, C)

is an equivalence as well.

Proof. See [HA]: The first part follows from Proposition 2.4.2.5, the second part from
Propositions 2.4.3.16 and 2.3.1.11.

Algebras over ∞-Operads
Theorem II.43 is supposed to motivate the following general definition.

II.44. Definition. — (a) If O is an ∞-operad and C⊗ is a symmetric monoidal structure
on an ∞-category C, then we put

AlgO(C⊗) := FunOp∞(O, C⊗)

and call this the ∞-category of O-algebras in C. If the symmetric monoidal structure
on C is clear from the context, we’ll often write AlgO(C) instead.
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(b) More generally, let O′ be another another ∞-operad with a map α : O′ ! O, and let
C be an O-monoidal ∞-category, i.e. an object of OMon(Cat∞). Again, we denote by
(−)⊗ : OMon(Cat∞) ! Op∞/O the functor induced by cocartesian unstraightening.
Then AlgO′/O(C⊗) is defined as the pullback

AlgO′/O(C⊗) FunOp∞(O′, C⊗)

∗ FunOp∞(O′,O)

.

α

This recovers part (a) as the special caseAlgO(C⊗) ≃ AlgO/Comm(C⊗), where we denote
Comm = id: Lop !

Lop (more on that in Example II.45(c)).

II.45. Example. — “My first algebras over ∞-operads”:

(a) If O is the ∞-operad ∗ ⟨0⟩
−−!

Lop, then AlgO(C⊗) is easily identified with the fibre of C⊗

over ⟨0⟩, hence AlgO(C⊗) ≃ ∗.
(b) If O is Lop

int !
Lop, then AlgO(C⊗) ≃ C. Hence this ∞-operad will be denoted O = Triv.

We’ll give a sketch of why this is true. One easily finds

FunLop
(Lop

int, C⊗) ≃ FunLop
int

(Lop
int, C⊗ ×Lop

Lop
int
)
,

and this restricts to an equivalence

FunOp∞
(
Triv, C⊗) ≃ Γcocart

(
C⊗ ×Lop

Lop
int
)
,

where Γcocart is defined as in Proposition I.36. In particular, the right hand side is
equivalent to lim(Stcocart(C⊗ ×Lop

Lop
int) : Lop

int ! Cat∞), so we are to show that this
limit is C.

To see this, note that by definition of Lop
int, its opoosite category L

int can be viewed
as the category of finite sets ⟨n⟩ with injective maps between them. Hence there is aL

int ! Cat∞ sending ⟨n⟩ to itself, considered as a discrete ∞-category. Let U ! Lop
int

be its cartesian unstraightening, so that the fibre Un := U ×Lop
int

{⟨n⟩} is isomorphic to
⟨n⟩. Then C⊗

n ≃ Cn ≃ limUn C. Hence we may apply the dual of Proposition I.42 to
see that the limit we’re looking for is given as limU C. But now it’s straightforward to
check that the unique point of the fibre U1 is an initial object of U , hence limU C ≃ C,
as required.

(c) If O is id : Lop !
Lop, then we define AlgO(C⊗) =: CMon(C⊗). If C has finite products

and C⊗ ≃ C× is the ∞-operad giving the cartesian monoidal structure, then this notation
is consistent with our previous definition of CMon(C) by Theorem II.43. Consequently,
the ∞-operad id : Lop !

Lop will be denoted O = Comm (or sometimes E∞).
(d) In view of (c), a natural question is whether there exists an ∞-operad Assoc satisfying

AlgAssoc(C×) ≃ Mon(C). This is indeed true and we will construct Assoc soon (to be
precise, in a future version of Example II.45(d)).

(e) Similarly, there is an ∞-operad LMod encoding pairs (A,M) of associative monoids A
and an object M on which A acts from the left. LMod will also be constructed in a
future version of II.45(e).
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(f) If p : C⊗ !
Lop is any symmetric monoidal ∞-category, then we would expect that

the tensor unit 1C ∈ C gives rise to an object in CMon(C⊗). This is indeed true and
works in greater generality. To give this result the space it deserves, we outsource it to
Lemma/Definition II.45a below.

II.45a. Lemma/Definition. — For any ∞-operad O, the unique object ∗O ∈ O0 is
terminal in O. Moreover, the following conditions are equivalent:
(a) Homact

O (∅, x) ≃ ∗ for all x ∈ O1.
(b) The unique object ∗O ∈ O0 is initial in O.
Such ∞-Operads are called unital. If O is unital and p : C⊗ ! O an O-monoidal ∞-category
(see Definition II.44(b)), then the tensor unit of C⊗, i.e. the unique element of Stcocart(p)(∗O),
canonically gives rise to an initial object ∈ AlgO/O(C⊗). In the case O ≃ Comm, the
evaluation of at ⟨1⟩ ∈ Comm is indeed the usual tensor unit 1C ∈ C.

Proof. The construction of ∈ AlgO/O(C⊗) was done in the lecture (in the special case
O ≃ Comm), but the rest wasn’t.

The fact that ∗O is terminal follows immediately from Definition II.36(c). For the
equivalence, observe that there is only one map ⟨0⟩ ! ⟨1⟩ in Lop, hence Homact

O (∅, x) ≃
HomO(∗O, x) for all x ∈ O1. This immediately implies (b) ⇒ (a). To see (a) ⇒ (b), note
that HomO(∗O, x) ≃ ∗ for all x ∈ O1 already suffices to show the same for all x ∈ O, by
Definition II.36(c).

Now let O unital ∞-operad and p : C⊗ ! O an O-monoidal ∞-category. To construct
∈ AlgO/O(C⊗) ⊆ FunO(O, C⊗), our goal is to produce a canonical ∞-operad map

O C⊗

O
id p

We will choose it to be a map between cocartesian fibrations even. After straightening,
a map between cocartesian fibrations over O corresponds to a natural transformation in
Fun(O,Cat∞) between const ∗ and the functor Stcocart(p) : O ! Cat∞. Since ∗O ∈ O is
initial, we get a natural transformation const ∗O ⇒ idO in Fun(O,O), hence a natural
transformation

const ∗ ≃ const Stcocart(p)(∗O) ⇒ Stcocart(p)

in Fun(O,Cat∞), as required. In the special case O ≃ Comm (to which our considerations
apply since ⟨0⟩ ∈ Comm0 is initial in Comm), the evaluation of at ⟨1⟩ is the endpoint of a
cocartesian lift of ⟨0⟩! ⟨1⟩, hence indeed 1C ∈ C.

For simplicity, let me only prove that is initial the special case O ≃ Comm, since
the general case works just the same, but would require some new notation. So consider
another commutative algebra A ∈ AlgComm(C⊗), corresponding to a functor A : Lop ! C⊗

that preserves inerts and satisfies p ◦ A ≃ idLop . Let’s also write An = A(⟨n⟩). Since A
preserves inerts, we have An ≃ (A1, . . . , A1) via the Segal maps. Also n ≃ (1C , . . . , 1C) by
construction. We compute

HomAlgComm(C⊗)( , A) ≃ HomFunLop (Comm,C⊗)( , A)
≃ Nat( , A) ×Nat(idLop ,idLop ) {id} ,
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using that AlgComm(C⊗) ⊆ FunLop(Comm, C⊗) is a full sub-∞-category and that taking Hom
anima commutes with limits of the ∞-categories they are taken in. Now plug Corollary I.49
into the right-hand side and use the fact that limits commute (i.e. the dual of Proposition I.42)
to obtain

HomAlgComm(C⊗)( , A) ≃ lim
(α : ⟨m⟩!⟨n⟩)∈TwAr(Lop)

HomC⊗( m, An) ×HomLop (⟨m⟩,⟨n⟩) {α}

≃ lim
(α : ⟨m⟩!⟨n⟩)∈TwAr(Lop)

Homα
C⊗( m, An)

≃ lim
(α : ⟨m⟩!⟨n⟩)∈TwAr(Lop)

Homα
C⊗( m, An)

≃ lim
(α : ⟨m⟩!⟨n⟩)∈TwAr(Lop)

Homα
Cn( n, An)

≃ lim
(α : ⟨m⟩!⟨n⟩)∈TwAr(

Lop)
HomC(1C , A1)n .

In the second-last step we used that m ! α∗ m ≃ n is a p-cocartesian lift of α. Now the
target projection t : TwAr(Lop)! Lop is final. Indeed, this can be shown as in the proof of
Corollary I.50 (where we considered the source projection s : TwAr(I)! Iop, but we’ll see
that things dualize in the right way): t is cocartesian, since (s, t) : TwAr(Lop)! L

×
Lop is

a left fibration and pr2 : L ×
Lop !

Lop is cocartesian. Hence we may apply Exercise I.50a
to get |t/⟨n⟩| ≃ |t−1{⟨n⟩}|. But the fibres of t are given by t−1{⟨n⟩} ≃

L
/⟨n⟩, hence weakly

contractible, as required by Definition I.44. So t is indeed final.
The upshot is that we may now write

HomAlgComm(C⊗)( , A) ≃ lim
⟨n⟩∈

Lop
HomC(1C , A1)n ≃ HomC(1C , A1)0 ≃ ∗ ,

since ⟨0⟩ ∈
Lop is initial. We’re done.

Day Convolution
We’ll use the following construction due to Saul Glasman [Gla16].

II.46. Construction. — Let C⊗ be a symmetric monoidal ∞-category and O an ∞-operad.
Define F(C⊗,O)! Lop via II.38a applied to the presheaf F : ∆∆/Lop ! An which is given by

F
(
[n]! Lop) ≃ HomCat∞/

Lop
(
[n] ×Lop C⊗,O

)
Then F defines a complete Segal anima over Nr(Lop). Indeed, this can be shown as in
the proof of Proposition II.42, the only difference being that one can no longer show by
hand that In ×Nr(Lop) C⊗ ! ∆n ×Nr(Lop) C⊗ is a Joyal equivalence; instead, one can for
example use that pullback along cocartesian fibrations preserves Joyal equivalences by [HTT,
Proposition 3.3.1.3] or a stronger version of [HCII, Theorem IX.17]).

Once we know F is complete Segal, we may apply the same method as in the proof of
Proposition II.40 to compute

F(C⊗,O)n ≃ Fun(C⊗
n ,On) ≃ Fun(Cn,On

1 ) .

Let the day convolution Day(C⊗,O) ⊆ F(C⊗,O) be the (non-full!) sub-∞-category spanned
by those functors F : C⊗

n ! On which split up to equivalence as products F ≃ F1 × · · · × Fn
and those morphisms that “split similarly”. To make it more precise which morphisms we
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allow, let α : ⟨m⟩! ⟨n⟩ be a morphism in Lop. Regarding α as a map α : [1]! Lop, we form
the pullbacks C⊗

α := [1] ×Lop C⊗ and Oα := [1] ×Lop O. Let, finally, αi denote the active map
α−1(i)! ⟨1⟩ for all i ∈ ⟨n⟩. Then there are decompositions

C⊗
α ≃ CS ×[1] C⊗

α1
×[1] · · · ×[1] C⊗

αn
and Oα ≃ OS

1 ×[1] Oα1 ×[1] · · · ×[1] Oαn
,

where S ⊆ ⟨m⟩ is the subset where α is undefined. By definition, a morphism in F(C⊗,O)
covering α is a map C⊗

α ! O in Cat∞/
Lop, or equivalently, a map C⊗

α ! Oα in Cat∞/[1].
Such a morphism is permitted into Day(C⊗,O) iff it respects the above decompositions. Note
that this condition is always satisfied if α is active.

II.46a. An Error in the Construction*? — I believe I might’ve found an error in
Construction II.46. But before I explain what I think goes wrong, let me already tell you
that even if there is indeed an error in [Gla16], it won’t have any consequences, neither for
our lecture nor for mathematics as a whole, as we’ll see in II.46b below.

The issue is that I don’t see why Day(C⊗,O) would satisfy the Segal condition, and I
even think that I have an argument why Day(C⊗,O)n ≃ Fun(C,O1)n is wrong in general.
By definition, Day(C⊗,O)n ⊆ Fun(Cn,On

1 ) is spanned by those functors F , which are up to
equivalence of the form F1 × · · · × Fn, along with those transformations η : F ⇒ G, which
are up to equivalence of the form η1 × · · · × ηn for some ηi : Fi ⇒ Gi. We can write

Fun(Cn,On
1 ) ≃

n∏
i=1

Fun(Cn,O1) ,

which induces a similar decomposition

Day(C⊗,O)n ≃
n∏
i=1

Day(C⊗,O)n,i ,

where Day(C⊗,O)n,i ⊆ Fun(Cn,O1) is spanned by those functors and those transforma-
tions, which factor up to equivalence over the projection pri : Cn ! C. For the Segal
condition to hold, we would like that pr∗

i : Fun(C,O1) ! Fun(Cn,O1) is an equivalence
onto Day(C⊗,O)n,i. Now the inclusion Day(C⊗,O)n,i ⊆ Fun(Cn,O1) of simplicial sets is
an isofibration. Indeed, lifting against Λ2

1 ! ∆2 holds since Day(C⊗,O)n,i is closed under
compositions in Fun(Cn,O1), lifting against higher horn inclusions is trivial, and lifting of
equivalences is due to the fact that Day(C⊗,O)n,i is closed under equivalences in Fun(Cn,O1).
Moreover, since Day(C⊗,O)n,i ⊆ Fun(Cn,O1) is injective as a map of simplicial sets, we get
a pullback diagram

Day(C⊗,O)n,i Day(C⊗,O)n,i

Day(C⊗,O)n,i Fun(Cn,O1)

.

of simplicial sets. But its legs are isofibrations, hence this is also a pullback diagram in
Cat∞. Thus, for pr∗

i : Fun(C,O1)! Fun(Cn,O1) to be an equivalence onto Day(C⊗,O)n,i,
we would need that

Fun(C,O1) Fun(C,O1)

Fun(C,O1) Fun(Cn,O1)

. pr∗
i

pr∗
i
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is a pullback diagram in Cat∞ as well. But this can’t be true in general. For example, if the
above diagram is a pullback for all ∞-operads O, then Corollary I.50 together with Yoneda’s
lemma imply that

Cn C

C C

pri

pri

.

is a pushout (I believe not every ∞-category D is of the form D ≃ O1 for some ∞-operad O,
but for the Yoneda argument to work it suffices to have a fully faithful functor D ! O1 for
every ∞-category D, which we always have; just equip P(D) with the cocartesian monoidal
structure from Proposition II.40). This pushout condition can’t be true in general: Take
n = 2 and let C be your favourite non-discrete symmetric monoidal anima. Then the pushout
condition would imply Σ(C) ≃ ∗.

In a nutshell: Day(C⊗,O)n,i ⊆ Fun(Cn,O1) is spanned by those functors and transforma-
tions, which factor up to equivalence over pri : Cn ! C, whereas Fun(C,O1) ⊆ Fun(Cn,O1)
is spanned by those which do so on the nose. It seems obvious that these two (non-full)
sub-∞-categories are equivalent, but I think it’s not true.

II.46b. Why we don’t need to worry*. — First of all, Lurie [HA, Subsection 2.2.6] has
his own construction of Day convolution. So ∞-operad theory is not in jeopardy. Second,
Bastiaan has pointed out that the issues from II.46a don’t occur in the case where C is
weakly contractible. Indeed, we claim:
(⊠) If C is weakly contractible, then const : D ! Fun(C,D) is fully faithful for all ∞-

categories D.
Applying (⊠) inductively to D ≃ Fun(Ci,O1) for i = 1, . . . , n− 1 shows that Fun(C,O1) ⊆
Fun(Cn,O1) is fully faithful and then everything works. To show (⊠), we may assume that
D has small colimits since we can always replace D by P(D). Then const has a left adjoint
colimC : Fun(C,D)! D and the counit colimC const d ∼−! d is an equivalence for all d ∈ D
because the indexing ∞-category C is weakly contractible. Thus const is fully faithful by
Proposition/Definition I.58(a).

Now for all symmetric monoidal ∞-categories C⊗ to which we are ever going to apply
the Day convolution construction in this lecture, C has an initial or terminal object, so we
won’t get into trouble.

II.47. Proposition. — Let C⊗ be a symmetric monoidal ∞-category such that C is weakly
contractible (of course this condition is only added because of II.46b), let O be an ∞-operad
and let Day(C⊗,O) be constructed as in Construction II.46. Then:
(a) Day(C⊗,O)! Lop is an ∞-operad with underlying ∞-category Fun(C,O1).
(b) If q : C⊗ ! C′⊗ is an ∞-operad map, or p : O ! O′ is one, so are

q∗ : Day(C′⊗,O) −! Day(C⊗,O) and p∗ : Day(C⊗,O) −! Day(C⊗,O′) .

(c) If O ≃ D⊗, where D is a cocomplete symmetric monoidal category such that − ⊗D −
commutes with colimits in each variable, then Day(C⊗,D⊗) represents a symmetric
monoidal structure on Fun(C,D) with tensor product

(F1 ⊗Day F2)(c) ≃ colim
d⊗Cd′!c

(
F1(d) ⊗D F2(d′)

)
.
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To be really precise, the colimit on the right-hand side is taken over the slice category
(− ⊗C −)/c, where − ⊗C − : C × C ! C denotes the tensor product on C. Moreover, the
underlying ∞-category of Day(C⊗,D⊗) is again cocomplete and − ⊗Day − commutes
with colimits in either variable.

(d) In the situation of (c), let q : C ! C′ be a strongly symmetric monoidal functor. Then
q∗ has a left adjoint (left Kan extension) which is strongly symmetric monoidal.

Proof sketch*. Let α : ⟨m⟩! ⟨n⟩ and define C⊗
α , Oα as above. Then HomCat∞/

Lop(C⊗
α ,O) ≃

HomCat∞/[1](C⊗
α ,O), and likewise HomCat∞/

Lop(C⊗
m,O) ≃ HomCat∞(C⊗

m,Om). Using this
and adapting the arguments from the proof sketch of Proposition II.40, one shows that we
have pullback squares

Homα
F(C⊗,O)(F,G) HomCat∞/[1](C⊗

α ,Oα)

∗ HomCat∞(C⊗
m,Om) × HomCat∞(C⊗

n ,On)

. (d1,d0)

(F,G)

for all F,G ∈ F(C⊗,O) with images ⟨m⟩ and ⟨n⟩ respectively (but we do not claim that
F(C⊗,O) is an ∞-operad). If we restrict each factor to the path components spanned by
those functors that meet the requirements from Construction II.46, we obtain a similar
pullback diagram for Homα

Day(C⊗,O)(F,G). Also note that we can plug in and pull out the
decompositions of Oα, Om and On to make this pullback more confusing.

To prove (a), we must provide cocartesian lifts of inert morphisms. If α is inert, then
lifting α to F(C⊗,O) means (by unravelling the pullback diagram above) we need to solve a
lifting problem

C⊗
m Om

C⊗
α Oα

d1

Additionally, we want that the solution lies in Day(C⊗,O) and is cocartesian. Since α is inert,
we have C⊗

α ≃ CS × Cn × [1] and Oα ≃ OS
1 × On

1 × [1], where again S ⊆ ⟨m⟩ is the subset
where α isn’t defined. Moreover, the top arrow in the diagram above represents an element of
Day(C⊗,O)m, hence a functor F : Cm ! Om

1 which decomposes as F ≃ F1 × · · · ×Fm. Thus
we can choose the dashed arrow in the diagram above to be Fi on those factors with i ∈ S
and to be Fi × id[1] on those factors with i /∈ S. This clearly defines a map in Day(C⊗,O),
and to show that it’s cocartesian one can adapt the arguments from the proof sketch of
Proposition II.40 and use the description of Homα

Day(C⊗,O)(−,−) given above. This shows
that Day(C⊗,O)! Lop satisfies Definition II.36(a). For whether or not the Segal condition
from Definition II.36(b) holds, see our discussion in II.46a and II.46b. Finally, the condition
from Definition II.36(c) can again be checked using our description of Homα

Day(C⊗,O)(−,−).
This finishes part (a).

For (b), we get functors q∗ : F(C′⊗,O)! F(C⊗,O) and p∗ : F(C⊗,O)! F(C⊗,O′) since
the formation of the presheaf F in Construction II.46 is clearly functorial in C⊗ and O.
So all we need to check is that q∗ and p∗ preserve the decomposition conditions from
Construction II.46 as well as cocartesian lifts of inert morphisms. But both things are clear
from our constructions.
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Now let’s prove (c). Let F,G ∈ F(C⊗,O) lie over ⟨m⟩ and ⟨n⟩. Then F and G define
functors F : Cm ! Dm and G : Cn ! Dn. The following claim will be used several times
during the proof:
(⊠) Let α : ⟨m⟩ ! ⟨n⟩ be an active morphism. By cocartesian unstraightening, α induces

morphisms αC : Cm ! Cn and αD : Dm ! Dn. Then

Homα
F(C⊗,O)(F,G) ≃ Nat(αD ◦ F,G ◦ αC) .

Claim (⊠) follows easily from Lemma* II.37b and the pullback square at the beginning of
the proof. Also note that if F and G belong to Day(C⊗,D⊗), then

Homα
F(C⊗,D⊗)(F,G) ≃ Homα

Day(C⊗,D⊗)(F,G)

since Day(C⊗,O) ⊆ F(C⊗,O) contains all lifts of the active morphism α, as noted at the end
of Construction II.46. So (⊠) gives a way of computing Homα

Day(C⊗,D⊗)(F,G).
We’ll use the recognition criterion from II.37c to show that Day(C⊗,D⊗) is symmetric

monoidal. As usual, let fn : ⟨n⟩! ⟨1⟩ denote the unique active morphism. Let F : Cn ! Dn

such that F ≃ F1×· · ·×Fn and let G : C ! D. The maps (fn)C : Cn ! C and (fn)D : Dn ! D
are given by the n-fold tensor products ⊗n

C : Cn ! C and ⊗n
D : Dn ! D. Thus (⊠) shows

Homact
Day(C⊗,O)

(
(F1, . . . , Fn), G

)
≃ Homfn

Day(C⊗,O)(F,G) ≃ Nat(⊗n
D ◦ F,G ◦ ⊗n

C) ,

Hence a lift F ! F ′ of fn is locally cocartesian iff F ′ : C ! D is the left Kan extension of
⊗n

D ◦ F : Cn ! D along ⊗n
C : Cn ! C. Since D is cocomplete, these Kan extensions exist by

Theorem I.52. In particular, for F1, F2 : C ! D we have that F1 ⊗Day F2 is the left Kan
extension of F1 ⊗D F2 : C2 ! D along ⊗2

C : C2 ! C, which shows that the desired formula
holds true (but we don’t know yet that − ⊗Day − defines a symmetric monoidal structure).

So far we haven’t used that −⊗D− commutes with colimits in either variable, but we’ll need
it to show that the locally cocartesian edges compose, so that Day(C⊗,O)! Lop is not only
locally cocartesian, but honestly cocartesian by [HCII, Proposition IX.13]. To show this, it will
suffice to check that − ⊗Day − is associative and unital. For associativity, it suffices to check
that F1 ⊗D (F2 ⊗DayF3) : C2 ! D is the left Kan extension of F1 ⊗D F2 ⊗D F3 : C3 ! D along
idC ×⊗2

C : C3 ! C2 (and likewise for (F1⊗DayF2)⊗DF3), since then the fact that Kan extension
composes will do the rest. Given (c, c′) ∈ C2, we have (idC ×⊗2

C)/(c, c′) ≃ idC /c × ⊗2
C/c

′.
Now {c} is cofinal in idC /c, hence {c} × ⊗2

C/c
′ is cofinal in idC /c × ⊗2

C/c
′. The value at

(c, c′) of the left Kan extension in question can therefore be computed as

colim
(c,d⊗Cd′)!(c,c′)

(
F1(c) ⊗D F2(d) ⊗D F3(d′)

)
≃ F1(c) ⊗D colim

d⊗Cd′!c′

(
F2(d) ⊗D F3(d′)

)
≃ F1(c) ⊗D (F2 ⊗Day F3)(c′) ,

as desired. Here where we finally used that − ⊗D − commutes with colimits. In the exact
same way one shows F ⊗Day 1Day ≃ F , where 1Day : C ! D is given by the left Kan extension
of 1D : ∗ ! D along 1C : ∗ ! C. This concludes the proof that Day(C⊗,D⊗) is symmetric
monoidal. The additional assertion is clear since left Kan extension preserves colimits and
colimits in functor categories are pointwise. This proves (c).

For (d), note that q∗ : Fun(C′,D) ! Fun(C,D) has a left adjoint q! given by left Kan
extension. Using the definition of − ⊗Day − via left Kan extension and the fact that left Kan
extension composes, it’s straightforward to check q!(F1 ⊗Day F2) ≃ q!(F1) ⊗Day q!(F2) and
q!(1Day) ≃ 1Day. Hence II.37e(c∗) can be applied to finish the proof.
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Stabilisation of ∞-Operads and the Tensor Product on Spectra
II.48. Definition. — Let O be an ∞-operad and F : I ! O1 be a diagram. Then a
colimit/limit of F is called operadic if for every x1, . . . , xn, y ∈ O1 we have

Homact
O

((
colim

I
F, x2, . . . , xn

)
, y
)

≃ lim
Iop

Homact
O
(
(F (−), x2, . . . , xn), y

)
Homact

O

(
(x1, . . . , xn), lim

I
F
)

≃ lim
I

Homact
O
(
(x1, . . . , xn), F (−)

)
An ∞-operad is pointed/semi-additive/additive/stable if O1 is and the required limits and
colimits are operadic. Spelling this out explicitly, we obtain:
(a) O is pointed if O1 has a zero object which is also both operadic initial and operadic

terminal. We define Op∗
∞ ⊆ Op∞ as the (non-full) sub-∞-category spanned by ∞-

operads with an operadic terminal object and maps preserving these. We denote by
Oppt

∞ ⊆ Op∗
∞ the full sub-∞-category spanned by pointed ∞-operads.

(b) O is semi-additive/additive if O1 is and all finite products and coproducts are operadic.
We define Op×

∞ ⊆ Op∞ as the (non-full) sub-∞-category spanned by ∞-operads with
finite operadic products and maps preserving these. We denote by Opsemi-add

∞ ,Opadd
∞ ⊆

Op∗
∞ the full sub-∞-categories spanned by semi-additive and additive ∞-operads,

respectively.
(c) O is stable if O1 is and all finite limits and colimits are operadic. We define Oplex

∞ ⊆ Op∞
as the (non-full) sub-∞-category spanned by ∞-operads with finite operadic limits and
maps preserving these. We denote by Opst

∞ ⊆ Op∗
∞ the full sub-∞-category spanned by

stable ∞-operads.
II.48a. Remark*. — If O ≃ C⊗ is a symmetric monoidal ∞-category, then all limits
are operadic because Homact

C⊗((x1, . . . , xn),−) ≃ HomC(x1 ⊗ · · · ⊗ xn,−), and a colimit is
operadic iff colimI(F (−) ⊗ x) ≃ (colimI F ) ⊗ x for all x ∈ C.

In general, a limit in O1 is operadic iff it is also a limit in O. Indeed, the limit condition
in O means that

lim
Iop

Homα
O

(
(x1, . . . , xn), lim

I
F
)

≃ lim
I

Homα
O
(
(x1, . . . , xn), F (−)

)
for every α : ⟨n⟩ ! ⟨1⟩ in Lop. The special case α = fn shows that if the limit over
F : I ! O1 ⊆ O happens to lie inside O1, then it is operadic. Conversely, any α can be
factored into α = fm ◦ ι, where ι : ⟨n⟩ ! ⟨m⟩ is inert. If x ! ι∗x is a cocartesian lift of ι
starting at x = (x1, . . . , xn), then Homα

O(x,−) ≃ Homact
O (ι∗x,−), hence operadic limits are

also limits in O.
Given the limit case, one might expect that a colimit is operadic iff (colimI F, x2, . . . , xn)

is a colimit in O over (F (−), x2, . . . , xn) : I ! O for all x2, . . . , xn ∈ O1. But this is false
unless I is weakly contractible! The reason why this fails is rather stupid: Similar to above,
we must check the colimit condition on Homα

O for any α : ⟨n⟩! ⟨1⟩. If we factor α = fm ◦ ι,
then it may happen that ι isn’t defined at 1 ∈ ⟨n⟩, and in this case the colimit condition
reads Homact

O (ι∗x, y) ≃ limIop Homact
O (ι∗x, y), which only holds in general if I is weakly

contractible.
II.49. Construction. — Given an ∞-operad O with sufficient operadic limits and colimits,
our goal is to construct new ∞-operads

OOp∞
∗ , CMonOp∞(O) , CGrpOp∞(O) , and SpOp∞(O)
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with underlying ∞-categories ∗/O1, CMon(O1), CGrp(O1), and Sp(O1) respectively. We
will tackle all four constructions at once! Consider the following ∞-operads:

[1]min −!
Lop , (Lop)× −!

Lop , and ( op)∧ −!
Lop .

The first one is given by the symmetric monoidal structure on [1] obtained by taking the
minimum (in particular, 1 ∈ [1] is the tensor unit). The second one is the cartesian symmetric
monoidal structure (as introduced in Proposition II.42) on Lop. The third one is given by the
smash product. We didn’t construct this yet, but it will arise as follows: Starting from the
cartesian symmetric monoidal structure An× on An, the smash product will be defined as its
“pointification” (∗/An)∧ := (An×)Op∞

∗ . Then ( op)∧ ⊆ (∗/An)∧ can be defined via II.37e(a).
So to be super precise, we would need to prove the assertions about (−)Op∞

∗ in Theorem II.50
below before we could even formulate anything about SpOp∞(−), but obviously that’s not
what we’re going to do. We will also check below Remark* II.51a that the smash product
coincides with the one you know from topology.

If O ∈ Op∗
∞, we let

OOp∞
∗ ⊆ Day

(
[1]min,O

)
denote the ∞-operad obtained via II.37e from the full sub-∞-category (∗/O1) ⊆ Fun([1],O1)
spanned by those functors F : [1]! O1 with F (0) = ∗. Similarly, if O ∈ Op×

∞, we let

CGrpOp∞(O) ⊆ CMonOp∞(O) ⊆ Day
(
(Lop)×,O

)
be induced by CGrp(O1) ⊆ CMon(O1) ⊆ Fun(Lop,O1), i.e. the full sub-∞-categories of
functors satisfying the Segal condition and—in the case of CGrp(O1)—additionally the
condition from Definition II.4. Finally, for O ∈ Oplex

∞ , we let

SpOp∞(O) ⊆ Day
(
( op)∧,O

)
be given by the full sub-∞-category Sp(O1) ⊆ Fun( op,O1) spanned by reduced and excisive
functors (see Definition II.33).

These ∞-operads come equipped with canonical maps

O  − OOp∞
∗  − CMonOp∞(O) − CGrpOp∞(O) Ω∞

 − SpOp∞(O) .

Except for the fourth one, which comes from the inclusion CMon(O1) ⊇ CGrp(O1), these
maps are induced via functoriality of Day convolution (see Proposition II.47(b)) by the
∞-operad maps

Comm −! [1]min −! (Lop)× −! ( op)∧ .

All of these are induced by strongly monoidal functors between the underlying categories: The
first one comes from 1: ∗! [1], the second one from [1]! Lop sending i 7! ⟨i⟩ for i = 0, 1,
and the third one comes from the functor (−)+ : Lop ! op introduced in Definition II.33.

With these constructions we can now formulate a striking theorem of Thomas Nikolaus!

II.50. Theorem ([Nik16, Theorem 4.11 and Theorem 5.7]). — The ∞-operads OOp∞
∗ ,

CMonOp∞(O), CGrpOp∞(O), and SpOp∞(O) from Construction II.49 are pointed, semi-
additive, additive and stable respectively. Moreover, the respective constructions assemble
into functors

(−)Op∞
∗ : Op∗

∞ −! Oppt
∞ , CMonOp∞(−) : Op×

∞ −! Opsemi-add
∞ ,

CGrpOp∞(−) : Op×
∞ −! Opadd

∞ , SpOp∞(−) : Oplex
∞ −! Opst

∞ ,
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each of which is right-adjoint to the respective fully faithful inclusion in the other direction
(i.e., they are all right Bousfield localisations).

Proof sketch*. Once we know that our four functors take values in the correct ∞-categories,
we can proceed as in Theorem II.19 and Theorem II.30 to show that they are right Bousfield
localisations. So we only need to prove the first part of the theorem.

The most subtle part is to show that the required colimits in the ∞-operads OOp∞
∗ ,

CMonOp∞(O), CGrpOp∞(O), and SpOp∞(O) are actually operadic. Thomas Nikolaus does
this with a beautiful trick: Let’s first assume O ≃ C⊗, where C is a symmetric monoidal
∞-category for which Proposition II.51 below is applicable. Then this proposition says that
in fact all small colimits are operadic and we’re happy. In general, one can find a fully faithful
map of ∞-operads i : O ! C⊗ such that Proposition II.51 is applicable to C⊗ and i1 : O1 ! C
preserves the required finite limits, see [Nik16, Proposition 2.7] and Remark* II.51a. The
required finite colimits in ∗/O1, CMon(O1), CGrp(O1), and Sp(O1) are also finite colimits
in ∗/C, CMon(C), CGrp(C), and Sp(C) since each of them (zero objects, finite coproducts in
semi-additive ∞-categories, finite colimits in stable ∞-categories) can be built from finite
limits which i1 : O1 ! C preserves. Hence they are operadic and we win.

In general, neither of the constructions from Construction II.49 gives a symmetric
monoidal category, even when O itself is symmetric monoidal. The following proposition
gives a criterion for the symmetric monoidal structure to be inherited.

II.51. Proposition. — Suppose O ≃ C⊗ is a symmetric monoidal ∞-categories with
all small operadic colimits (this is a short way of saying that C is cocomplete and − ⊗C −
commutes with colimits in either variable, see Remark* II.48a). Suppose furthermore that
the inclusions

∗/C ⊆ Ar(C) , CMon(C) ⊆ Fun(Lop, C) ,
CGrp(C) ⊆ Fun(Lop, C) , Sp(C) ⊆ Fun( op, C)

have left adjoints. Then (C⊗)Op∞
∗ , CMonOp∞(C⊗), CGrpOp∞(C⊗), and SpOp∞(C⊗) are

symmetric monoidal ∞-categories again and have all small operadic colimits. Moreover,
there are maps ∞-operads

(−)+ : C⊗ −! (C⊗)Op∞
∗ , FreeCMon : C⊗ −! CMonOp∞(C⊗) ,

FreeCGrp(−) : C⊗ −! CGrpOp∞(C⊗) , Σ∞ : C⊗ −! SpOp∞(C⊗)

which are strongly monoidal and left-adjoint to the respective maps in the other direction
constructed at the end of Construction II.49. Similar assertions hold for other left adjoints
among these. For instance, in the case C⊗ = An× we get a fully faithful strongly monoidal
left adjoint B∞ : CGrpOp∞(An×)! SpOp∞(An×) of Ω∞.

Proof *. We only prove the assertions about Sp, since the arguments can be copied verbatim
for the other cases. By Proposition II.47(c), Day(( op)∧, C⊗) is symmetric monoidal and
has all small operadic colimits. Since Sp(C) ⊆ Fun( op, C) has a left adjoint, we may
apply II.37e(b) to see that SpOp∞(C⊗) is again symmetric monoidal and its inclusion into
Day(( op)∧, C⊗) has a left adjoint Day(( op)∧, C⊗)! SpOp∞(C⊗) which is strongly monoidal.
Together with our computation of colimits in Bousfield localisations (Corollary I.61) this
shows that SpOp∞(C⊗) has all small operadic colimits.
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Moreover, to produce the strongly monoidal left adjoint Σ∞ : C⊗ ! SpOp∞(C⊗), it suffices
to construct a stronglyy monoidal left adjoint of the canonical map

Day
(
( op)∧, C

)
−! Day(Comm, C⊗) ≃ C⊗

induced by the strongly monoidal map Comm! ( op)∧. But this is precisely what Proposi-
tion II.47(d) does! The additional assertion about B∞ can be shown in the same way.

II.51a. Remark*. — Proposition II.51 is always applicable when C⊗ ≃ Day(D⊗,An×)
for some small symmetric monoidal ∞-category D. That is, whenever C ≃ P(D), equipped
with the Day convolution structure. Since C⊗ in the proof of Theorem II.50 can be always
chosen in this way (see the proof of [Nik16, Proposition 2.7]), this is all we need.

So let’s prove that the assumptions of Proposition II.51 are really satisfied for C ≃ P(D)!
First of all, P(D) has all small operadic colimits by Proposition II.47(c), so only the required
left adjoints have to be constructed. Let’s first do the case of Sp. By Proposition II.34a,
the inclusion Sp(C) ⊆ Fun∗( op, ∗/C) into the reduced functors has a left adjoint whenever
∗/C has sequential colimits and Ω: ∗/C ! ∗/C commutes with them. This is satisfied for
∗/An, as we checked after Proposition II.31a, hence also for const ∗/P(D) ≃ Fun(Dop, ∗/An)
since everything is pointwise. Now Fun∗( op, ∗/C) ≃ Fun∗( op, C), since every reduced
functor F : op ! C canonically lifts to ∗/C, so it suffices to construct a left adjoint of
Fun∗( op, C) ⊆ Fun( op, C). If C has pushouts, we can send an arbitrary F : op ! C to
cofib(F (∗) ! F (−)) : op ! C to obtain the desired left adjoint. Again, P(D) clearly has
pushouts, whence we are done.

Next, we treat CMon. Denote i : Lop
⩽1 ↪!

Lop. If C has small limits, then restriction
and right Kan extension along i gives a functor i∗i∗ : Fun∗(Lop, C) ! CMon(C). This is
a left Bousfield localisation, which can be easily checked using Proposition I.61a and an
assertion similar to claim (⊠) from the proof of Proposition II.16. Composing this with a left
Bousfield localisation Fun(Lop, C) ! Fun∗(Lop, C) as above gives the required localisation
Fun(Lop, C)! CMon(C) in the CMon case. This immediately implies the CGrp case, since
CGrp(An) ⊆ CMon(An) has a left adjoint by Corollary II.21, hence the same is true for
CGrp(P(D)) ≃ Fun(D,CGrp(An)) ⊆ Fun(D,CMon(An)) ≃ CMon(P(D)).

I’ll leave the final case, i.e. showing that ∗/C ⊆ Ar(C) has a left adjoint in the special
case C ≃ P(D), to you.

II.51b. Example. — Let’s discuss two special cases of Proposition II.51. The first one
wasn’t in the lecture, but it will show up later.
(a) We claim that CGrpOp∞(Set×) ≃ Ab⊗ is the symmetric monoidal structure on the

1-category of abelian groups given by the usual tensor product. Indeed, let A,B ∈ Ab,
thought of as functors A,B : Lop ! Set. Let A ⊗ B denote their Day convolution
Day((Lop)×,Set×). By Proposition II.47(c), we can compute it as the left Kan extension
of

Lop ×
Lop Set × Set Set

Lop

×Lop

A×B ×Set

A⊗B

By the universal property of left Kan extension, this means that

HomAb(A⊗B,C) ≃ Nat(A⊗B,C) ≃ Nat (×Set ◦ (A×B), C ◦ ×Lop)
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for all abelian groups C. Unravelling, we find that the right-hand side is given by
Z-bilinear maps A×B ! C, hence A⊗B is indeed the usual tensor product.

The inclusion Set ⊆ An induces inclusions Ab ≃ CGrp(Set) ⊆ CGrp(An) and
Ab⊗ ≃ CGrpOp∞(Set×) ⊆ CGrpOp∞(An), which are fully faithful again. To see this,
note that the left adjoint π0 : An! Set induces left adjoints for each of the inclusions,
and the condition that the counit transformation is an equivalence is inherited, hence
so is fully faithfulness by Proposition/Definition I.58(a).

(b) Proposition II.51 shows that ∗/An carries a pointed symmetric monoidal structure,
called the smash product, via (∗/An)∧ := (An×)Op∞

∗ . We wish to compute − ∧ −
explicitly to show that it coincides with the smash product we know from topology.

So let X,Y ∈ ∗/An ⊆ Ar(An). Let’s first compute the Day convolution X ×Day Y :
Using the explicit formula from Proposition II.47(c), we obtain

(X ×Day Y )(0) ≃ colim

 ∗ × ∗ ∗ × Y

X × ∗

 ≃ X ∨ Y ,

(X ×Day Y )(1) ≃ colim

 ∗ × ∗ ∗ × Y

X × ∗ X × Y

 ≃ X × Y .

Since the left adjoint of ∗/An ⊆ Ar(An) sends any T : [1]! An to cofib(T (0)! T (1)),
we obtain X ∧ Y ≃ cofib(X ∧ Y ! X × Y ) after unravelling what the proofs* of
Proposition II.51 and II.37e(b) actually do. Hence X ∧ Y is what we would expect.

II.52. Definition. — The tensor product (or traditionally smash product) of spectra is
defined by the ∞-operad Sp⊗ := SpOp∞(An×), which is a symmetric monoidal ∞-category
by Proposition II.51.

Some Brave New Algebra
Lecture 17
7th Jan, 2021

The term “brave new algebra” roughly refers to the idea that Sp should behave like the
category of abelian groups, and more generally to notion of E∞-ring spectra and modules over
them, which should behave very much like ordinary commutative rings and modules. Making
this precise and proving it rigorously takes Lurie about 400 pages in [HA]! Of course there’s
no way to even remotely cover this in this course. So be warned that proofs will become
more and more sparse towards the end of this final subsection of Chapter II. Nevertheless,
Fabian made it his goal to introduce all relevant definitions and theorems in the lecture, and
even more material in the lecture notes [A&HK, Chapter II pp. 104–132], to give us at least
a guide for how to read Lurie. Starting from Chapter III, we will then just assume that
homological algebra works with E∞-ring spectra just as it does for ordinary rings.

II.53. First Steps with the Tensor Product on Sp. — Recall the symmetric monoidal
structure on Sp from Definition II.52.

The tensor unit 1Sp is given by the sphere spectrum S! The quickest way to see this is
that S[−] : An× ! Sp⊗ is strongly symmetric monoidal because so are both its constituents
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(−)+ : An× ! (∗/An)∧ and Σ∞ : (∗/An)∧ ! Sp⊗ by Proposition II.51, and the tensor unit
∗ ∈ An is sent to S.

As an easy consequence, we obtain

X ⊗ E ≃ S[X] ⊗ E and (X,x) ⊗ E ≃ Σ∞(X,x) ⊗ E ,

for all (X,x) ∈ ∗/An and E ∈ Sp, where X ⊗ E and (X,x) ⊗ E are defined as in the
proof of Proposition II.34. Indeed, for the left-hand equivalence it’s enough to show that
both − ⊗ E : An ! Sp and S[−] ⊗ E : An ! Sp preserve colimits and that they agree on
∗ ∈ An, for then they must agree by Theorem I.51. That both sides agree on ∗ precisely
says that S is the tensor unit, which we just checked. That − ⊗ E preserves colimits is
clear by inspection, whereas for S[−] ⊗E it follows from the fact that the tensor product on
spectra commutes with colimits in either variable by Proposition II.51. Hence the left-hand
equivalence holds. The right-hand one follows, as (X,x) ⊗E ≃ cofib({x} ⊗E ! X ⊗E) and
Σ∞(X,x) ≃ cofib(S[{x}]! S[X]).

This can be used to derive a general formula for the tensor product of spectra. Any
spectrum E can be written as

E ≃ colim
n∈N

(
Σ∞(Ω∞−nE)

)
[−n] .

Indeed, using the (Σ∞,Ω∞)-adjunction, we can calculate

HomSp

(
colim
n∈N

(
Σ∞(Ω∞−nE)

)
[−n], E′

)
≃ lim
n∈Nop

HomSp
(
Σ∞(Ω∞−nE), E′[n]

)
≃ lim
n∈Nop

Hom∗/An(Ω∞−nE,Ω∞−nE′) ,

and the right-hand side is HomSp(E,E′) since Hom anima in limits are limits of Hom anima.
Hence the claimed equivalence follows from Yoneda’s lemma.

Together with the fact that the tensor product of spectra commutes with arbitrary
colimits, this shows the general formula

E ⊗ E′ ≃ colim
n∈N

(
Σ∞(Ω∞−nE)

)
[−n] ⊗ E′ ≃ colim

n∈N

(
Ω∞−nE ⊗ E′)[−n] ,

as was already announced after Definition II.35. Note that the tensor products on the
right-hand side are no longer those in Sp, but defined as in the proof of Proposition II.34, so
this formula gives—at least in theory—a way to compute tensor products of spectra.

In real life though, the colimits in question are seldom computable. To give an example
of how complicated even simple tensor products can become, write

TorSi (E,E′) := π∗(E ⊗ E′) and ExtiS(E,E′) ≃ πi homSp(E,E′) ,

and consider TorS∗(HFp, HFp) = A∨
p and Ext∗

S(HFp, HFp) = Ap, called the (dual and non-
dual) Steenrod algebra. These are infinite-dimensional graded Fp-algebras, but completely
computed (albeit not by the formula above). For example, A∨

2 = F2 [xi | i ∈ N] with
deg(xi) = 2i − 1 is a polynomial ring in infinitely many variables.

To show that our formula isn’t completely useless, I’d like to use it to prove the tensor–
Hom adjunction. This wasn’t discussed in the lecture, but Fabian has also written out a
proof in the official lecture notes, [A&HK, Remarks II.53(iv)].
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II.53a. Lemma*. — For all E,E′, E′′ ∈ Sp, we have an equivalence

homSp(E ⊗ E′, E′′) ≃ homSp
(
E,homSp(E′, E′′)

)
It is functorial in all three variables, i.e. an equivalence in Fun(Spop × Spop × Sp,Sp).

Proof *. Let’s first check it in the special case E′ ≃ S[X]. Note that homSp(S,−) : Sp! Sp
is the identity functor. Indeed, we’ve already verified HomSp(S,−) ≃ Ω∞ (see before
Lemma II.31d), and Ω∞ : Sp! An clearly lifts to idSp via Theorem II.30. Hence the functors

homSp(E ⊗ S[−], E′′)op, homSp
(
E,homSp(S[−], E′′)

)op : An −! Spop

agree on ∗ ∈ An and both clearly preserve colimits, hence they must agree by Theorem I.51.
This settles the special case E′ ≃ S[X]. More generally, this shows

homSp(− ⊗ S[−],−)op ≃ homSp(−,homSp(S[−],−))op .

Indeed, we can interpret both sides as functors Spop ×Sp! Fun(An,Spop). Upon inspection,
they land in the full sub-∞-category Funcolim(An,Spop) of colimit-preserving functors. But
Funcolim(An,Spop) ≃ Fun(∗,Spop), and if we interpret the two functors above as functors
Spop × Sp ! Fun(∗,Spop) then they clearly agree since both − ⊗ S and homSp(S,−) are
equivalent to the identity. The case E′ ≃ Σ∞(X,x), and more generally the equivalence of
functors

homSp(− ⊗ Σ∞ −,−) ≃ homSp
(
−,homSp(Σ∞ −,−)

)
in Fun(Spop × (∗/An)op × Sp,Sp) immediately follows.

Finally, we can write E′ ≃ colimn∈N(Σ∞(Ω∞−nE′))[−n], and then the formula from II.53
reduces the general case to the case E′ ≃ Σ∞(X,x). This also proves the full functoriality
statement, since we can similarly write idSp ≃ colimn∈N(Σ∞(Ω∞−n −))[−n].

E∞-Ring Spectra
II.54. Definition and Examples. — For any symmetric monoidal ∞-operad, we define
CAlg(C⊗) := AlgComm(C⊗). We already introduced the notation CMon(C⊗) for this in
Example II.45(c), but nevermind. In the special case C⊗ ≃ Sp⊗, we put

CAlg := CAlg(Sp⊗) = AlgComm(Sp⊗)

and call this the ∞-category of E∞-ring spectra. Any E∞-ring spectrum has an underlying
spectrum, given by its image under ev⟨1⟩ : CAlg ≃ FunOp∞(Comm,Sp⊗)! Sp. Occasionally
(and abusingly) we won’t distinguish between an E∞-ring spectrum and its underlying
spectrum.

In our picture where Sp corresponds to the 1-category Ab of abelian groups, CAlg takes
the place of the 1-category CRing of commutative rings (which makes a lot of sense, as
CRing ≃ CAlg(Ab⊗) by unwinding of definitions). Now come “my first E∞-ring spectra”:
(a) Recall from II.53 that S[−] : An× ! Sp⊗ is strongly monoidal, and that CAlg(An×) ≃

CMon(An) by Theorem II.43. Hence S[−] upgrades to a functor

S[−] : CMon(An) −! CAlg .

For M ∈ CMon(An), we think of S[M ] ∈ CAlg as the “spherical monoid ring on M”.
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(b) Every ordinary commutative ring defines an E∞-ring spectrum, and more generally so
does every commutative differential graded algebra (CGDA in the following). We will
discuss this in detail in Lemma II.55, Corollary II.55a, and the space in between.

Let me also mention another example, that came only up at a later point in the course, but
fits here very well.
(c∗) Let R be a commutative ring and k(R) its algebraic K-theory space from Defini-

tion II.12a. We know from Example II.21a(a) that it is an E∞-group. But B∞k(R)
even has a canonical refinement as an E∞-ring spectrum! To see this, put

CMon(Grpd)⊗ := CMonOp∞(Grpd×) and CMon(An)⊗ := CMonOp∞(An×) .

The tensor product − ⊗R − turns Proj(R), which is already an object of CMon(Grpd)
via − ⊕ −, into an object of CAlg(CMon(Grpd)⊗) ⊆ CAlg(CMon(An)⊗). The func-
tors (−)∞-grp : CMon(An)⊗ ! CGrp(An)⊗ and B∞ : CGrp(An)⊗ ! Sp⊗ are strongly
monoidal by Proposition II.51 (the former is hidden under “similar assertions hold
for other left adjoints among these”), hence B∞k(R) ≃ B∞ Proj(R)∞-grp is indeed an
element of CAlg.

Let’s discuss now how to turn ordinary commutative rings and CDGAs into E∞-ring spectra,
as promised in (b):

II.55. Lemma. — The Eilenberg–MacLane functor H : D(Z)! Sp refines to a map

H : D(Z)⊗L
Z −! Sp⊗

of ∞-operad, i.e. it is a lax symmetric monoidal functor. More generally, for arbitrary
commutative rings R, the functor C•(−, R) = C•(−) ⊗L

Z R : Sp ! D(R) has a left adjoint
H : D(R)! Sp, which refines to a lax symmetric functor

H : D(R)⊗L
R −! Sp⊗ .

Proof. This isn’t anything special about D(R), but an instance of the following more general
principle:
(∗) If C⊗ is a symmetric monoidal ∞-category, then HomC(1C ,−) : C ! An has a canonical

lax symmetric monoidal refinement. If C⊗ is stable as an ∞-operad, then the same is
true for the enriched Hom functor homC(1C ,−) : C ! Sp.

The derived base change − ⊗L
Z R : D(Z)! D(R) has the forgetful functor D(R)! D(Z) as

a left adjoint, hence C•(−, R) has indeed a right adjoint, which deserves to be named H as
well since it really does nothing but forgetting to D(Z) and then applying H : D(Z)! Sp.
Corollary II.30a implies H ≃ homD(R)(R[0],−). Since R[0] ∈ D(R) is the tensor unit, we
see that (∗) indeed implies the assertion of the lemma.

To prove (∗), let’s first consider an arbitrary symmetric monoidal ∞-category D with all
small operadic colimits. Then the Day convolution Day(C⊗,D⊗) is symmetric monoidal and
its tensor unit is given by

HomC(1C ,−) ⊗ 1D : C −! D .

Note that the tensor product here is neither ⊗C, nor ⊗D, but the one defined in the
proof of Proposition II.34! That is, the functor under consideration is actually given by
colimHomC(1C,−) const 1D, and one immediately checks that this coincides with the left Kan
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extension of 1D : ∗ ! D along 1C : ∗ ! C, which is how we constructed the tensor unit
in the proof of Proposition II.47(c). Now, per construction (just take a sharp look at
Construction II.46 again), there is a map

AlgComm
(

Day(C⊗,D⊗)
)
−! FunOp∞(C⊗,D⊗)

(it is even an equivalence, but we won’t need that). By Lemma/Definition II.45a, the tensor
unit of Day(C⊗,D⊗) defines canonically an element of the left-hand side, hence also an
element of the right-hand side. This shows that HomC(1C ,−) ⊗ 1D has a canonical lax
symmetric monoidal refinement.

Now plug in D⊗ ≃ An×. Then 1D ≃ ∗ and X ⊗ ∗ ≃ colimX const ∗ ≃ X for all
X ∈ An, hence we obtain that HomC(1C ,−) : C ! An is the Day convolution tensor unit
and thus has a lax symmetric monoidal refinement HomC(1C ,−) : C⊗ ! An×, as required.
Moreover, it preserves limits (which are automatically operadic), hence the refinement lifts
to homC(1C ,−) : C⊗ ! Sp⊗ by Theorem II.50 if C⊗ is a stable ∞-operad.

Now we can resume our discussion on how to include commutative rings and CDGAs
into CAlg. Observe that we have two more lax symmetric monoidal functors

Ch(Z)⊗Z −! K(Z)⊗Z −! D(Z)⊗L
Z ,

where Ch(Z) is the 1-category of chain complexes over Z. The left functor comes from the
fact that K(Z) ≃ Nc(Ch(Z)) is the coherent nerve of the Kan-enrichment of Ch(Z). The
right functor was constructed in II.37f . Unwinding definitions, we see that CAlg(Ch(Z)⊗Z) ≃
CDGAlg is the 1-category of commutative differential graded algebras. Moreover, we have
an inclusion Ab⊗ ⊆ Ch(Z)⊗Z of symmetric monoidal 1-categories, given by interpreting
abelian groups as chain complexes concentrated in degree 0, which gives a map CRing ≃
CAlg(Ab⊗)! CAlg(Ch(Z)⊗Z) ≃ CDGAlg. Summarizing, if we apply CAlg(−) everywhere,
we obtain functors

CRing −! CDGAlg −! CAlg
(
D(Z)⊗L

Z
)
−! CAlg .

In fact, it turns out that we can completely import ordinary commutative ring theory:

II.55a. Corollary. — The above induces a fully faithful functor CRing ! CAlg with
essential image those R ∈ CAlg for which πi(R) = 0 for all i ̸= 0.

Here we define the homotopy groups of an E∞-ring spectrum as those of its underlying spec-
trum. Also note that in the composition above, the middle functor CDGAlg! CAlg(D(Z)⊗L

Z )
from the 1-category of CDGAs to the ∞-category of E∞-chain complexes is not fully faithful,
so this is really a thing about the composition.

Proof sketch of Corollary II.55a*. The proof wasn’t discussed in the lecture, but is taken
from Fabian’s lecture notes, [A&HK, Remarks II.53(ii)]. Recall from Example II.51b that

Ab⊗ ≃ CGrpOp∞(Set×) −! CGrpOp∞(An×) ≃ Sp⊗
⩾0

is fully faithful with left adjoint π0. The adjunction, together with the condition that the
counit is an equivalence, persists to taking CAlg(−) everywhere. This almost shows what
we want, except that we have to explain why the functor i⊗ : CRing! CAlg(Sp⊗

⩾0) ⊆ CAlg
that we get out is the one induced by H, i.e. the one from the formulation of the corollary.
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It’s more or less clear from the constructions that the underlying functor of i⊗ is indeed
H ≃ homAb(Z,−) : Ab ! Sp, but we need to check that the lax symmetric monoidal
refinement is the right one.

Fabian outlines two ways to do so. One can use the additional result from II.37e,
which says that lax monoidal refinements of right adjoints are equivalent to oplax monoidal
refinements of left adjoints, so it suffices that both candidates induce the same refinement of
π0.

Alternatively, one can argue as follows: By construction and Lemma/Definition II.45a, the
lax symmetric monoidal refinement of HomAb(Z,−) : Ab! An from the proof of Lemma II.55
is initial in

CAlg
(

Day(Ab⊗,An×)
)

≃ FunOp∞(Ab⊗,An×)

(we didn’t need this to be an equivalence in the proof of Lemma II.55). Hence there is a
unique map to Ω∞i⊗, which must be an equivalence since it is an equivalence on underlying
functor Ab ! An (and then Segal conditions do the rest). Now use Theorem II.50 to see
that our lax symmetric monoidal refinement of homAb(Z,−) coincides with i⊗.

Before we go on and construct module categories, I’d like to go on another detour and
prove that the homology and cohomology theories associated to a spectrum really do what
they’re supposed to do.

II.55b. Corollary*. — The homology and cohomology associated to a spectrum E by
Definition II.35 can be described as

E∗(−) = π∗
(
S[−] ⊗ E

)
= TorS∗

(
S[−], E

) and E∗(−) = π∗ homSp
(
S[−], E

)
= Ext∗

S
(
S[−], E

) .

They satisfy the Eilenberg–Steenrod axioms. Moreover, the homology and cohomology theory
associated to an Eilenberg–MacLane spectrum HA for some abelian group A coincide with
singular homology and (up to a sign swap) singular cohomology. That is,

HA∗(−) ≃ H∗(−, A) : An −! Ab and HA∗(−) ≃ H−∗(−, A) : Anop −! Ab .

Finally, the homology and cohomology of a spectrum E itself, as defined in II.26, is given by

H∗(E,A) ≃ π∗(E ⊗HA) and H∗(E,A) ≃ π∗ homSp(E,HA) .

The sign swap in cohomology is deliberate. Fabian believes it was a mistake to have ever
defined singular cohomology in nonnegative degrees rather than in nonpositive ones (or in
fact, to have ever defined cochain complexes). I was late to be convinced, but in the end I
was, not at least because in III.17 we’ll encounter a situation where our sign convention is
definitely preferable.

Proof of Corollary* II.55b*. The description of E∗(−) follows from our computations in
II.53. Along the same lines one can also prove EX ≃ homSp(S[X], E), hence the description
of E∗(−).

Next we check the Eilenberg–Steenrod axioms. To construct the long exact sequences
and excision, first note that fibre and cofibre sequences in the stable ∞-category Sp coincide,
and that to each such sequence there is an associated long exact sequence on homotopy
group (because the functors Ω∞−i : Sp! ∗/An preserve fibre sequences, so the long exact
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sequences from ∗/An are inherited). Now both S[−] ⊗ E and homSp(S[−], E) transform
cofibre sequences in An into fibre sequences in Sp, providing the long exact sequences for
E∗(−) and E∗(−).

It remains to see that they transform disjoint unions into direct sums/products. For
E∗(−), this is easy: homSp(S[−], E) sends disjoint unions to products, and taking homotopy
groups commutes with products. For E∗(−), we can argue similarly that S[−] ⊗ E sends
disjoint unions to coproducts, but now we need to show that π∗ sends coproducts of spectra
to products. Arbitrary coproducts can be written as filtered colimits of finite coproducts,
and π∗ commutes with filtered colimits (Remark* II.31c), hence it suffices to check the case
of finite coproducts. But Sp is stable, hence finite coproducts agree with finite products, and
π∗ preserves the latter.

Finally, let’s do our reality check for Eilenberg–MacLane spectra. The cohomology case
is easy: From the (C•, H)-adjunction combined with Corollary II.30a, we get

homSp(E,HA) ≃ homD(Z)
(
C•(E), A

)
≃ H

(
RHomZ(C•(E), A)

)
By Example II.25(c), the homotopy groups of the right-hand side are the homology groups of
RHomZ(C•(E), A), which are the singular cohomology groups H∗(E,A) (in negative degrees)
by definition. Since H∗(S[X], A) = H−∗(X,A) for all X ∈ An by Lemma II.31d, plugging in
the special case E ≃ S[X] also shows HA∗(X) = H−∗(X,A).

For the homology case we actually need to use fact that H is lax symmetric monoidal by
Lemma II.55. Combining this with the unit E ! HC•(E) of the (C•, H)-adjunction gives
functorial maps

E ⊗HA −! HC•(E) ⊗HA −! H
(
C•(E) ⊗L

Z A
)
.

If we can show that the composition is an equivalence, taking homotopy groups on both
sides will show π∗(E ⊗ HA) = H∗(E,A), as desired, and then the special case E ≃ S[X]
together with Lemma II.31d will also show HA∗(X) = H∗(X,A).

To show that the composition is indeed an equivalence, first note that it is an equivalence
for E ≃ S by Lemma II.31d, and that both sides commute with shifts and colimits in E. For
this we need that H commutes with colimits, which is perhaps a bit surprising at first, given
that H is only a right adjoint, but we give an argument in the proof sketch* of Theorem II.57
below (and once you know this theorem, H preserving colimits is not that surprising any
more). Now all of Sp can be generated from S using shifts and colimits, hence

E ⊗HA ∼−! H
(
C•(E) ⊗L

Z A
)

is an equivalence everywhere.

∞-Categories of Modules
E∞-ring spectra have categories of modules that behave like the derived categories of modules
over ordinary rings. In particular, as we’ll see in Theorem II.57 below, the category of modules
over HR for some R ∈ CRing is nothing else but D(R).

As a first step, we’ll construct certain operads Assoc and LMod. These have already
been teasered in Example II.45(d) and (e), so we’ll hijack that numbering and define them
properly.
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II.45. Example. — What it should have been:
(d) We would like to have an ∞-operad that describes associative monoids. So we define

E1 = Assoc! Lop as follows: The objects of Assoc are finite sets and a morphism I ! J
is a map in Lop together with a total ordering on each preimage α−1(j). Composition
is given by composition in Lop and lexicogaphic ordering. If we equip the 1-category
Assoc with the obvious functor Assoc! Lop, it becomes an ∞-operad with underlying
category Assoc1 = {∗} and

Homact
Assoc

(
(∗, . . . , ∗)︸ ︷︷ ︸
n entries

, ∗
)

= {total orders on ⟨n⟩} .

(just as there are n! ways to multiply n factors in an associative, but not necessarily
commutative monoid).

(e) We would also like to have an ∞-operad that describes an associative monoid A together
with an object M it acts upon (we think of this as an algebra together with a module
over it). So we define LMod! Lop as follows: Its objects are pairs (I, S) with I ∈

Lop

and S ⊆ I (think of I as the set of factors we’d like to multiply, and of S as the set of
those factors that come from M ; of course, we can’t multiply more than one element
from M). A map (I, S) ! (J, T ) is given by a map α : I ! J in Assoc such that
α(S) = T and for all t ∈ T the set α−1(t) ∩S consists exactly of the maximal element of
α−1(t). Composition is inherited from Assoc. Again, if we equip the 1-category LMod
with the obvious map LMod! Lop, it becomes an ∞-operad. The underlying category
LMod1 has precisely two objects: a = (⟨1⟩, ∅) and m = (⟨1⟩, ⟨1⟩), which we think of
corresponding to A and M respectively. We have

Homact
LMod

(
(b1, . . . , bn), a

)
=
{

∅ if bi = m for some i
{total orders on ⟨n⟩} if bi = a for all i

This makes sense since “as soon as one of the factors is from M , the result will be no
longer an element of A, but one of M”. Similarly,

Homact
LMod

(
(b1, . . . , bn),m

)
=


∅ unless exactly one bi = m{

total orders on ⟨n⟩
with max. element i

}
if bi = m

since there can be only one factor from M in any product, and if there is, it must be
the right-most factor.

Sending the unique element ∗ ∈ Assoc1 to a ∈ LMod1 defines a map Assoc! LMod
of ∞-operads, which induces a map a∗ : AlgLMod(C⊗) ! AlgAssoc(C⊗) (“we forget M
and only retain A”) for any symmetric monoidal category C⊗. For any A ∈ AlgAssoc(C⊗),
the pullback

LModA(C⊗) AlgLMod(C⊗)

∗ AlgAssoc(C⊗)

.
a∗

A

is called the ∞-category of left modules in C over A. We can convince ourselves
in examples that this terminology really makes sense: If C⊗ = Set×, then an algebra
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A ∈ AlgAssoc(Set×) ≃ Mon(Set) is a monoid and elements of LModA(Set×) are really left
A-sets. Similarly, if C⊗ = Ab⊗, then A is an associative (not necessarily commutative)
ring and LModA(Ab⊗) is really the 1-category of left A-modules.

II.56. General Properties of Module ∞-Categories. — We will now discuss (and
partially prove) a series of results to show that Assoc and LMod really do what they are
supposed to do, and to see how one works with the left module ∞-categories LModA(C⊗).
After that, we are ready for modules over E∞-ring spectra!

First off, recall the functor Cut: ∆∆op !
Lop from Definition II.15, which sends a totally

ordered set I to its set of Dedekind cuts. Since the set of Dedekind cuts inherits a total order,
Cut lifts to a functor Cut: ∆∆op ! Assoc over Lop. Also recall the notation introduced before
Theorem II.43: For any ∞-operad O and any ∞-category C with finite products, we denote
by OMon(C) ⊆ Fun(O, C) the full sub-∞-category of functors satisfying the Segal condition.

II.56a. Theorem (Lurie, [HA, Proposition 4.1.2.10]). — If C has finite products, then the
induced functor

Cut∗ : AssocMon(C) ≃ AlgAssoc(C×) ∼−! Mon(C)
is an equivalence. More generally, if C⊗ is any symmetric monoidal ∞-category, then

Cut∗ : AlgAssoc(C⊗) −! Fun(∆∆op, C⊗) ×Fun(∆∆op,
Lop) {Cut}

is fully faithful, with essential image those functors F : ∆∆op ! C⊗ that send inerts to
inerts. That is, whenever α : [n] ! [m] is inert in ∆∆ (without op), the induced morphism
F (αop) : F ([m])! F ([n]) is inert in C⊗.

II.56b. Remark*. — We won’t prove Theorem II.56a, but let me at least give some
additional motivation. The condition that F preserves inerts is just a somewhat unusual
formulation of the Segal condition. Indeed, if we denote A = F ([1]) ∈ C⊗

1 ≃ C, then the fact
that the Segal maps ei : [1]! [n] induce inert maps in C⊗ shows

F
(
[n]
)

≃ (A, . . . , A) ∈ C⊗
n ≃ Cn

(in particular, F ([0]) ≃ 1C). For general α : [n] ! [m] in ∆∆, we can think of the induced
map F (αop) : F ([m]) ! F ([n]) as follows: Let Cut(αop)∗ : (A, . . . , A) ! (B1, . . . , Bn) be a
cocartesian lift of Cut(αop) : ⟨m⟩! ⟨n⟩. A quick unravelling shows

Bi ≃
⊗

α(i−1)<j⩽α(i)

A

for i = 1, . . . , n. Then Cut(αop)∗ and F (αop) induce a map Λ2
0 ! C⊗, which has an extension

to ∆2 since C⊗ !
Lop is a cocartesian fibration. Restricting the extension to ∆{1,2} gives

maps Bi ! A in C, which we think of as the “multiplication maps in the algebra A”.

Lecture 18
12th Jan, 2021

There is a similar description of AlgLMod(C⊗). To this end, we can extend Cut to a
functor LCut: ∆∆op × [1]! LMod that fits into a diagram

∆∆op Assoc
Lop

∆∆op × [1] LMod

Cut

−×{1} a

LCut

p
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LCut sends elements of the form ([n], 1) to the “algebra-like” element (a, . . . , a) ∈ LModn
(this guy has n repetitions of a), and elements of the form ([n], 0) to the “module-like”
element (a, . . . , a,m) ∈ LModn+1 (this guy also has n repetitions of a). In particular, and
this might be confusing at first, the structure map p ◦ LCut: ∆∆op × [1]! Lop is not given
by projecting to the first factor and applying Cut: ∆∆op !

Lop. But if you think about this,
it makes sense to have it that way: The morphisms LCut([n], 0)! LCut([n], 1) should be
given by forgetting the “module part” of (a, . . . , a,m) and only retaining the algebra part
(a, . . . , a)—which only works if the morphism in question runs from LModn+1 to LModn.

II.56c. Theorem (Lurie, [HA, Proposition 4.2.2.12]). — The functor

LCut∗ : AlgLMod(C⊗) −! Fun
(
∆∆op × [1], C⊗)×Fun(∆∆op×[1],Lop) {p ◦ LCut}

is fully faithful, with essential image those functors F : ∆∆op ×[1]! C⊗ that fulfill the following
conditions:
(a) The “algebra-like” part F|∆∆op×{1} of F satisfies the condition from Theorem II.56a.

That is, whenever α : [n] ! [m] is inert in ∆∆ (without op), the induced morphism
F (αop, id1) : F ([m], 1)! F ([n], 1) is inert in C⊗.

(b) F ([n], 0)! F ([n], 1) is always inert in C⊗.
(c) If αop : [n] ! [m] is an inert morphism in ∆∆ satisfying α(n) = m, then the induced

morphism F (αop, id0) : F ([m], 0)! F ([n], 0) is inert in C⊗.

II.56d. Remark*. — Again, we won’t prove Theorem II.56c, but at least explain how
the structure of an algebra and a module over it are encoded in the right-hand side. Let
M = F ([0], 0) and A = F ([1], 1); both are elements of C⊗

1 ≃ C by construction. By
condition (a), the part F|∆∆op×{1} encodes the algebra structure on A, so in particular,
F ([n], 1) ≃ (A, . . . , A) ∈ Cn as in Remark* II.56b. Combining this with conditions (b) and
(c) shows

F
(
[n], 0

)
≃ (A, . . . , A,M) ∈ Cn+1 .

Given a general map α : [n]! [m] in ∆∆, we can think of F (αop, id0) : F ([m], 0)! F ([n], 0)
as follows: Choose a cocartesian lift p(LCut(αop))∗ : (A, . . . , A,M) ! (B1, . . . , Bn, N) of
p(LCut(αop)) : ⟨m+ 1⟩! ⟨n+ 1⟩. Then

Bi ≃
⊗

α(i−1)<j⩽α(i)

A , and N ≃

( ⊗
α(n)<j⩽m

A

)
⊗M .

As in Remark* II.56b, we get maps Bi ! A and N !M , which encode the multiplication
in A and the left action of A on M .

In particular Theorem II.56a says that any algebra A ∈ AlgAssoc(C⊗) defines an element
Cut∗(A) ∈ FunLop(∆∆op, C⊗) which satisfies the Segal condition. And then by Theorem II.56c,
we find that LModA(C⊗) is a full sub-∞-category of the pullback

P FunLop
(
∆∆op × [1], C⊗)

∗ FunLop(∆∆op, C⊗)

. (−×{1})∗

Cut∗(A)
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Note that besides the operad map a : Assoc! LMod of extracting algebras, there is also
a map m : Triv! LMod that extracts the module object. Also recall that AlgTriv(C⊗) ≃ C
as shown in Example II.45(b).

II.56e. Corollary. — If C⊗ has small/finite operadic colimits, then LModA(C⊗) has
small/finite colimits, and these are computed “underlyingly”. That is, the functor

m∗ : LModA(C⊗) −! AlgTriv(C⊗) ≃ C

preserves small/finite colimits. Likewise, if C has small/finite limits (which are automatically
operadic), then so has LModA(C⊗), and m∗ preserves small/finite limits. In particular, if
C⊗ is a stable ∞-operad, then LModA(C⊗) is a stable ∞-category for all A ∈ AlgAssoc(C⊗).

Proof sketch. Let F : I ! LModA(C⊗) be a diagram. Then Theorem II.56c induces a
diagram F : I ! Fun(∆∆op × [1], C⊗) satisfying

F (i)
(
[n], 1

)
≃ (A, . . . , A) and F

(
[n], 0

)
≃
(
A, . . . , A,M(i)

)
,

where M : I ! C is another diagram (the “module part” of F ). We have to check that the
there are functors

F lim, F colim : I × ∆∆op × [1] −! C⊗

(i, [n], 0) 7−! (A, . . . , A)

(i, [n], 1) 7−!
{

(A, . . . , A, limi∈I M(i)) for F lim

(A, . . . , A, colimi∈I M(i)) for F colim

Moreover, we need to verify that F lim, F colim constitute the limit and colimit over F , taken
inside the pullback P above, and that both satisfy the conditions from Theorem II.56c so
that they lie inside the full subcategory LModA(C⊗) ⊆ P . We didn’t work this out in the
lecture, but in these notes I would like to give a rough sketch of what I think happens.

Naively, I would expect that the limit and colimit over F , taken in P , should be given by
some kind of pointwise limit in Fun(∆∆op × [1], C⊗). There are two problems though: First,
we see from Remark* II.48a that (A, . . . , A, colimi∈I M(i)) doesn’t necessarily coincide with
the colimit colimi∈I(A, . . . , A,M(i)) in C⊗, even though colimits in C are operadic, unless I
is weakly contractible. This problem doesn’t occur in the limit case, but there is a second
one, which affects both cases: We aren’t taking limits/colimits in Fun(∆∆op × [1], C⊗), but in
some pullback P of it. And if I isn’t weakly contractible, then the limit/colimit over the
constant A-diagram in FunLop(∆∆op, C⊗) might not be A any more. Hence we can’t expect
that limits/colimits in the pullback P can be computed in each factor separately.

Fortunately, there is a trick that solves both problems at once. Since C is cocomplete by
assumption, it has an initial object, hence the diagram M : I ! C extends canonically to a
diagram M◁ : I◁ ! C that sends the tip of the cone to the initial object. Moreover,

colim
i∈I

M(i) ≃ colim
i∈I◁

M◁(i) ,

and the right-hand side is also a colimit in C⊗ by Remark* II.48a, since I◁ is weakly
contractible. Similarly, taking the colimit over an I◁-shaped in FunLop(∆∆op, C⊗) which is
constant on A gives A again. After some unravelling, we see (I think) that this gives a way of
computing I-shaped colimits in P by factorwise I◁-shaped colimits. A similar trick works for
limits. I’ll leave it to you to make this argument precise and also to check that the conditions
from Theorem II.56c are satisfied.
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The structure map Assoc ! Lop defines an ∞-operad map Assoc ! Comm, which in
turn induces a map CAlg(C⊗) ≃ AlgComm(C⊗) ! AlgAssoc(C⊗), as one would expect. In
particular, the tensor unit 1C ∈ C also defines an associative algebra. In fact, one can show
similar to Lemma/Definition II.45a that 1C is also initial in AlgAssoc(C⊗).

II.56f. Corollary. — For any symmetric monoidal ∞-category q : C⊗ !
Lop, the forgetful

functor
m∗ : LMod1C (C⊗) ∼−! AlgTriv(C⊗) ≃ C

is an equivalence.

Proof sketch. Since the map ∅! (1C) in C⊗ is a q-cocartesian lift of ⟨0⟩! ⟨1⟩, we see that
a functor F : ∆∆op × [1]! C⊗ fulfills the conditions from Theorem II.56c iff all induced maps
in C⊗ are q-cocartesian. But since ([0], 0) is initial in ∆∆op × [1], a functor F : ∆∆op × [1]! C⊗

with F ([1], 1) ≃ 1C is the same thing as a natural transformation

ηF : constF ([0], 0) =⇒ F |∆∆op×[1]∖{([0],0)}

in Fun(∆∆op × [1] ∖ {([0], 0)}, C⊗). In other words, F corresponds to a lift in the diagram

[0] Fun
(
∆∆op × [1] ∖ {([0], 0)}, C⊗)

[1] Fun
(
∆∆op × [1] ∖ {([0], 0)},Lop)

constF ([0],0)

q∗

const ⟨0⟩⇒p◦LCut

ηF

(in the bottom arrow, p : LMod! Lop denotes the structure map of LMod).
As we’ve seen above, F defines an element of LMod1C (C⊗) iff it takes all maps in ∆∆op × [1]

to q-cocartesian ones. Using [HCII, Corollary IX.25], this is equivalent to ηF being a
q∗-cocartesian edge. Hence the space of lifts ηF , and thus the space of functors F with
given F ([0], 0), is the space of q∗-cocartesian lifts in the above diagram. Now the functor
m∗ : LMod1C (C⊗) ! C corresponds to the choice of F ([0], 0), i.e. to the choice of starting
point. Since q∗ is a cocartesian fibration, we see that m∗ is essentially surjective, and since
a map between starting points defines a contractible space of maps between q∗-cocartesian
lifts (you can make this precise using [HCII, Proposition IX.24]), we see that m∗ is fully
faithful.

Fabian’s script mentions a (stronger version of) another corollary, which we’ll need to
prove Theorem II.57 below. I thought about whether there is an easy proof using what we
know so far, but didn’t succeed, so for now I’ll just refer to Lurie.

II.56g. Corollary* (Lurie, [HA, Proposition 4.2.4.2]). — Let C⊗ be a symmetric monoidal
∞-category and A ∈ AlgAssoc(C⊗) an algebra in it (whose underlying object we will also
denote A ∈ C). Then the functor A⊗ − : C ! C lifts to a functor

LModA(C⊗)

C C
m∗A⊗−

A⊗−

which is right-adjoint to the forgetful functor m∗ : LModA(C⊗) ! C. In particular, we see
that A ∈ LModA(C⊗).
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With that out of the way, let’s discuss a cool application. Any E∞-ring spectrum R defines
an element of AlgAssoc(Sp⊗) via the canonical map CAlg ! AlgAssoc(Sp⊗). Consequently,
we may define the ∞-category of modules over R as

ModR := LModR(Sp⊗) .

We know from Corollary II.56e that this is a stable ∞-category.

II.57. Theorem. — Let R be an ordinary commutative ring. Then the canonical functor

D(R) ≃ LModR[0]
(
D(R)⊗L

R
) H
−! LModHR(Sp⊗) ≃ ModHR

induced by Corollary II.56f and Lemma II.55 is an equivalence.

We can interpret this theorem as follows: Since S is the tensor unit in Sp (by II.53), it is the
initial element in CAlg (Lemma/Definition II.45a) and we have Sp ≃ ModS (Corollary II.56f ).
Hence, what Theorem II.57 says is that the passage from D(R) to Sp is nothing else but the
forgetful functor ModHR ! ModS with respect to the unique map S! HR in CAlg.

As an easy consequence, we obtain that also

K : D⩾0(R) ∼−! LModR(CGrp(An)⊗)

is an equivalence, where CGrp(An)⊗ ≃ CGrpOp∞(An×) denotes the symmetric monoidal
structure on CGrp(An) obtained via Proposition II.51.

Proof of Theorem II.57*. Fabian has sketched out a proof in the lecture notes [A&HK,
Theorem II.57]. But then about a month after the final lecture, Fabian has come up with a
more straightforward argument, which he explained to me and I’ll include it here.

Recall that an object c in an ∞-category C is called compact if HomC(c,−) commutes
with filtered colimits (which were introduced in Remark* II.31c). Note that a finite colimit
of compact objects is compact again; this follows from the fact that HomC(−,−) transforms
finite colimits in the first variable into finite limits, and finite limits commute with filtered
colimits in An. This is proved in [HTT, Proposition 5.3.3.3], but I think it also follows from
Remark* II.31c after some fiddling. With that out of the way, the proof of Theorem II.57 is
based on the following three observations:
(1) The objects R[i] ∈ D(R) are compact, and the functors π0 HomD(R)(R[i],−) : D(R)!

Ab for i ∈ Z are jointly conservative. The same is true for the objects HR[i] ∈ ModHR
and the functors π0 homModHR

(HR[i],−) : ModHR ! Ab.
(2) The functor H : D(R)! ModHR preserves colimits.
(3) D(R) is generated under colimits by the R[i], and ModHR is generated under colimits

by the HR[i].
To show that HomD(R)(R[i],−) ≃ Ω∞ homD(R)(R[i],−) commutes with filtered colimits, it
suffices to show the same for πj homD(R)(R[i],−), using that Ω∞ and πj preserve filtered
colimits (Remark* II.31c) and that equivalences of spectra can be detected on homotopy
groups (Lemma* II.23c). We’ve seen in the proof of Lemma II.55 that homD(R)(R[0],−) ≃
H : D(R)! Sp. Hence

πj homD(R)
(
R[i],−

)
≃ πjH

(
− [−i]

)
≃ Hi+j : D(R) −! Ab
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is the functor taking homology in degree i+ j. These functors preserve fitered colimits. The
above description also immediately shows that the functors π0 HomD(R)(R[i],−) : D(R)! Ab
for i ∈ Z are jointly conservative.

The corresponding assertions for HR hold more generally for any E∞-ring spectrum T .
Indeed, Corollary* II.56g implies

HomModT

(
T [i],−

)
≃ HomSp

(
S[i],−

)
≃ Ω∞+i .

Ω∞+i preserves filtered colimits by Remark* II.31c, and the functors π0Ω∞+i ≃ πi : Sp! Ab
for i ∈ Z are jointly conservative by Lemma* II.23c. Combine this with the fact that colimits
and equivalences in ModHR can be detected on underlying spectra by Corollary II.56e and
the Segal condition from Theorem II.56c, respectively, to finish the proof of (1).

The above arguments also show that H : D(R)! ModHR commutes with filtered colimits.
But H is an exact functor between stable ∞-categories, hence it also commutes with finite
colimits. But every colimit can be obtained from coproducts (which are filtered colimits of
finite coproducts) and pushouts (which are finite), proving (2).

It remains to show (3). We only show the part about HR, since the part about D(R) is
similar. Again, we may replace HR by an arbitrary E∞-ring spectrum T . Let C ⊆ ModT
denote the full sub-∞-category generated by the T [i] under finite colimits. We claim that
the canonical map

colim
X∈C/M

X ∼−!M

is an equivalence for all M ∈ ModT , which will imply that ModT is generated by the T [i] under
colimits. By (1), the equivalence above may be checked after applying π0 HomModT

(T [i],−)
on both sides. Note that the indexing ∞-category C/M is filtered. Indeed, any map
K ! C/M from a finite simplicial set K can be extended over K▷ by taking the colimit in C.
Using that T [i] is compact, we thus need to show that

colim
X∈C/M

π0 HomModT

(
T [i], X

) ∼−! π0 HomModT

(
T [i],M

)
is an isomorphism of abelian groups. It is surjective because each map f : T [i]!M on the
right-hand side also defines an element of C/M , the image of idT [i] ∈ π0 HomModT

(T [i], T [i])
in the colimit maps to f . For injectivity, assume g : T [i] ! X is mapped to 0 on the
right-hand side. Then X ! M extends over cofib(g). Note that cofib(g) is an element of
C again, and that g maps to 0 in π0 HomModT

(T [i], cofib(g)). Hence the image of g in the
colimit is 0. This proves (3).

Now note that homD(R)(R[0],M) ∼−! homHR(HR,HM) is an equivalence for all M ∈
D(R), since both sides coincide with HM by the arguments in (1). The full sub-∞-category
of all X ∈ D(R) for which homD(R)(R[0],M) ∼−! homHR(HR,HM) is an equivalence is
clearly closed under shifts and colimits, hence it must be all of D(R) by (3). Thus H is fully
faithful. Its essential image is closed under colimits by (2) and contains all HR[i]. Hence H
is also essentially surjective by (3) again.

Fabian also mentioned in the lecture (and elaborates in the script, see [A&HK, Theo-
rem II.58]) that one can more or less the same argument as in the proof of Theorem II.57 to
show a vast generalisation: The Schwede–Shipley theorem.
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II.58. Theorem (Schwede–Shipley). — If C is a complete stable ∞-category containing
an object x ∈ C such that homC(x,−) : C ! Sp is conservative and commutes with colimits,
then this functor lifts to an equivalence

homC(x,−) : C ∼−! Modend(x)op ,

where end(x)op denotes the opposite algebra of the canonical refinement of end(x) :=
homC(x, x) ∈ Sp to an object of AlgAssoc(Sp⊗).

Tensor Products over Arbitrary Bases
By Theorem II.57, the symmetric monoidal structure on D(R) can be carried over to ModHR.
More generally, we would like to define symmetric monoidal structures Mod⊗T

T on ModT for
any E∞-ring spectrum T . In the special case T ≃ HR it should be given by

HM ⊗HR HN ≃ H(M ⊗L
R N) .

for any M,N ∈ D(R). In fact, constructing symmetric monoidal structures on ∞-categories of
algebras works ridiculous generality: Given a symmetric monoidal ∞-category q : C⊗ !

Lop

and an ∞-operad p : O !
Lop, the ∞-category of algebras AlgO(C⊗) inherits a symmetric

monoidal structure AlgO(C⊗)⊗,

II.59. Construction. — With notation as above, define AlgO(C⊗)⊗ !
Lop via II.38a

applied to the presheaf F : ∆∆/Lop ! An which is given by

F
(
f : [n]! Lop) ≃ HomCat∞

(
[n] × O, C⊗)×HomCat∞ ([n]×O,

Lop) {f × p} ,

where f × p : [n] × O !
Lop denotes the composition [n] × O !

Lop ×
Lop ×
−!

Lop. Let’s
compute the fibres

AlgO(C⊗)⊗
n ≃ AlgO(C⊗)⊗ ×Lop {⟨n⟩} .

Using the method from the proof sketch of Proposition II.40, we find that the Rezk nerve of
the fibre over ⟨n⟩ is a simplicial anima Y given by Yk ≃ F (const ⟨n⟩ : [k]! Lop). Plugging
in the definitions, we get

Yk ≃ HomCat∞

(
[k] × O, C⊗)×HomCat∞ ([k]×O,

Lop) {const ⟨n⟩ × p}
≃ HomCat∞

(
[k],Fun(O, C⊗)

)
×HomCat∞ ([k],Fun(O,

Lop)) {const ⟨n⟩ × p}
≃ HomCat∞

(
[k],Fun(O, C⊗) ×Fun(O,

Lop) {⟨n⟩ × p}
)

≃ HomCat∞

(
[k],FunLop(O, C⊗ ×Lop · · · ×Lop C⊗︸ ︷︷ ︸

n times

)
)
.

For the second and third equivalence, we use currying and the fact that HomCat∞([k],−)
commutes with pullbacks. For the fourth equivalence, we use that maps O ! C⊗ over Lop,
where O is equipped with the structure map ⟨n⟩ × p : O !

Lop, are the same as maps from
O with its usual structure map p to the pullback of C⊗ along ⟨n⟩ × − : Lop !

Lop. Via the
Segal maps, said pullback is easily identified with the n-fold fibre product of C⊗ over Lop.

The calculation above shows that Y ≃ Nr(FunLop(O, C⊗)n), hence the fibre we’re inter-
ested in is given by

AlgO(C⊗)⊗
n ≃ FunLop(O, C⊗)n .

We let AlgO(C⊗)⊗ ⊆ AlgO(C⊗)⊗ be the full sub-∞-category spanned fibrewise by those
(F1, . . . , Fn) such that each Fi is a map of ∞-operads.
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II.60. Proposition (Lurie, [HA, Proposition 3.2.4.3]). — The map AlgO(C⊗)⊗ !
Lop is

always a symmetric monoidal monoidal ∞-category, and for every x ∈ O1, evaluation at x
refines to a strongly monoidal functor

evx : AlgO(C⊗)⊗ −! C⊗ .

II.61. Observation. — In the special case O ≃ Comm, the symmetric monoidal structure
on AlgComm(C⊗) ≃ CAlg(C⊗) is the cocartesian symmetric monoidal structure as defined in
Proposition II.40. In particular, the tensor product of two algebras is also their coproduct in
CAlg(C⊗).

Proof sketch of Observation II.61. Use a generalisation of Lemma II.20, which we used to
show that CMon(C) is semi-additive. In fact, Lurie’s version ([HA, Proposition 2.4.3.19]) of
that lemma gives a criterion for a symmetric monoidal structure to be cocartesian.

By Observation II.61 the second half of Theorem II.43, we get

CAlg
(
CAlg(C⊗)⊗) ≃ FunOp∞

(
Comm,CAlg(C⊗)⊗)

≃ Fun
(
Comm1,CAlg(C⊗)

)
≃ CAlg(C⊗) .

Hence every commutative algebra A ∈ CAlg(C⊗) canonically refines to a map of ∞-operads
A : Comm! CAlg(C⊗)⊗. Now consider the following pullback diagram:

LModA(C⊗) LModA(C⊗)⊗A AlgLMod(C⊗)⊗

∗ Comm AlgComm(C⊗)⊗ AlgAssoc(C⊗)⊗

. .
a∗

⟨1⟩ A

II.62. Theorem. — Suppose C⊗ has all small operadic colimits. Then

a∗ : AlgLMod(C⊗)⊗ −! AlgAssoc(C⊗)⊗

is a cocartesian fibration. In particular, LModA(C⊗)⊗A ! Comm defines a symmetric
monoidal structure on LModA(C⊗) for all A ∈ CAlg(C⊗). Moreover, LModA(C⊗)⊗A has
again all operadic colimits.

II.62a. The Bar Construction. — The tensor product in LModA(C⊗) can be computed
by the bar construction: For M,N ∈ LModA(C⊗), the underlying C-object of M⊗AN (which
we’ll abusingly also denote that way) is given by

M ⊗A N ≃ colim
∆∆op

Bar(M,A,N) .

Informally, the functor Bar(M,A,N) : ∆∆op ! C sends [n] ∈ ∆∆op to M ⊗A⊗n ⊗N , with the
tensor product being taken in C.

In the script [A&HK, Chapter II pp. 123–124], Fabian explains how to define the bar
construction formally. Let rev : ∆∆op ! ∆op denote the functor that reverses the order of a
totally ordered set. Using Theorem II.56a, it induces a functor

rev∗ : AlgAssoc(C⊗) −! AlgAssoc(C⊗) .
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But one easily checks that Cut: ∆∆op !
Lop and Cut ◦ rev : ∆∆op ! ∆∆op are naturally

equivalent, hence rev∗ becomes equivalent to the identity upon composition with the canonical
map CAlg(C⊗) ! AlgAssoc(C⊗). Of course, this is nothing but the ∞-categorical way of
saying that a commutative algebra is naturally equivalent to its opposite.

Using Theorem II.56c, we may now consider the functors

M ◦ (rev × id[1]), N : ∆∆op × [1] −! C⊗ .

Let’s also write M ◦ (rev × id[1]) =: MA for simplicity (indicating that we now consider
the right-A module structure on M , although we never defined anything of that sort).
Then MA|∆∆op×{1} ≃ Arev ≃ A ≃ N|∆∆op×{1} by what we just showed. In particular, if
we regard the functors MA and N as natural transformations MA|∆∆op×{0} ⇒ MA|∆∆op×{1}
and N|∆∆op×{0} ⇒ N|∆∆op×{1} in Fun(∆∆op, C⊗), then their endpoints coincide, and we can
form the pullback P ∈ Fun(∆∆op, C⊗). Pullbacks in functor categories are formed pointwise
(Lemma I.39), hence P ([n]) fits into a pullback diagram

P
(
[n]
)

N
(
[n], 0

)
MA

(
[n], 0

)
A
(
[n]
).

in C⊗. By construction, we have MA([n], 0) ≃ (M,A, . . . , A), N([n], 0) ≃ (A, . . . , A,N),
and A([n]) ≃ (A, . . . , A), where we abusingly identify algebras and modules with their
underlying C-objects, and the maps between them are the evident projections. Thus, using
Definition II.36(c) one easily checks

P
(
[n]
)

≃ (M,A . . . , A,N) ∈ C⊗
n+2 .

Now observe that P : ∆∆op ! C⊗ factors over C⊗
act := C⊗ ×Lop

Lop
act. Indeed, for a general

α : [n]! [m] in ∆∆, the morphism Cut(αop) : ⟨m⟩! ⟨n⟩ is only undefined on those i ∈ ⟨m⟩
for which i ⩽ α(0) or α(n) < i, see Definition II.15. But those i with α(n) < i are used
to encode the left-action of A on N (compare this to Remark* II.56d), and those i with
i ⩽ α(0) are used to encode the right action of A on MA. Hence the image of P (αop) in Lop

must be active, as claimed.
The unique active maps fn : ⟨n⟩! ⟨1⟩ define a natural transformation idLop

act
⇒ const ⟨1⟩

in Fun(Lop
act,

Lop
act). By unstraightening magic, it defines a map of cocartesian fibrations from

C⊗
act to its pullback along const ⟨1⟩, which is C ×

Lop
act. Composing P with that map gives a

functor
Bar(M,A,N) : ∆∆op −! C ,

which is the one we’re looking for. Since cocartesian lifts of the active maps fn+2 : ⟨n+2⟩! ⟨1⟩
just tensor stuff together, we see that Bar(M,A,N) does indeed take [n] to M ⊗A⊗n ⊗N .

We won’t explain why the bar construction computes the tensor product in LModA(C⊗),
and refer instead to [HA] again: In Proposition 4.4.2.8, Lurie proves that the tensor product
in bimodules is given by the bar construction, and in Theorem 4.5.2.1 he shows that the tensor
product on LModA(C⊗) for A ∈ CAlg(C⊗) factors over the specialisation from bimodules to
left modules.
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II.62b. The Tensor Unit*. — Unravelling the construction in Theorem II.62, we see
that A is the tensor unit in LModA(C⊗)⊗A , as it should be. As a reality check, let’s see that
this also comes out of the Bar construction. We must show

N ≃ colim
∆∆op

Bar(A,A,N) .

This is, in fact, a special case of a general principle. Observe that the bar construction
B := Bar(A,A,N) is the décalage of another simplicial object in C. That is, there is another
functor B′ : ∆∆op ! C such that the following diagram commutes:

∆∆op ∆∆op

C

σop

B B′

Here σ : ∆∆! ∆∆ denotes the functor taking objects [n] to [n+ 1] and morphisms α : [n]! [m]
to σ(α) : [n+ 1]! [m+ 1] given by σ(α)(i) = α(i) for i ⩽ n and σ(α)(n+ 1) = m+ 1.

It’s not hard to construct B′ in our example. Basically, one has to place another M in
degree 0 and add those maps A⊗n ⊗ N ! A⊗n+1 ⊗ N that are given by 1C ! A on the
first factor and the identity on the rest, as well as those maps A⊗n+1 ⊗N ! A⊗n ⊗N that
multiply the first factor with N (so we are forming some kind of cyclic bar construction). I’ll
leave the formal construction to you.

In general, if B,B′ : ∆∆op ! C are simplicial objects in some ∞-category C, and if
B ≃ déc(B′) is the décalage of B′, then

colim
∆∆op

B ≃ colim
∆∆op

constB′
0 ≃ B′

0 .

The right equivalence follows from the fact that ∆∆op is weakly contractible (with [0] an initial
object). For the left-hand side, observe that there are canonical transformations B ⇒ constB′

0
and constB′

0 ⇒ B in Fun(∆∆op, C), induced by suitable natural transformations η : σop ⇒
const [0] and τ : const [0] ⇒ σop in Fun(∆∆op,∆∆op). Using higher order transformations
between η and σ, one shows that

τ∗ : Nat(B, constx) ∼
∼ Nat(constB′

0, constx) :η∗

are mutually inverse homotopy equivalences, which is what we need.

II.62c. Relative Tensor Products of Spectra*. — We can now define symmetric
monoidal structures on the stable ∞-categories Mod⊗R

R for all E∞-ring spectra R. We’d
hope the following properties to hold:
(a) The functor homModR

: Modop
R × ModR ! Sp has a natural refinement to a functor

homR : Modop
R × ModR ! ModR satisfying the tensor-Hom adjunction

homR(M ⊗R N,L) ≃ homR

(
M,homR(N,L)

)
.

(b) If R! S is a map in CAlg, we get a symmetric monoidal functor

S ⊗R − : Mod⊗R

R −! Mod⊗S

S ,

which does what it says on underlying spectra. If moreover S ! T is another map in
CAlg, then T ⊗S (S ⊗R −) ≃ T ⊗R −.
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(c) The functor S ⊗R − : ModR ! ModS has a right adjoint, the forgetful functor

FS/R : ModS −! ModR ,

which is the identity on underlying spectra. Moreover, FS/R has a right adjoint itself,
which is a refinement of homR(S,−) : ModR ! ModR.

Proof *. Part (b) works in fact in much greater generality, see [HA, Theorem 4.5.3.1]. We
will see that the rest are formal consequences.

The existence of a functor homR : Modop
R × ModR ! ModR in part (a) follows from

adjoint functor theorem magic (initially, we only get a tensor-Hom adjunction with the outer
homR replaced by the actual Hom functor HomModR

: Modop
R × ModR ! An, but then it

formally follows for homR as well). To see that homR equals homModR
on underlying spectra,

we have to prove (c) first.
The existence of FS/R follows again from Lurie’s adjoint functor theorem: We know

that S ⊗R −, as an endofunctor of ModR, preserves colimits by Theorem II.62, hence
the same is true for S ⊗R − : ModR ! ModS , since both equivalences and colimits in
ModS can be detected on underlying spectra by the Segal condition from Theorem II.56c,
and Corollary II.56e, respectively. Hence FS/R exists. To see that it is the identity on
underlying spectra, note that S ⊗R (R ⊗S −) ≃ S ⊗S − implies FR/S ◦ FS/R ≃ FS/S, and
both FR/S and FS/S are just extraction of underlying spectra by Corollary* II.56g. This
also implies that FS/R preserves colimits, since these can be detected on underlying spectra.
Hence FS/R has itself a right adjoint hS/R : ModR ! ModS . Since right adjoints compose,
FS/R ◦hS/R is a right adjoint of S⊗R − : ModR ! ModR, hence hS/R is indeed a refinement
of homR(S,−) : ModR ! ModR. This proves (c).

Finally, to show that the underlying spectrum of homR(M,N) is homModR
(M,N), it

suffices to consider the case M = R, since then the general case follows by writing M
as a colimit of shifts of R (see the proof of Theorem II.57 for why that’s possible). But
homR(R,N) ≃ N by the tensor-Hom adjunction, and homModR

(R,N) ≃ homSp(S, N) ≃ N
by the adjunction from Corollary* II.56g.

It remains to see why in the case of an ordinary ring R, the derived tensor product on
D(R) and the tensor product on ModHR coincide. To this end, observe that for arbitrary
symmetric monoidal ∞-categories, there’s a strongly monoidal functor

C⊗ −! AlgLMod(C⊗)⊗ ,

which informally sends objects (c1, . . . , cn) to ((1C , c1), . . . , (1C , cn)), considering each ci as a
module over the trivial algebra 1C via Corollary II.56f .

II.63. Proposition. — The composite

D(R)⊗L
R −! AlgLMod

(
D(R)⊗L

R
)⊗L

R H
−! AlgLMod(Sp⊗)⊗

induces an equivalence of symmetric monoidal ∞-categories

H : D(R)⊗L
R

∼−! Mod⊗HR

HR .

Proof sketch*. We already know that H is an equivalence of underlying ∞-categories. Hence
it suffices to show

H
(
R[0]

)
≃ HR and H(M ⊗L

R N) ≃ HM ⊗HR HN
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(since then it formally follows that H preserves cocartesian lifts of active morphisms, hence
all cocartesian lifts). There’s nothing to show for the first equivalence. For the second, we’ll
use the bar construction from II.62a. Since H, being an equivalence, preserves colimits and
shifts, it suffices to consider the case M = R[0], which follows immediately from the fact that
R is the tensor unit in D(R)⊗L

R and HR is the tensor unit in Mod⊗HR

HR .

Miscellanea
The following stuff was only implicitly mentioned in the lecture (if at all), but Fabian gave a
detailed account in his notes, [A&HK, Remarks II.53].

II.64. Graded Structures on Homotopy Groups*. — The functor π0 : Sp! Ab is
lax symmetric monoidal, since it is the underlying functor of the composition

Sp⊗ Ω∞

−! CGrp(An)⊗ π0−! Ab⊗ ,

where we denote CGrp(An)⊗ ≃ CGrpOp∞(An×) (which makes sense, since the right-hand
side is symmetric monoidal by Proposition II.51), and use CGrpOp∞(Set×) ≃ Ab⊗ by
Example II.51b(a).

This implies that π0 induces functors

π0 : CAlg ≃ CAlg(Sp⊗) −! CAlg(Ab⊗) ≃ CRing ,
π0 : ModR ≃ LModR(Sp⊗) −! LModπ0(R)(Ab⊗) ≃ Modπ0(R)

for every E∞-ring spectrum R. In particular, π0(R) is an ordinary ring, and if M is an
R-module, then π0(M) is an ordinary π0(R)-module. But we can do better! For all i, j ∈ Z,
the multiplication µ : R⊗M !M induces morphisms

π0
(
S[−i] ⊗R

)
⊗ π0

(
S[−j] ⊗M

)
−! π0

(
S[−(i+ j)] ⊗R⊗M

) µ
−! π0

(
S[−(i+ j)] ⊗M

)
,

which provide a multiplication πi(R) ⊗ πj(M) ! πi+j(M). In the special case R = M , it
turns π∗(R) into a graded ring, and for general M we get a graded π∗(R)-module structure
on π∗(M)!

In fact, π∗(R) is graded commutative. To see this, we need to investigate the effect of
the canonical equivalence S[i] ⊗ S[j] ≃ S[j] ⊗ S[i] (we drop the minus signs for convenience)
on homotopy groups. This equivalence corresponds to an element of

π0 HomSp
(
S[i+ j],S[i+ j]

)
≃ πi+j

(
S[i+ j]

)
≃ Z .

Now S[i] ≃ Σ∞Si and S[j] ≃ Σ∞Sj . Since Σ∞ is strongly monoidal (Proposition II.51), we
see that the equivalence S[i] ⊗ S[j] ≃ S[j] ⊗ S[i] corresponds to

Si ∧ Sj ≃ (S1)∧i ∧ (S1)∧j ≃ (S1)∧j ∧ (S1)∧i ≃ Sj ∧ Si ,

given by permutation of factors. The permutation in question can be written as ij transposi-
tions, hence its sign is (−1)ij . Hence its action on πi+j(Si+j) ≃ Z is given by (−1)ij as well.
This proves graded commutativity.

Combining these considerations with II.54(c∗) for example, we see that the algebraic
K-theory K∗(R) = π∗(B∞k(R)) of any commutative ring R carries a graded commutative
ring structure, called the cup product on K-theory. In the next paragraph we’ll see that also
the cup product on singular cohomology arises in this way.
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II.65. The Cup Product and the Pontryagin Product*. — If M ∈ CGrp(An), then
S[M ] is an E∞-ring spectrum, as noted way back in II.54. Using Proposition II.60, this
implies that S[M ] ⊗ HR is an E∞-ring spectrum too for any ordinary ring R. Hence, by
II.64 and Corollary* II.55b there is a graded commutative ring structure on

π∗
(
S[M ] ⊗HR

)
≃ H∗(M,R) .

This is (our definition of) the Pontryagin product. A natural question is whether the cup
product in cohomology arises in a similar way. It does! The main ingredient is a construction
due to Glasman, which upgrades the Yoneda embedding Y C : C ! Fun(Cop,An) to a lax
symmetric monoidal functor

C⊗ −! Day(Cop
⊗ ,An×) ,

where Cop
⊗ denotes the induced symmetric monoidal structure on Cop (i.e., compose the

functor Stcocart(C⊗) : Lop ! Cat∞ with (−)op and observe that the Segal condition survives).
In particular, if A ∈ CAlg(C⊗) is a commutative algebra, which we abusingly identify with
its underlying C-object, then

HomC(−, A) : Cop −! An

is an element of CAlg(Day(Cop
⊗ ,An×)) ≃ FunOp∞(Cop

⊗ ,An×) (as in the proof of Lemma II.55,
we don’t even need that this is an equivalence), hence a lax symmetric monoidal functor.
Thus it defines a functor

HomC(−, A) : CAlg(Cop
⊗ ) −! CAlg(An×) .

The right-hand side equals CMon(An) by Theorem II.43. In particular, if B ∈ CAlg(Cop
⊗ ) is

a coalgebra in C, then HomC(B,A) has a canonical refinement in CMon(An).
Moreover one can check that SpOp∞(Day(C⊗,O)) ≃ Day(Cop

⊗ ,SpOp∞(O)) for all ∞-
operads O ∈ Oplex

∞ . Hence, if C⊗ is a stable ∞-operad, we can apply Theorem II.50 to the
functors HomC(−, A) above and obtain upgraded lax symmetric monoidal functors

homC(−, A) : Cop
⊗ −! Sp⊗ ,

homC(−, A) : CAlg(Cop
⊗ ) −! CAlg(Sp⊗) ≃ CAlg .

If C⊗ ≃ C× is the cartesian monoidal structure from Proposition II.42, then Cop
× ≃ (Cop)⊔ is

the cocartesian monoidal structure, and CAlg(Cop
× ) ≃ CAlg((Cop)⊔) ≃ Cop by the second half

of Theorem II.43. In particular, every anima X ∈ An is a coalgebra in the cartesian monoidal
structure. Hence S[X] ∈ CAlg(Spop

⊗ ), and then we see that homSp(S[X], E) is canonically an
E∞-ring spectrum for every E∞-ring spectrum E. Now Corollary* II.55b implies

π∗ homSp
(
S[X], HR

)
≃ H−∗(X,R) ,

whence II.64 endows the cohomology of X with a graded commutative ring structure. This
is (our definition of) the cup product.

II.66. E1-Ring Spectra*. — Elements of AlgAssoc(Sp⊗) are called E1-ring spectra. Many
of our results about E∞-ring spectra can be generalised to E1-ring spectra. But let me only
mention those that we’ll need in Chapter III.
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(a) Since S[−] : An× ! Sp⊗ is symmetric monoidal by Proposition II.51, it induces a functor

S[−] : Mon(An) ≃ AlgAssoc(An×) −! AlgAssoc(Sp⊗) .

In particular, if M ∈ Mon(An) is an E1-monoid, then its spherical group ring S[M ] is
an E1-ring spectrum.

(b) Tensor products of E1-ring spectra inherit a E1-ring structure by Proposition II.60.
(c) If A is an E1-ring spectrum and M a left module over it, then π∗(A) is a graded (but of

course not necessarily commutative) ring and π∗(M) a graded left π∗(A)-module.
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Chapter III.

The Group Completion
Theorem and the K-Theory
of Finite Fields

III
Our first goal in this chapter, and the content of the group completion theorem, is to
understand S[M∞-grp] in terms of S[M ] for M ∈ CMon(An). This turns out to be an easy
to understand localisation. So let’s understand localisations first.

Localisations of E∞-Ring Spectra
Recall that π0(E) ≃ π0 homSp(S, E) ≃ π0 HomSp(S, E) for every spectrum E (this follows
for example from Lemma* II.53a). Hence every element e ∈ π0(E) defines, up to hommotopy,
a map e : S! E.

III.1. Definition. — Let R ∈ CAlg is an E∞-ring spectrum, M ∈ ModR some module
over it, and S ⊆ π0(R) some subset. Then M is called S-local if for every s ∈ S the map

M ≃ S ⊗M
s⊗idM−−−−! R⊗M

µ
−!M

(“multiplication by s”) is an equivalence.

Our goal is to produce a localisation functor. Let’s do the case of a single element
s ∈ π0(R) first. We put

M [s−1] := colim
N

(
M

·s
−!M

·s
−!M

·s
−! . . .

)
,

the colimit being taken in ModR (which is cocomplete by Corollary II.56e; this corollary
also shows that we get a colimit on underlying spectra too). Since the tensor product on
ModR commutes with colimits (Theorem II.62), we have M [s−1] ≃ R[s−1] ⊗RM , and since
taking homotopy groups commutes with sequential colimits (Lemma II.31b(a∗)), we get
π∗(M [s−1]) ≃ π∗(M)[s−1]. Also there is a functorial map M !M [s−1], given by including
M as the first element of the colimit.

III.2. Proposition. — The functor −[s−1] : ModR ! ModR is a Bousfield localisation
onto the {s}-local R-modules.

Proof. It’s clear that M [s−1] is s-local. Indeed, whether s : M [s−1]!M [s−1] is an equiva-
lence can be checked on homotopy groups of underlying spectra (by the Segal condition from
Theorem II.56c plus Lemma* II.23c), where it is evidently true as π∗(M [s−1]) ≃ π∗(M)[s−1].
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Therefore, it suffices to check that the functorial maps ηM : M ! M [s−1] satisfy the
condition from Proposition I.61a. That is, we must show that

ηM [s−1], ηM [s−1] : M [s−1] ∼−!
(
M [s−1]

)
[s−1]

are equivalences. This is clearly true for ηM [s−1] because M [s−1] is {s}-local, hence it follows
for ηM [s−1] by the same “coordinate flip” trick as in the proof of Theorem II.30.

This now allows us to define localisations for arbitrary S ⊆ π0(R): If T ⊆ S is a finite
subset, say, T = {s1, . . . , sn}, put M [T−1] := M [(s1 . . . sn)−1]. Since being T -local can be
detected on homotopy groups, one readily checks that the T -local R-modules are precisely
the {s1 . . . sn}-local R-modules, hence −[T−1] : ModR ! ModR is a Bousfield localisation
onto the T -local R-modules by Proposition III.2. In general, we put

M [S−1] := colim
T⊆S finite

M [T−1] .

Note that a priori there is a coherence issue in this colimit: Namely, the si in T = {s1, . . . , sn}
are only defined up to homotopy. However, we have described M [T−1] in terms of a universal
property independent of any choice, so we don’t have to worry about coherence.

III.3. Corollary. — The functor −[S−1] : ModR ! ModR is a Bousfield localisation onto
the S-local objects.

Proof. Analogous to Proposition III.2.

Now what’s still missing is an argument why R[S−1] is an E∞-ring spectrum again, and
why the forgetful functor ModR[S−1] ! ModR (induced by II.62c and the map R! R[S−1],
which we are to show is a map of E∞-ring spectra) is an equivalence onto the S-local objects.
As we will just see, all of these follow from general principles, since R[S−1] ∈ Mod⊗R

R is a
typical example of a ⊗-idempotent object.

III.4. Proposition/Definition. — Let C⊗ be a symmetric monoidal ∞-category with
tensor unit 1C ∈ C. A map f : 1C ! x in C is called ⊗-idempotent if

idx ⊗ f : x⊗ 1C
∼−! x⊗ x

is an equivalence. In this case, the following assertions hold:
(a) The functor − ⊗ x = Lf : C ! C is a localisation onto the full sub-∞-category Cf ⊆ C

spanned by all y ∈ C that absorb f , i.e. those y for which idy ⊗f : y ⊗ 1C
∼−! y ⊗ x is

an equivalence.
(b) C⊗

f is a symmetric monoidal ∞-category, Lf : C ! Cf refines to a strongly monoidal
functor. Morever, for any y ∈ Cf , z ∈ C we have y ⊗ z ∈ Cf , and C⊗

f ⊆ C⊗ only fails to
be strongly monoidal because it doesn’t preserve tensor units.

(c) The strongly monoidal functor Lf : C⊗ ! C⊗
f from (b) induces a Bousfield localisation

Lf : CAlg(C⊗)! CAlg(C⊗
f ) ⊆ CAlg(C⊗) onto those algebras whose underlying C-object

absorbs f . In particular, x ∈ CAlg(C⊗), and the induced functor

Cf ≃ LModx(C⊗
f ) ∼−! LModx(C⊗)

is an equivalence.
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(d) If C⊗ has all small operadic colimits, then the equivalence from (c) refines to a strongly
symmetric monoidal equivalence

C⊗
f

∼−! LModx(C⊗)⊗x .

Proof. For (a), we’ll apply Proposition I.61a, as usual. The map f : 1C ! x induces a natural
transformation η : idC ≃ − ⊗ 1C ⇒ − ⊗ x ≃ Lf , so we must show that ηLf and Lfη are
equivalences. Up to reordering tensor factors, both amount to showing that

idy ⊗ idx ⊗f : y ⊗ x⊗ 1C
∼−! y ⊗ x⊗ x

is an equivalence for all y ∈ C, which is clear from the condition on x. Hence Lf is indeed a
Bousfield localisation, with unit η. By definition, an element y ∈ C absorbs f iff ηy : y ! Lf (y)
is an equivalence, hence Cf is indeed the essential image of Lf .

For (b), we use the criterion from II.37e(b). Unravelling the statement, we must show
that whenever g : y ! y′ is a morphism in C such that Lf (g) ≃ idx ⊗g : x⊗ y ∼−! x⊗ y′ is
an equivalence, then so is Lf (g ⊗ idz) ≃ idx ⊗g ⊗ idz : x⊗ y ⊗ z ∼−! x⊗ y′ ⊗ z for all z ∈ C.
But that’s just obvious, and so are the additional two assertions from (b).

For (c), note that the adjunction Lf : C Cf : i descends to adjunctions

Lf : CAlg(C⊗) CAlg(C⊗
f ) : i

Lf : LModx(C⊗) LModx(C⊗
f ) : i ,

because unit and counit as well as the triangle identities are inherited (and for the lower
adjunction we also need Lf (x) ≃ x). Moreover, the unit being an equivalence is inherited as
well, hence CAlg(C⊗

f )! CAlg(C⊗) is fully faithful, and the characterisation of its essential
image follows by inspection. The same argument shows that LModx(C⊗

f )! LModx(C⊗) is
fully faithful. To see that it’s essentially surjective as well, we must show that the underlying
C-object of every left x-module already absorbs f . So let m ∈ LModx(C⊗). By abuse of
notation, we identify m with its underlying C-object. Then there is a multiplication map
µ : x⊗m! m fitting into a diagram

m x⊗m m

x⊗m x⊗ x⊗m x⊗m

f⊗idm

f⊗idm

µ

∼

f⊗idx ⊗ idm f⊗idm

f⊗idx ⊗ idm idx ⊗µ

which shows that f ⊗ idm : m! x⊗m is a retract of an equivalence, hence an equivalence
itself. Hence LModx(C⊗

f ) ∼−! LModx(C⊗) is an equivalence. Finally, C⊗
f ≃ LModx(C⊗

f )
follows from Corollary II.56f , since x is the tensor unit of C⊗

f .
For (d), first note that by functoriality of the relative tensor product construction from

Theorem II.62, we get a lax monoidal functor

i : LModx(C⊗
f )⊗x −! LModx(C⊗)⊗x .

We would like to show that it’s a strongly monoidal equivalence. It certainly is an equivalence
on underlying ∞-categories by (c). Hence it suffices to check i(x) ≃ x and i(m ⊗x n) ≃
i(m) ⊗x i(n). The former is obvious. For the latter, recall that i only fails to be strongly
monoidal by not preserving the tensor unit, and hence both sides can be computed by the
exact same bar construction (see II.62a).
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Now, by construction and Proposition II.60, there are ∞-operad maps

u : LModx(C⊗
f )⊗x −! AlgLMod(C⊗

f )⊗ evm−−! C⊗
f .

We are done if we can show that their composition u is a strongly monoidal equivalence.
It is an equivalence on underlying ∞-categories by (c), hence it suffices to show u(x) ≃ x
and u(m ⊗x n) ≃ u(m) ⊗ u(n). The former is obvious again and the latter follows from
the fact that the bar construction computing u(m ⊗x n) is constant on u(m) ⊗ u(n), as
Bn(u(m), x, u(n)) ≃ u(m) ⊗ x⊗n ⊗ u(n).

III.4a. Corollary. — The R-module R[S−1] is naturally an E∞-ring spectrum and the
map R! R[S−1] is a map of E∞-ring spectra. The corresponding base change functor (see
II.62c)

R[S−1] ⊗R − : ModR −! ModR[S−1]

is a Bousfield localisation onto the S-local objects ModR,S ⊆ ModR. Under this equivalence,
the symmetric monoidal structures on ModR[S−1] (via Theorem II.62) and ModR,S (via
Proposition/Definition III.4(b)) get identified. Finally, for any E∞-ring spectrum T ,

HomCAlg
(
R[S−1], T

)
⊆ HomCAlg(R, T )

is the collection of path components of maps R! T that take S ⊆ π0(R) to units in π0(T ).

Proof *. This may seem tautological after Proposition/Definition III.4, but I don’t think it
is. For the first part, we know from Proposition/Definition III.4(c) that R ! R[S−1] is a
map in CAlg(Mod⊗R

R ), hence it’s also a map of E∞-ring spectra via the forgetful functor
Mod⊗R

R ! Mod⊗
S ≃ Sp⊗. Moreover, II.62c provides an adjunction

R[S−1] ⊗R − : ModR ModR[S−1] :FR[S−1]/R .

The forgetful functor FR[S−1]/R takes values in the full sub-∞-category ModR,S ⊆ ModR
of S-local objects. We claim the counit R[S−1] ⊗R FR[S−1]/R ⇒ id is an equivalence. But
equivalences of R[S−1]-modules can be detected on underlying spectra (even on homotopy
groups), so it definitely suffices that R[S−1] ⊗R N

∼−! N is an equivalence in ModR (rather
than ModR[S−1]) for every R[S−1]-module N . But this follows from Corollary III.3 and the
fact that N is S-local, as was noted above.

In particular, ModR[S−1] is a full subcategory of ModR. To show that it coincides with
ModR,S , consider the diagram

LModR[S−1]
(
Mod⊗R

R

)
LModR

(
Mod⊗R

R

)
LModR[S−1](Sp⊗) LModR(Sp⊗)

∼

induced by the lax symmetric monoidal functor Mod⊗R

R ! Sp⊗. The right vertical arrow is
an equivalence by Corollary II.56f , and by Proposition/Definition III.4(c), the top arrow
can be identified with the inclusion ModR,S ⊆ ModR. Hence the bottom arrow, which is
fully faithful with essential image contained in ModR,S , also hits of ModR,S . In particular,
the left vertical arrow is an equivalence as well, and one can even show that it is strongly
monoidal: It clearly preserves tensor units, hence all we need to check is

colim
∆∆op

Bar(M,R,N) ≃ colim
∆∆op

Bar
(
M,R[S−1], N

)
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for all S-local R-modules M and N . But we can permute colim∆∆op with the colimits defining
R[S−1], and then M and N being S-local does the rest.

The final assertion about HomCAlg can be checked on (derived) fibres over HomCAlg(R, T ).
That is, it suffices to check that once we choose a map f : R! T ,

HomR/CAlg
(
R[S−1], T

)
is either contractible or empty, depending on whether f maps S ⊆ π0(R) to units in π0(T )
or not. If it doesn’t, then HomCAlg(R[S−1], T ) ! HomCAlg(R, T ) doesn’t hit the path
component of f , hence the fibre–derived or not—is empty. So let’s assume f maps S ⊆ π0(R)
to units in π0(T ). To handle this case, we need to bring out a big gun: By a theorem of
Lurie,

R/CAlg ≃ CAlg(Mod⊗R

R ) .

The proof is in [HA]: See Corollary 3.4.1.7 for the statement, Example 3.3.1.12 for why Comm
is coherent, and 4.5.1.5 for a proof that our definition of module ∞-categories coincides with
Lurie’s.

In any case, we see that f : R ! T turns T into an element of CAlg(Mod⊗R

R ). By our
assumption on f , T is even an element of the full sub-∞-category CAlg(Mod⊗R

R,S), hence

HomCAlg(Mod⊗R
R

)

(
R[S−1], T

)
≃ HomCAlg(Mod⊗R

R
)(R, T )

by Proposition/Definition III.4(c). The right-hand side is contractible since R is initial in
CAlg(Mod⊗R

R ) ≃ R/CAlg, whence we are done.

Lecture 19
14th Jan, 2021

As an example of this machinery, consider the unique E∞ ring map S ! HZ (using
that S is initial in CAlg by Lemma/Definition II.45a). This map is sometimes called the
“Hurewicz map”—if you tensor with S[X] for some X ∈ An and take homotopy groups, you
get the stable Hurewicz morphism πs∗(X) ! H∗(X,Z) . Localising at Z ∖ {0} ⊆ Z = π0S
gives an equivalence

S
[
p−1 ∣∣ p prime

] ∼−! HQ .

Indeed, first of all, the natural map HZ ! HQ factors over HZ[p−1 | p prime] ! HQ by
the second part of Corollary III.4a, and this map must be an equivalence as one immediately
sees on homotopy groups. Moreover, the πi(S) are finite for i > 0 by a theorem of Serre,
hence they die in the localisation, so S[p−1 | p prime] ∼−! HQ is an equivalence on homotopy
groups as well.

III.5. Corollary. — The Eilenberg–MacLane functor

H : D(Q) −! Sp

defines an equivalence onto all spectra whose homotopy groups are rational (i.e., Q-vector
spaces).

Proof. Having rational homotopy groups is equivalent to being (Z ∖ {0})-local, hence these
spectra are precisely ModS[p−1 | p prime] ≃ ModHQ. On the other hand, H : D(Q) ∼−! ModHQ
is an equivalence by Theorem II.57.
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So in particular, H(M ⊗L
Q N) ≃ HM ⊗ HN holds for all M,N ∈ D(Q) by Proposi-

tion/Definition III.4(b). We would already know this for − ⊗HQ − instead of − ⊗ − (see
Proposition II.63), but as it is, it’s really new information. We also get that the “rational
stable Hurewicz map”

πs∗(X) ⊗ Q ≃ π∗
(
S[X]

)
⊗ Q ∼−! H∗(X,Q)

is an equivalence for all X ∈ An.

The Group Completion Theorem and K1(R)
From Proposition II.51 we get an adjunction S[−] : An× Sp⊗ :Ω∞, in which the right
adjoint is lax monoidal and the left adjoint even strongly so. As usual, this adjunction persists
after taking CAlg(−) on both sides. Since CAlg(An×) ≃ CMon(An) by Theorem II.43, the
new adjunction appears as

S[−] : CMon(An) CAlg :Ω∞ .

In particular, if R is an E∞-ring spectrum, then Ω∞R carries a E∞-monoid structure. In
fact, it carries another one, due to the fact that Ω∞ : Sp ! An factors over CGrp(An).
But these two structures are different! The former comes from the multiplicative structure
on R, whereas the latter comes from the additive structure: Since Ω∞ : Sp ! CGrp(An)
is an exact functor between additive categories, it induces a strongly monoidal functor
Sp⊕ ! CGrp(An)⊕ between the cartesian monoidal structures from Proposition II.42 (and
also Sp ≃ CMon(Sp⊗), CGrp(An) ≃ CMon(CGrp(An)⊗) by Theorem II.19), but these are
obviously different from Sp⊗ and CGrp(An)⊗. For example, on discrete abelian groups,
CGrp(An)⊗ encodes the usual tensor product (Example II.51b(a)), whereas CGrp(An)⊕

encodes their product.
Back to the matters at hand: Let R ∈ CAlg, and take Ω∞R with its multiplicative

E∞-monoid structure. Let moreover M ∈ CMon(An). We compute

HomCAlg
(
S[M∞-grp], R

)
≃ HomCMon(An)(M∞-grp,Ω∞R)
⊆ HomCMon(An)(M,Ω∞R)
≃ HomCAlg

(
S[M ], R

)
,

and the image of the inclusion on the second line consists of all path components of maps
M ! Ω∞R that take π0(M) to units in π0(Ω∞R). Now regard π0(M) as sitting inside
π0(S[M ]) via the isomorphism

π0
(
S[M ]

)
≃ H0(M,Z) ≃ Z

[
π0(M)

]
from Corollary* II.55b. Then we have more or less just shown:

III.6. Theorem (Group completion theorem, McDuff–Segal). — For all E ∈ Sp and
M ∈ CMon(An) there is a canonical equivalence(

E[M ]
)[
π0(M)−1] ∼−! E[M∞-grp]

as S[M ]-module spectra, and even S[M ]-algebra spectra if E ∈ CAlg. In particular,

H∗(M∞-grp,Z) ≃ H∗(M,Z)
[
π0(M)−1] .
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In Theorem III.6, and henceforth, we use the notation E[X] := E ⊗ S[X] for X ∈ An.
Also recall that M∞-grp ≃ ΩBM by Corollary II.21, which is how you’ll probably find this
result in the literature.

Proof of Theorem III.6. It follows from our calculation above that

HomCAlg
(
S[M∞-grp], R

)
⊆ HomCAlg

(
S[M ], R

)
is the collection of path components of those S[M ] ! R that send π0(M) ⊆ π0(S[M ]) ≃
Z[π0(M)] into units in π0(R). But this shows(

S[M ]
)[
π0(M)−1] ≃ S[M∞-grp]

by Corollary III.4a. The general case follows by tensoring with E. For the statement about
homology, take E ≃ HZ and apply Corollary* II.55b.

To warm up for our calculation of K1(R), let’s compute the homology of (Ω∞S)0, the
0-component of the E∞-group Ω∞S ≃ colimn∈N ΩnSn. To really warm up, Fabian decided
to give both corollaries the number III.7, but I’m not going do that as well.
III.6a. Corollary. — There is a canonical isomorphism

H∗
(
(Ω∞S)0,Z

)
≃ colim

n∈N
Hgrp

∗ (Sn,Z) .

Here Hgrp
∗ (Sn,Z) denotes the group homology of the nth symmetric group, and the transition

maps Sn ! Sn+1 are given by mapping Sn to the permutations that fix the element n+ 1.
Proof. First up, recall the standard fact that Hgrp

∗ (Sn,Z) ≃ H∗(BSn,Z), where BSn is the
image of Sn under

Grp(Set) ⊆ Grp(An) | |
−−! An .

(see II.6 for notation). Also recall that

πi(BSn, ∗) ≃

{
0 if i ̸= 1
Sn if i = 1

,

since Sn is a discrete anima and B shifts homotopy groups up (because its inverse Ω shifts
them down).

Now let S ≃
∐
n⩾0 BSn denote the free commutative monoid on a point, or equivalently,

the symmetric monoidal groupoid ({finite sets, bijections},⊔); see page 88. In particular,
π0(S) ≃ N. So in order to invert π0(S) in H∗(S,Z) ≃ Z[π0(S)], we only need to invert
the generator [1] ∈ π0(S). Fabian remarks that this notation is a bit awkward: [1] doesn’t
correspond to the unit in the ring Z[π0(S)], which is instead given by the unit 1 = [0] ∈ π0(S)
of the monoid π0(S) ≃ N. Also, by the Baratt–Priddy–Quillen theorem (Corollary II.32) we
have S∞-grp ≃ Ω∞S. Hence Theorem III.6 shows

H∗(Ω∞S,Z) ≃ colim
N

(
H∗(S,Z) ·[1]

−−! H∗(S,Z) ·[1]
−−! . . .

)
.

Now isolate the components corresponding to (Ω∞S)0 ≃ (S∞-grp)0 on both sides: In the
colimit on the right-hand side, ·[1] maps the component BS0 into BS1, then into BS2, then
into BS3 etc., and these maps BSn ! BSn+1 are precisely the transition specified in the
formulation of the corollary. Hence we really obtain

H∗
(
(Ω∞S)0,Z

)
≃ colim

n∈N
H∗(BSn,Z) ≃ colim

n∈N
Hgrp

∗ (Sn,Z) .
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III.6b. — There’s another way of phrasing the result from Corollary III.6a. Consider
the “group of finitely supported permutations” S∞ := colimn∈N Sn. The canonical map
S! S∞-grp ≃ Ω∞S induces a map

Z ×BS∞ ≃ colim
n∈N

(
S

·[1]
−−! S

·[1]
−−! . . .

)
−! colim

n∈N

(
Ω∞S ·[1]

−−! Ω∞S ·[1]
−−! . . .

)
≃ Ω∞S

(where we use that Ω∞S is already an E∞-group, so all transition maps in the second colimit
are equivalences). As all components of an E∞-group are equivalent, Corollary III.6a implies
that the map Z ×BS∞ ! Ω∞S induces isomorphisms

H∗(Z ×BS∞,Z) ∼−! H∗(Ω∞S,Z)

on homology. But it’s far from being a homotopy equivalence! Amusingly, this already
follows from Corollary III.6a itself: As seen in its proof,

π1
(
Z ×BS∞, (0, id)

)
≃ colim

n∈N
π1(BSn, id) ≃ S∞ ,

whereas

π1(Ω∞S, 0) ≃ H1
(
(Ω∞S)0,Z

)
≃ colim

n∈N
H1(Sn,Z) ≃ colim

n∈N
Sab
n ≃ Z/2Z .

The first isomorphism follows from the Poincaré lemma, as π1(Ω∞S, 0) ≃ π1(S) is already
abelian, the third isomorphism follows from the Poincaré lemma in group homology, and the
fourth from the fact that the commutator [Sn,Sn] ≃ An is the alternating group for n ⩾ 2,
which has index 2.

So Z × BS∞ ! Ω∞S is an example where the homology Whitehead theorem fails for
anima which aren’t simple. And also it shows that the group completion theorem fails
rather drastically before taking suspension spectra. The exact nature of this failure will be
thoroughly investigated in III.11a.

III.7. Corollary. — Let R be a ring. Then there’s a canonical isomorphism

H∗
(
k(R)0,Z

) ∼−! colim
n∈N

Hgrp
∗
(

GLn(R),Z
)
.

In particular,
K1(R) = colim

n∈N
GLn(R)ab ≃ GL∞(R)ab

Proof. While we don’t understand π0 Proj(R), to invert it in H∗(Proj(R),Z) it suffices to
invert the element [R] ∈ π0 Proj(R). Indeed, for every finite projectve R-module P , the class
[P ] “divides” some power of [R] in π0 Proj(R) since there is some Q such that P ⊕Q ≃ Rn.
Thus from Theorem III.6 applied to k(R) ≃ Proj(R)∞-grp we find

H∗
(
k(R),Z

)
≃ colim

n∈N

(
H∗
(

Proj(R),Z
) ·[R]
−−! H∗

(
Proj(R),Z

) ·[R]
−−! . . .

)
We have Proj(R) ≃

∐
[P ]∈π0 Proj(R) BGL(P ) by direct inspection. Indeed, by II.6, construct-

ing an equivalence from BGLn(P ) onto the component of P is the same as constructing
an equivalence BGLn(P ) ∼−! ΩP Proj(R) ≃ HomProj(R)(P, P ). But since Proj(R) is the
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1-groupoid of finite projective R-modules, the right-hand side just is the discrete anima
GLn(P ), as required.

As in the proof of Corollary III.6a, the assertion now follows by isolating the component
of 0 on both sides: In the colimit right-hand side, the component of 0 is mapped to BGL1(R),
then to BGL2(R), then to BGL3(R) etc., so we really get

H∗
(
k(R)0,Z

)
≃ colim

n∈N
H∗
(
BGLn(R),Z

)
≃ colim

n∈N
Hgrp

∗
(

GLn(R),Z
)
.

In the special case ∗ = 1, we apply the Poincaré lemma in singular homology (using that
π1(k(R), 0) is already abelian) and group homology to get the desired formula for K1(R).

III.7a. — As for Corollary III.6a, we could also reformulate Corollary III.7 as follows:
There exists a map K0(R) ×BGL∞(R)! k(R), which induces an isomorphism on homology.

Fabian also mentioned in the lecture, and elaborates in his notes [A&HK, Chapter III
pp. 48–49], that for r ∈ {quad, even}, one can computeH∗(gwr(Z),Z) via a similar calculation,
but this requires non-trivial input about π0 Unimodr(Z).

III.7b. K1(R) and Determinants. — Note that for P ∈ Proj(R) we get a map

Aut(P ) ≃ π1
(

Proj(R), P
)
−! π1

(
k(R), P

)
≃ K1(R)

(the last equivalence follows since all path components of the E∞-group k(R) must be equiva-
lent). If R is commutative then the determinant gives a map det : K1(R) ≃ GL∞(R)ab ! R×.
Composing it with the morphism Aut(P ) ! K1(R) from above gives a way to extend de-
terminants to automorphisms of arbitrary finite projective modules. Of course, such an
extension could also obtained by hand, but it pops out for free here. In general, for not
necessarily commutative rings R, we may think of the morphism Aut(P )! K1(R) as a good
“generalised determinant”.

If R is commutative, the kernel of det : K1(R) ! R× is usually denoted SK1(R) (the
“special” K-group). Since det admits a splitting via R× ≃ GL1(R)! GLab

∞ , we obtain

K1(R) ≃ R× ⊕ SK1(R) .

III.8. Proposition (Whitehead’s lemma). — The commutator subgroup of GL∞(R) is
generated by the elementary matrices

1 0 · · · 0

0
. . . r

...
...

. . . 0
0 · · · 0 1

 = n + rei,j

for i, j ∈ {1, . . . , n}, i ̸= j, and r ∈ R; in other words, by those (finite) matrices with all
diagonal entries equal to 1 and one off-diagonal entry equal to some r ∈ R.

So SK1(R) is the obstruction group for doing row operations to get any matrix into
diagonal form. In particular, SK1(R) = 0 if R is a euclidean domain.

Proof. Omitted. But Fabian’s notes [A&HK, Proposition III.8] have some details.

Lecture 20
19th Jan, 2021

Note that SK1(R) = 0 is not necessarily true when R is a PID, so we really need R to
have a euclidean algorithm. However, counterexamples are rather obscure (due to the fact
that SK1(OF ) = 0 whenever OF is the ring of integers in a number field): One can take
R = Z[X][Φ−1

n | n ∈ N] for example, where Φn denotes the nth cyclotomic polynomial.
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Towards the K-Theory of Finite Fields
Quillen’s computation of K∗(Fq) proceeds in a rather roundabout way, with the essential
step being a comparison with complex K-theory. This necessitates a detour into the land
of (various versions of) topological K-theory. But before that, we’ll take another detour
and compute the rational K-groups K∗(R) ⊗ Q, which will already have a heavy topological
flavour.

Rational K-Theory
Recall that the rational cohomology of any anima X ∈ An has a comultiplication

∆: H∗(X,Q) ∆∗−! H∗(X ×X,Q) ∼ − H∗(X,Q) ⊗H∗(X,Q) ,

where the right arrow is the Künneth isomorphism. It is coassociative and counital (the
counit being ε : H∗(X,Q) ! H∗(∗,Q) ≃ Q), hence makes H∗(X,Q) into a coalgebra—in
fancy words, an element of AlgAssoc((Ab⊗)op). As it turns out, H∗(X,Q) is moreover graded
commutative.

If X is connected, we have a canonical element 1 ∈ H0(X,Q), given by the image of
1 ∈ H0(X,Z) ≃ Z. An arbitrary element α ∈ H∗(X,Q) is then called primitive if

∆(α) = 1 ⊗ α+ α⊗ 1 .

To acquaint myself with the comultiplication a little more, I decided to put some of its
properties (which are probably clear to you) into a lemma.

III.8a. Lemma*. — Let X be connected.
(a) The primitive elements form a sub-Q-vector space of H∗(X,Q).
(b) For general α ∈ H∗(X,Q), we have

∆(α) = 1 ⊗ α+ α⊗ 1 +
∑
i

α′
i ⊗ α′′

i ,

where the α′
i and α′′

i are elements sitting in positive degrees.
(c) The rational Hurewicz map h : π∗(X,x) ⊗ Q! H∗(X,Q) lands in the primitives.

Proof *. Part (a) is clear since ∆ is Q-linear. For (b), we consider the following diagram:

H∗(∗ ×X,Q) Q ⊗H∗(X,Q)

H∗(X,Q) H∗(X ×X,Q) H∗(X,Q) ⊗H∗(X,Q)

H∗(X × ∗,Q) H∗(X,Q) ⊗ Q

∼

1⊗−

∆∗

−⊗1

pr2,∗

pr1,∗

ε⊗id

id ⊗ε

∼

∼

The diagram shows that the part of ∆(α) not contained in
⊕

i,j⩾1 Hi(X,Q)⊗Hj(X,Q) must
be 1 ⊗ α+ α⊗ 1, as claimed.
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Finally, for (c) take some element [f ] ∈ πn(X,x), represented by a map f : Sn ! X.
Then h[f ] is in the image of f∗ : H∗(Sn,Q)! H∗(X,Q) and hence it suffices to check that
all elements of H∗(Sn,Q) are primitive. But H∗(Sn,Q) is only non-zero in degrees 0 and n,
and ∆ respects the degree of an element, hence the formula from (b) shows that all elements
must indeed be primitive.

III.9. Proposition (Cartan–Serre). — Let X be a connected simple anima. That is, the
action of π1(X) on πn(X) is trivial for all n (in particular, π1(X) acts trivially on itself, it
must be abelian since its a well-known fact that π1(X) acts on itself via conjugation). Suppose
furthermore that the rational cohomology of X is a free graded-commutative Q-algebra of
finite type. Then the rational Hurewicz map

π∗(X) ⊗ Q −! H∗(X,Q)

is an isomorphism onto the primitives for all ∗ > 0.
Proof sketch. Choose free algebra generators xi ∈ Hni(X,Q), i = 1, . . . , r. By Theorem I.56a,
these determine (up to homotopy) a map

f : X −!
r∏
i=1

K(Q, ni) .

We claim:
(⊠) The map f induces an isomorphism on rational homotopy groups π∗ ⊗ Q.
Once we have (⊠), it suffices to check the assertion of the proposition in the special case
where X is a rational gem (“generalised Eilenberg–MacLane space”). This can be done by
a direct computation, using that the rational cohomology of Eilenberg–MacLane spaces is
known.

Since we also need it to show (⊠), let’s recall the result (a reference is [Die08, Theo-
rem (20.7.1)]):

H∗(K(Z, n),Q
)

= H∗(K(Q, n),Q
)

=
{
Q[t2i] if n = 2i
ΛQ[t2i+1] if n = 2i+ 1

(since K(Z, n) ! K(Q, n) is an isomorphism on rational homotopy groups, it’s also an
isomorphism on rational cohomology by Serre’s rational Hurewicz theorem, which is in turn
an application of the Leray–Serre spectral sequence). So if n = 2i is even, we get a polynomial
ring on a single generator in degree 2i, and if n = 2i+ 1 is odd, we get an alternating algebra
on a single generator in degree 2i + 1. Note that ΛQ[t2i+1] = H∗(S2i+1,Q) has only two
non-zero degrees.

By assumption on X and our choice of the xi, this implies that the map

f∗ :
r⊗
i=1

H∗(K(Q, ni),Q
)

≃ H∗

(
r∏
i=1

K(Q, ni),Q
)

∼−! H∗(X,Q)

is an isomorphism. In other words, f is an isomorphism in rational cohomology, hence also
in rational homology (all cohomology groups are finite-dimensional Q-vector spaces, thus
isomorphic to their duals). Now (⊠) follows from Serre’s rational Hurewicz theorem.

III.9a. Remark. — Fabian remarks that there are versions of Proposition III.9 that also
work without the finiteness assumptions. But then one has to be a bit careful to put the
right topology on our graded rings, and also to replace “free” by “topologically free”.
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III.9b. Hopf Algebras. — If M is a connected E1-group whose rational homology groups
H∗(M,Q) are finite-dimensional Q-vector spaces for all n ⩾ 0, then Proposition III.9 applies
to M . Indeed, the fact that M is simple holds more generally for all H-spaces, see [Hat02,
Example 4A.3] (but mind that Hatcher uses “abelian” rather than “simple”). To see that
H∗(M,Q) is a free graded commutative Q-algebra, we need to use that A = H∗(M,Q) is a
Hopf algebra over Q. This means the following:
(a) A has a multiplication µ : A ⊗ A ! A and a unit map u : Q ! A, which turn A into

an associative and unital (but not necessarily commutative) Q-algebra. In our case
A = H∗(M,Q) = π∗(HQ[M ]), we use that HQ[M ] is an E1-ring spectrum, hence its
homotopy groups form a graded ring (see II.66).

(b) A has a comultiplication ∆: A ! A ⊗ A and a counit ε : A ! Q, turning A into a
coassociative and counital Q-coalgebra. In our case A = H∗(M,Q) we use the structure
from the beginning of the subsection.

(c) µ and u are morphisms of Q-coalgebras, or equivalently, ∆ and ε are morphism of
Q-algebras. I’ll leave it to you to verify that this is satisfied in our case.

(d) A has an antipode, i.e. a Q-linear map i : A! A fitting into a commutative diagram

A⊗A A⊗A

A Q A

A⊗A A⊗A

(idA,i)

µ

∆

∆

ε u

(i,idA)

µ

In our case, we can i to be induced by (−)−1 : M !M .
Any graded commutative and degree-wise finite-dimensional Hopf algebra A over Q has

a free graded commutative underlying algebra (see [Hat02, Theorem 3C.4] for example).
In particular, if the rational homology of our connected E1-group M is degree-wise finite
dimensional, we may apply this result to the dual Hopf algebra H∗(M,Q) ≃ H∗(M,Q)∨

(which is graded commutative since H∗(M,Q) is graded cocommutative) and obtain that
H∗(M,Q) is a free graded commutative Q-algebra. Hence Proposition III.9 applies to M
and we obtain that

π∗(M) ⊗ Q −! H∗(M,Q)
is an isomorphism onto the primitives.

This is still true in the case where H∗(M,Q) isn’t necessarily finite-dimensional in every
degree, since Proposition III.9 can also be extended to this case (see Remark III.9a above).
Following [MM65, Appendix], we can say even more: Let A be a nononegatively graded
Hopf algebra over Q with A0 = Q (i.e. A is connected). Then the primitive elements
P (A) ⊆ A form a Lie algebra under the commutator, and if A is graded cocommutative,
then U(P (A)) ≃ A by a theorem of Leray (where U(g) denotes the universal enveloping
algebra of a Lie algebra g). Applying this to the graded cocommutative connected Hopf
algebra H∗(M,Q), we get

U
(
π∗(M) ⊗ Q

)
≃ H∗(M,Q) .

The Lie algebra structure on π∗(M) ⊗ Q can be described using the Samelson product
[−,−] : M ∧M !M .
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We can still say more: Let A be a nonnegatively graded Hopf algebra over Q with
A0 = Q. If A is both graded commutative and graded cocommutative, then it must be free
on its primitive elements by another general result. A reference for this result is [MM65,
Corollary 4.18], but this needs a short explanation: What the reference says is that in this
case the primitive elements of A coincide with its indecomposables, i.e. with

indec∗ A := coker
(
A>0 ⊗A>0

µ
−! A>0

)
.

If you think about this for a moment, this precisely means that A is free on its primitives, as
desired. Observe that if M is a connected E∞-monoid, then the Hopf algebra H∗(M,Q) is
both graded commutative and cocommutative, hence the result can be applied and H∗(M,Q)
it is free on its primitive elements π∗(M) ⊗Q. In the special case M ≃ Ω∞ for some E ∈ Sp,
the discussion around Corollary III.5 shows π∗(E)⊗Q ≃ π∗(E⊗HQ). Put the right-hand side
is H∗(E,Q) by Corollary* II.55b. Hence the primitive elements π∗Ω∞E ⊗ Q ≃ H∗⩾0(E,Q)
are given by the nonnegative part of the homology of E. This shows that

H∗(Ω∞E,Q) ≃ Symgr
Q
(
H∗⩾0(E,Q)

)
is the free graded commutative Q-algebra on H∗⩾0(E,Q).

III.10. Corollary. — For any ring R and all i ⩾ 1, there are a canonical isomorphisms

Ki(R) ⊗ Q ≃ indeciHgrp
∗
(

GL∞(R),Q
)
.

Here Hgrp
∗ (GL∞(R),−) is understood to denote colimn∈NH

grp
∗ (GLn(R),−).

Proof *. By definition, we have Ki(R)⊗Q ≃ πi(k(R)0)⊗Q, which is isomorphic to the degree-
i primitive elements of H∗(k(R)0,Q) by the discussion above, since k(R)0 is a connected
E∞-group. But from Corollary III.7 and the universal coefficient theorems for singular
homology and group homology, we get H∗(k(R)0,Q) ≃ Hgrp

∗ (GL∞(R),Q). Since this is a
graded commutative and graded cocommutative Hopf algebra, its primitive elements coincide
with its indecomposables by [MM65, Corollary 4.18], whence we are done.

Corollary III.10 reduces the computation of rational K-theory to a problem purely from
group homology. This still isn’t easy by any means, but known in many cases. For example,
we have the following theorem (whose proof, as Fabian explained, is pretty crazy and way
beyond the scope of this lecture):

III.11. Theorem (Borel). — If OF is the ring of integers in a number field F (i.e. a finite
extension F/Q), then the K-groups of OF are given by

Ki(OF ) ⊗ Q =


Q if i = 0
0 if i = 1 or i > 0 even
Qr+s if i ≡ 1 mod 4 and i > 1
Qs if i ≡ 3 mod 4

.

Here r and s are the numbers of real and complex embeddings of F , respectively.

The Cyclic Invariance Condition and Quillen’s Plus Construction
Let’s analyse what goes wrong with the group completion theorem before taking S[−], as
promised after Corollary III.6a.
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III.11a. A Subtlety. — For simplicity, we assume that M ∈ CMon(An) is an E∞-monoid
for which there is an s ∈ π0(M) with (π0(M))[s−1] ≃ π0(M)grp. This is always true in our
cases of interest; for example, we’ve seen it for M = S and M = k(R) in the proofs of
Corollaries III.6a and III.7. If you’re not willing to make this assumption, you’ll have to
iterate the constructions to come.

Since CMon(An) ≃ CAlg(An×) by Theorem II.43, we can form the module category
LModM (An×) as in Example II.45(e). The adjunction from Corollary* II.56g shows
π0 HomLModM (An×)(M,M) ≃ π0 HomAn(∗,M) ≃ π0(M), hence multiplication with s is
an M -module map (as we would expect). Now put

T (M, s) ≃ colim
N

(
M

s
−!M

s
−!M

s
−! . . .

)
.

By Corollary II.56e, T (M, s) is naturally an M -module again. But T (M, s) is usually not
s-local, i.e. the map s : T (M, s)! T (M, s) fails to be an equivalence!

For example, take M = S and s = [1], then T (S, [1]) ≃ Z × BS∞, as seen after
Corollary III.6a. But multiplication with [1] does not correspond to shifting components!
It does take {n} × BS∞ ! {n + 1} × BS∞, but this map is not the identity on BS∞,
and in fact not even an equivalence. Instead, it can be described as follows: Let’s identify
permutations with their corresponding permutation matrices and consider the map

φ : S∞ −! S∞

A 7−!

(
A 0
0 1

)
.

Then [1] : {n} ×BS∞ ! {n+ 1} ×BS∞ is given by Bφ : BS∞ ! BS∞. This can’t be an
equivalence since it’s not even the induced morphism on fundamental groups, which is φ, is
an isomorphism.

To unwind what’s going on, let temporarily r ∈ π0(M) be another element (we’ll soon
take r = s, but doing it right away would be confusing rather than illuminating). Then the
multiplication r : T (M, s)! T (M, s) can be described by a big diagram

T (M, s)

T (M, s)

r ≃ colim
N


M M M . . .

M M M . . .

r

s

///τ r

s

///τ

s

r

s s s

 .

The homotopy τ occurring in every square comes from the symmetric monoidal structure on
M , so in particular, τ is an equivalence and the squares commute. However, in the special case
r = s, τ doesn’t need to be the constant homotopy, i.e. the identity in HomFun(M,M)(s2, s2),
but rather whatever equivalence the symmetric monoidal structure gives us. After all,
commutativity is a structure, not a property!

In the example of M = S, the symmetry isomorphism between [n] · [m] : S ! S and
[m] · [n] : S! S is not the identity. Indeed, on matrix representations of permutations we
may visualise [n] · [m] and [m] · [n] as

[n] · [m] : A 7−!

A 0 0
0 m 0
0 0 n

 and [m] · [n] : A 7−!

A 0 0
0 n 0
0 0 m


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and in this picture, the symmetry isomorphism “flips the lower two blocks”. This looks super
tautological and you really have to look twice to see why this isn’t the identity. But it really
isn’t: If m = n = 1, then [1] · [1] : S! S adds two elements to each finite set S ∈ S, and
the symmetry isomorphism swaps these two new elements!

Back to the general situation: Since we’ve seen that s : T (M, s)! T (M, s) might not be
an equivalence, the argument we would normally use cannot apply. So what is this “usual
argument”? If s̃ : T (M, s)! T (M, s) denotes the map induced by the constant homotopies,
we can construct an inverse t : T (M, s)! T (M, s) by means of the diagram

T (M, s)

T (M, s)

t ≃ colim
N


M M M . . .

M M M . . .

s

///id

s s

///id

s

s

s

s

s

s


(use cofinality to see that t is really an inverse). But since s : T (M, s) ! T (M, s) doesn’t
necessarily coincide with s̃, the map t doesn’t necessarily provide an inverse.
III.11b. Why Does It Work for Spectra Though? — For an E∞-ring spectrum R, a
module M over it, and an element s ∈ π0(R), we have defined the localisation M [s−1] as
T (M, s) in Proposition III.2, and have had no problems with M not being s-local. This was
because we can detect on homotopy groups whether s : T (M, s)! T (M, s) is an equivalence.
The reason why this fails in general, even though equivalences can still be detected on
homotopy groups of underlying anima, are basepoint issues: In general, we must consider all
possible basepoints, and there might be non-equivalent connected components, whereas for
spectra the canonical choice of basepoints always suffices (which was something we had to
argue in the proof* of Lemma* II.23c).
III.11c. When Does It Work in General? — We’ve seen in III.11a that the map
s : T (M, s)! T (M, s) is an equivalence if τ = id. But we can do better: Actually, it suffices
to have τn = id ∈ HomFun(M,M)(sn+1, sn+1) for some n ⩾ 1, since we can also write

T (M, s) ≃ colim
N

(
M

sn

−!M
sn

−!M
sn

−! . . .
)

by cofinality. Moreover, we don’t need the 2-cell τ (or τn for that matter) to be trivial right
away, it suffices when it’s trivial after mapping to T (M, s).

To formalise these considerations, let’s construct natural maps Sn ! π1(M,mn) for all
m ∈ M and n ⩾ 1. I’m still a bit confused about how we did this in the lecture, so I’ll give
an alternative description of (hopefully) the same construction: Since M ∈ CMon(An), it
defines a functor M (−) : Lop ! An sending ⟨n⟩ to Mn. From functoriality of M (−) we get a
homotopy-commutative diagram

Sn HomLop
(
⟨n⟩, ⟨n⟩

)
HomAn(Mn,Mn) HomAn

(
{(m, . . . ,m)},Mn

)
Mn

∗ HomLop
(
⟨n⟩, ⟨1⟩

)
HomAn(Mn,M) HomAn

(
{(m, . . . ,m)},M

)
M

(fn)∗ µ∗ µ∗

≃

fn ≃

It induces a map Sn !Mn ×M {µ}, unique up to contractible choice. But upon inspection,
the composition Sn !Mn from the top row sends everyone of the n! points of the discrete
anima Sn to the point (m, . . . ,m) ∈ Mn, hence we even get a map

Sn −! {(m, . . . ,m)} ×Mn Mn ×M {µ} ≃ {mn} ×M {mn} ≃ ΩmnM ,
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again unique up to contractible choice. This finally provides an honestly unique map
Sn ! π0ΩmnM ≃ π1(M,mn). With this, we can formulate the following criterion:

III.12. Proposition (“Cyclic invariance criterion”). — Let M ∈ CMon(An) be an E∞-
monoid with an element s ∈ M such that π0(M)[s−1] ≃ π0(M)grp. Then the following
conditions are equivalent:
(a) The map s : T (M, s)! T (M, s) is an equivalence.
(b) The fundamental groups of all components of T (M, s) are abelian.
(c) The fundamental groups of all components of T (M, s) are hypoabelian, i.e. have no

perfect subgroups except the trivial group {e}.
(d) The map S3 ! π1(M,m3)! π1(T (M, s),m3) kills the permutation (123) ∈ S3 for all

m ∈ M .
(e) There is an n ⩾ 2 such that Sn ! π1(M,mn)! π1(T (M, s),mn) kills the permutation

(12 . . . n) ∈ Sn for all m ∈ M .
In this case, T (M, s) inherits a canonical E∞-monoid structure, and

M∞-grp ≃ T (M, s) .

Proof.Lecture 21
21st Jan, 2021

Let’s prove first that (a) implies the addendum. This will take us a bit longer than
in the lecture or in Fabian’s notes, since I’m trying to be super precise when dealing with
M -modules and their symmetric monoidal structure, to unconfuse myself. The reason Fabian
has to deal with this technical stuff at all is an inconspicuous but nasty problem: It’s not at
all clear why T (M, s) is an E∞-monoid again. And it doesn’t help us to know that CMon(An)
has colimits, since the maps s : M ! M the colimit is taken over are not even maps of
E∞-monoids!

Enough of that and let’s get going. From Theorem II.62 we get a symmetric monoidal
∞-category M⊗M := LModM (An×)⊗M whose tensor unit is M and whose tensor product
commutes with colimits in either variable. We’ve already seen in III.11a that T (M, s) is
canonically an element of M. We claim that M ! T (M, s) is ⊗M -idempotent in the sense of
Proposition/Definition III.4. Indeed, since M is the tensor unit and −⊗M T (M, s) commutes
with colimits, what we need to show is that

T (M, s) ∼−! colim
N

(
T (M, s) s

−! T (M, s) s
−! T (M, s) s

−! . . .
)

is an equivalence. But that follows from (a). Now the whole package from Proposi-
tion/Definition III.4 can be applied. By essentially the same argument as for T (M, s), we see
that an element N ∈ M absorbs M ! T (M, s) iff s : N ∼−! N is an equivalence, i.e., iff N
is {s}-local. Hence − ⊗M T (M, s) : M!M is a Bousfield localisation onto the full sub∞-
category Ms ⊆ M of {s}-local objects. Moreover, T (M, s) ∈ CAlg(M⊗M

s ) ⊆ CAlg(M⊗M ).
Now we use that

CAlg(M⊗M ) ≃ M/CAlg(An×) ≃ M/CMon(An)

(see [HA, Corollary 3.4.1.7] and the references in the proof of Corollary III.4a). In particular,
T (M, s) is an E∞-monoid, hence an E∞-group since π0(T (M, s)) ≃ π0(M)[s−1] ≃ π0(M)grp is
a group by assumption. Hence the map M ! T (M, s) factors over a map M∞-grp ! T (M, s),
which we are to show is an equivalence. By Yoneda’s lemma, it suffices to show that

HomCMon(An)
(
T (M, s), X

) ∼−! HomCMon(An)(M∞-grp, X)
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is an equivalence for all X ∈ CGrp(An). This can be done on fibres over HomCMon(An)(M,X).
That is, it suffices to show that once we choose a map M ! X, we get

HomM/CMon(An)
(
T (M, s), X

) ∼−! HomM/CGrp(An)(M∞-grp, X)

The right-hand side is contractible since HomCMon(An)(M∞-grp, X) ≃ HomCMon(An)(M,X).
Writing R/CMon(An) ≃ CAlg(M⊗

M ), we see that X ∈ CAlg(M⊗M ). But X is clearly
{s}-local since it is an E∞-group, thus it is already an element of CAlg(M⊗M

s ). Hence
Proposition/Definition III.4(c) implies

HomCAlg(M⊗M )
(
T (M, s), X

)
≃ HomCAlg(M⊗M )(M,X) ,

and the right-hand side is contractible as M is initial in CAlg(M⊗M ) ≃ M/CMon(An). This
finishes our rather verbose proof of the first implication.

The addendum implies (b), since the fundamental group of the unit component of any
E1-monoid is abelian by the Eckmann–Hilton argument, and all path components of T (M, s)
are equivalent since it is even an E∞-group.

The implications (b) ⇒ (c), (b) ⇒ (d), and (d) ⇒ (e) are all trivial. For (c) ⇒ (e),
note that A6 ⊆ S6 is perfect, hence the image of (12 . . . 6) ∈ A6 in the hypoabelian group
π1(T (M, s),mn) must vanish.

Finally, let’s show (e) ⇒ (a). We’ve seen in III.11a that s : T (M, s) ! T (M, s) is an
equivalence if τ = id, which holds if the image of the flip (12) under S2 ! π1(M,m2)
vanishes. But as argued in III.11c, we really only need that some power of τ vanishes in
T (M, s), which replaces the vanishing of (12) under S2 ! π1(M,m2) with the vanishing of
(12 . . . n) under Sn ! π1(M,mn).

If the assumptions of Proposition III.12 are not satisfied, we can still describe M∞-grp in
terms of T (M, s). To this end let Anhypo ⊆ An be the full sub-∞-category of hypoabelian
anima, i.e. those X for which π1(X,x) has no perfect subgroup except the trivial group {e}
for every basepoint x ∈ X.

III.13. Proposition (Kervaire, Quillen). — The inclusion Anhypo ⊆ An admits a left
adjoint (−)+ : An! Anhypo. The natural unit map X ! X+ induces an equivalence

S[X] ∼−! S[X+] ,

hence an isomorphism in homology. Moreover, (−)+ preserves products.

As you undoubtedly have guessed already, (−)+ is called the Quillen plus construction,
which is a bad name since the construction is actually due to Kervaire.

Proof of Proposition III.13. Throughout the proof we assume without restriction that X is
connected (so no basepoints of fundamental groups need to be specified). Since the proof
will be a bit lengthy, we divide it into four steps.
(1) We construct X+ in the case where π1(X) is perfect itself.

Pick generators fi : S1 ! X, i ∈ I, of π1(X) and form the pushout∐
i∈I S1 X

∗ X

.
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Then an easy excision calculation shows that H2(X,X,Z) = Z⊕I is free. Also note that
H1(X,Z) = π1(X)ab = 0 since the perfect group π1(X) equals its own commutator.

Hence the long exact homology sequence

. . . −! H2(X,Z) −! H2(X,X,Z) −! H1(X,Z) = 0

shows that H2(X,Z) ↠ H2(X,X,Z) is surjective. It’s also easy to check that It’s easy to see
that X is simply connected; for example, use Seifert–van Kampen ([Hat02, Theorem 1.20])
plus some fiddling to get its assumptions fulfilled. Hence π2(X) = H2(X,Z) by Hurewicz’s
theorem. Putting everything together, we see that we may pick maps gi : S2 ! X, i ∈ I,
such that their images in H2(X,X,Z) form a basis. Now put∐

i∈I S2 X

∗ X+

.

Again, it’s easy to check that X+ is simply connected. Also X ! X+ is an isomorphism in
homology. To see this, one can for example use the same excision calculation as before to
compute that Hi(X+, X,Z) equals Z⊕I for i = 3 and vanishes in all other degrees, and then
use the long exact sequence of the triple (X+, X,X) to deduce H∗(X+, X,Z) = 0.
(2) Still in the case where π1(X) is perfect, we use obstruction theory to verify that

HomAn(X+, Z) ∼−! HomAn(X,Z) is an equivalence for all hypoabelian anima Z.
We didn’t have time for this step in the lecture, so here’s my own argument. It suffices

to check that

HomAn
(
K,HomAn(X+, Z)

)
−! π0 HomAn

(
K,HomAn(X,Z)

)
is a bijection for all anima K. We may rewrite the left-hand side as π0 HomAn(X×K,Z) and
the right-hand side as π0 HomAn(X+ ×K,Z). By the Künneth theorem and the universal
coefficients formulas, we get that X × K ! X+ × K is an isomorphism in homology and
cohomology with arbitrary coefficients. In particular,

H∗(X+ ×K,X ×K,πn(Z, z)
)

= 0

(as long as the homotopy group that occurs is abelian). If Z is simply connected, or at least
simple, we can apply [Hat02, Corollary 4.73] (mind that Hatcher calls simple spaces “abelian”
instead) to see that π0 HomAn(X+ ×K,Z) ↠ π0 HomAn(X ×K,Z). But it’s also injective:
The map

(X+ ×K) × {0, 1} ∪ (X ×K) × ∆1 −! (X+ ×K) × ∆1

is a homology equivalence again (use Mayer–Vietoris for example), hence we may use the
same argument to lift homotopies. This settles the case where Z is simply connected.

For the general case, the idea is to consider the universal covering of Z, but the details
get a little technical. First, it suffices that

Hom∗/An
(
(X+, x), (Z, z)

) ∼−! Hom∗/An
(
(X,x), (Z, z)

)
is an equivalence for all choices of base points, since equivalences of anima can be checked
on (derived) fibres. Since evx : F(X,Z) ! F({x}, Z) = Z is a Kan fibration, we may use
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F∗((X,x), (Z, z)) = F(X,Z) ×Z {z} and similarly F∗((X+, x), (Z, z)) = F(X+, Z) ×Z {z},
with pullbacks taken in sSet, as explicit simplicial models for the Hom anima in ∗/An.
Moreover, we may assume that Z = Sing Y for some actual CW complex Y . In this situation,
we claim that there is an actual equality of simplicial sets

F∗
(
(X,x),Sing(Y, y)

)
= F∗

(
(X,x),Sing(Ỹ, ỹ)

)
,

where (Ỹ, ỹ) ! (Y, y) is the universal covering. Together with the analogous assertion for
X+, this will seal the deal since we already know that Hom∗/An((X,x),Sing(Ỹ, ỹ)) and
Hom∗/An((X+, x),Sing(Ỹ, ỹ)) are equivalent from the simply connected case.

To see the claim, we unwind that the set of n-simplices F∗((X,x),Sing(Y, y))n is the set
of all maps X× ∆n ! Sing Y that send {x} × ∆n to the basepoint {y}, or by adjunction, the
set of all continuous maps f : |X| × |∆n|! Y with the same basepoint property. But since
π1(|X| × |∆n|) = π1(X) is perfect, whereas π1(Y, y) is hypoabelian, any such continuous map
f induces the trivial map f∗ = const 1 : π1(|X| × |∆n|)! π1(Y, y) on fundamental groups.
Hence, by covering theory (see [Hat02, Propositions 1.33 and 1.34] for example), f has a
unique lift

Ỹ

|X| × |∆n| Y
f

∃! f̃

such that f̃ sends {x} × |∆n| to {ỹ}. And so we are done.
(3) We construct X+ in general and show that it satisfies the required universal property.

Let P ⊆ π1(X) be the largest perfect subgroup (just consider the subgoup generated by
all perfect subgroup and check it’s perfect). Let X̃ ! X be the covering space associated
to P ([Hat02, Theorem 1.38]). Note that P ⊆ π1(X) is normal (since its conjugates are
also perfect), hence π1(X̃) = P by more covering theory. This means that we know hw to
construct X̃+ and can put

X̃ X̃+

X X+

.

in general. Since X̃+ is simply connected by construction, a Seifert–van Kampen argument
again shows π1(X+) = π1(X)/P , which is now hypoabelian by construction. Moreover,

HomAn(X+, Z) ≃ HomAn(X,Z) ×HomAn(X̃,Z) HomAn(X̃+, Z) ≃ HomAn(X,Z)

for all hypoabelian anima Z, since we already know HomAn(X̃, Z) ≃ HomAn(X̃+, Z).
(4) We verify that S[X] ∼−! S[X+] is an equivalence and that (−)+ commutes with finite

products.
Both assertions are completely formal. We have HomSp(S[X], E) ≃ HomAn(X,Ω∞E) and

HomSp(S[X+], E) ≃ HomAn(X+,Ω∞E). But the right-hand sides coincide because Ω∞E is
hypoabelian. In fact, it is an E∞-group and thus all its path components are equivalent and
have abelian fundamental group. Thus S[X] ≃ S[X+] by Yoneda.

For the second assertion, ∗+ ≃ ∗ holds for trivial reasons. To see (X × Y )+ ≃ X+ × Y +,
first note that the right-hand side is hypoabelian since π1 : An ! Grp commutes with
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products. Hence it suffices to show that the composite X × Y ! X+ × Y ! X+ × Y +

induces equivalences after taking HomAn(−, Z) for Z hypoabelian. But

HomAn(X+ × Y, Z) ≃ HomAn
(
Y,HomAn(X+, Z)

)
≃ HomAn

(
Y,HomAn(X,Z)

)
≃ HomAn(X × Y,Z)

if Z is hypoabelian, hence X+×Y ! X×Y induces an equivalence after taking HomAn(−, Z),
and for X+ × Y ! X+ × Y + we can use the same argument again.

III.14. Proposition. — If M ∈ CMon(An) has an element s ∈ π0(M) such that
π0(M)[s−1] = π0(M)grp, then

T (M, s)+ ≃ T (M+, s) ≃ M∞-grp .

Proof. First of all, Proposition III.12(b) and (e) imply that T (M+, s) has abelian fundamental
group: Indeed, it suffices to check that the permutation (12 . . . 6) ∈ S6 gets killed under
the map S6 ! π1(T (M+, s),mn), but this map factors through the hypoabelian group
π1(M+,mn), in which the perfect subgroup A6 ⊆ S6 containing (12 . . . 6) already dies. Thus,
to show T (M, s)+ ≃ T (M+, s), it suffices to check that the right-hand side satisfies the
universal property of the Quillen plus construction:

HomAn
(
T (M+, s), Z

)
≃ lim

Nop

(
. . .

s∗

−! HomAn(M+, Z) s∗

−! HomAn(M+, Z)
)

≃ lim
Nop

(
. . .

s∗

−! HomAn(M,Z) s∗

−! HomAn(M,Z)
)

≃ HomAn
(
T (M, s)+, Z

)
holds for all Z ∈ Anhypo, so indeed T (M, s)+ ≃ T (M+, s). Now consider the square

T (M, s)+ M∞-grp

T (M+, s) (M+)∞-grp

∼ ∼

∼

The left vertical arrow is an equivalence as we just showed, and the bottom arrow is an
equivalence by Proposition III.12. The right vertical arrow is an isomorphism on S[−], using
S[M ] ≃ S[M+] by Proposition III.13 and Theorem III.6, hence an isomorphism on homology
by Corollary* II.55b, hence an equivalence by Whitehead’s theorem, since both spaces are
simple (because any H-space is; see [Hat02, Example 4A.3], but mind that Hatcher uses
“abelian” instead of “simple”).

We obtain Quillen’s first definition of algebraic K-theory.

III.14a. Corollary. — For any ring R,

k(R) = K0(R) ×BGL∞(R)+ .
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Proof. By Proposition III.14 and the arguments from the beginning of the proof of Corol-
lary III.7, we have

k(R) ≃ Proj(R)∞-grp ≃ colim
N

(
Proj(R) ·[R]

−−! Proj(R) ·[R]
−−! . . .

)+

Isolating the 0-component on both sides gives k0(R) ≃ (colimn∈NBGLn(R))+ ≃ BGL∞(R)+.
Now k(R) ≃ π0k(R) × k(R)0 ≃ K0(R) ×BGL∞(R)+ as all components in an E∞-group are
equivalent.

Topological K-Theory
Our next goal is to get some understanding of ku and the Adams operations on it, which
will play a prominent role in Quillen’s comparison with the K-theory of finite fields. The
first thing to do is to get another description of ku as well as the other E∞-groups ko, ktop,
and ksph from Definition II.14a.

III.15. Corollary. — For V ∈ {O,U,Top,G} put BV := colimn∈NBV(n), where in the
last two cases we define Top(n) := AutTop(Rn), equipped with the compact-open topology,
and G(n) := Aut∗/An(Sn, ∗). Then

ko ≃ Z ×BO , ku ≃ Z ×BU , ktop ≃ Z ×BTop , and ksph ≃ Z ×BG .

Moreover if X is a finitely dominated CW complex, i.e. a retract of a finite one, then the
comparison maps from II.14 are equivalences

VectR(X)∞-grp ∼−! HomAn(X, ko) , EuclR(X)∞-grp −! HomAn(X, ktop) ,
VectC(X)∞-grp ∼−! HomAn(X, ku) , SphR(X)∞-grp ∼−! HomAn(X, ksph) .

In particular, ko0(X) = π0 Hom(X, ko) and ku0(X) = π0 HomAn(X, ku) are the group
completions of the (ordinary) monoids of isomorphism classes of real and complex vector
bundles on X, respectively.

Proof. We’ll only do the cases of ko and ku, but Fabian’s script [A&HK, Chapter III
pp. 21–24] also has intersting things to say about ksph. First recall Lemma* II.14b, which
says

VectR ≃
∐
n⩾0

BO(n) and VectC ≃
∐
n⩾0

BU(n) .

Hence π0VectR = N and π0VectC = N, with generators [R] and [C] respectively, and we find

T
(
VectR, [R]

)
≃ Z ×BO and T

(
VectC, [C]

)
≃ Z ×BU .

Since B shift homotopy groups up, we get π1(BO) ≃ π0(O) ≃ {±1} (via the determinant)
and likewise π1(BU) ≃ π0(U) ≃ {1}. These groups are abelian, thus Proposition III.12(b)
shows that Z ×BO and Z ×BU are already the E∞-group completions of VectR and VectC.
That is, they coincide with ko and ku, as claimed.

For the assertion about the comparison maps, recall VectR(X) ≃ HomAn(X,VectR) (see
II.14). If X is a finite anima, then HomAn(X,−) commutes with sequential (and even filtered)
colimits. This clearly still holds if X is only finitely dominated. Hence

HomAn(X, ko) ≃ HomAn
(
X,T (VectR, [R])

)
≃ T

(
VectR(X), [X × R]

)
.
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Since ko is an E∞-group, so is the left-hand side, hence so is the right-hand side. Now use
the fact that every vector bundle on X is a direct summand of a trivial bundle to see that
s = [X × R] satisfies the condition from Proposition III.12, and then that proposition shows
T (VectR(X), [X × R]) ≃ VectR(X)∞-grp. For the additional assertion, recall

π0 HomAn(X,VectR) ≃ π0VectR(X)

(the VectR on the right-hand side has no curly “V” and denotes the groupoid of real vector
bundles on X) by the classification of principal bundles and Lemma* II.14c. Hence

ko0(X) = π0 HomAn(X, ko) = π0
(

HomAn(X,VectR)∞-grp) =
(
π0VectR(X)

)grp
,

as claimed. The complex case works completely analogous.

III.15a. ko∗(−) and ku∗(−) as Cohomology Theories. — Recall that the tensor
product − ⊗R − on Proj(R) turns B∞k(R) into an E∞-ring spectrum, as explained in
II.54(c∗). The same argument essentially works again for the real tensor product − ⊗R −
on VectR and the complex tensor product − ⊗C − on VectC, up to some check that they
are compatible with the Kan enrichment (as defined in II.14) to ensure that the coherent
nerves VectR and VectC are indeed elements of CAlg(CMon(An)⊗). Up to this technicality,
we see that B∞ko and B∞ku are E∞-ring spectra! Also note that his doesn’t work for ktop
or ksph.

Using Corollary* II.55b, we now recognize

koi(X) = πi HomAn(X, ko) = πi homSp
(
S[X], B∞ko

)
= (B∞ko)i(X)

for all i ⩾ 0. In particular, ko∗(−) ≃ π∗ HomAn(−, ko) and ku∗(−) ≃ π∗ HomAn(−, ku)
can be canonically extended to cohomology theories in both positive and negative degrees.
However, this is not the extension which topologists are usually calling “K-theory”. Instead,
it will turn out (and this is the content of the famous Bott periodicity theorem, which will
appear as Theorem III.16 in a moment) that in positive degrees ko∗(−) and ku∗(−) are
8-periodic and 2-periodic, respectively, and the “usual” way to extend them is to make them
periodic in all integral degrees.

If you’ve seen topological K-theory before, this situation might look familiar: One usually
constructs K0(X) as the group completion of VectR(X) or VectC(X), and then one gets
K-theory in negative degrees (which correspond to positive degrees in our sign convention, see
the discussion after Corollary* II.55b) for free since the suspension isomorphism is supposed
to be satisfied. But after that there’s the problem of extending it to all integral degrees, thus
making K-theory a cohomology theory at all. This is done using Bott periodicity. We’ve
seen above that B∞ko and B∞ku provide another extension to a cohomology theory, known
as connective topological K-theory. To emphasise the difference, the “usual” topological
K-theory is sometimes called periodic topological K-theory.

III.15b. Hopf Bundles. — To formulate Bott periodicity properly, we need the following
vector bundles (see [Hat02, Examples 4.45–4.47] for a construction):

(γR1 ! RP1) ∈ Vect1
R(S1) , (γH1 ! HP1) ∈ Vect4

R(S4) , and (γO1 ! OP1) ∈ Vect8
R(S8)

(where H denotes the quaternions and O the octonions) and also

(γC1 ! CP1) ∈ Vect1
C(S2)
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(which is 1-dimensional as a complex bundle, hence the Vect1
C is not a typo). As mentioned

in Corollary III.15, we have π0VectR(Sn) = π0 HomAn(Sn, ko). Hence every vector bundle
ξ ! Sn defines a homotopy class of maps ξ : Sn ! ko. If the vector bundle in question is d-
dimensional, the map ξ has image in {d}×BO ⊆ Z×BO ≃ ko. Similar to our considerations
in III.11a, there is a map +[R] : ko! ko (induced by the one we took the colimit over to
construct ko ≃ T (VectR, [R]) in the first place) which sends {i} ×BO! {i+ 1} ×BO. If
−[Rd] denotes the d-fold iteration of its inverse, then we can postcompose ξ with −[Rd] to
obtain a map ξ − [Rd] : Sn ! ko, which lands in the 0-component ko0 ≃ {0} × BO, hence
defines an element of πn(ko0).

Applying this construction to the Hopf bundles γR1 , γH1 , and γO1 , and its complex analogue
to the Hopf bundle γC1 , we obtain elements

η = γR1 − [R] ∈ π1(ko0) , β = γC1 − [C] ∈ π2(ku0) ,
σ = γH1 − [R4] ∈ π4(ko0) , ν = γO1 − [R4] ∈ π8(ko0) .

Since B∞ko and B∞ku are E∞-ring spectra, we see that π∗(ko0) = π∗(B∞ko) and π∗(ku0) =
π∗(B∞ku) are graded commutative rings by II.64 (and more generally, the same is true for
ko∗(X) and ku∗(X) using the cup product from II.65). In fact, we’ll see in a second that
they are even honest commutative, since the odd degrees vanish or have characteristic 2.
III.16. Theorem (Bott periodicity). — The elements β ∈ π∗(ku0) and η, σ, ν ∈ π∗(ko0)
define isomorphisms

Z[β] ∼−! π∗(ku0) and Z[η, σ, ν]/(2η, η3, ησ, σ2 − 4ν) ∼−! π∗(ko0) .

In particular, we can refine the description from II.14 as follows:

πn(ku) ≃

{
Z⟨βi⟩ if n = 2i
0 if n = 2i+ 1

and πn(ko) ≃



Z⟨νi⟩ if n = 8i
Z/2⟨ηνi⟩ if n = 8i+ 1
Z/2⟨η2νi⟩ if n = 8i+ 2
0 if n = 8i+ 3
Z⟨σνi⟩ if n = 8i+ 4
0 if n = 8i+ 5
0 if n = 8i+ 6
0 if n = 8i+ 7

.

We won’t prove Theorem III.16. If you want to read up on this, you’ll find proofs in any
book on topological K-theory but Fabian particularly likes Bott’s original proof, the most
accessible treatment of which can probably be found in [Mil63, §§23–24].

As a consequence, we can now define spectra KU and KO with Ω∞−2iKU = ku and
Ω∞−8iKO ≃ ko for all i ∈ Z, which are thus 2-periodic and 8-periodic, respectively. Another
description is

KU ≃ (B∞ku)[β−1] and KO ≃ (B∞ko)[ν−1]
(in Proposition III.2, we only saw how to localise elements from π0, but the construction
is straightforward to generalise to elements from arbitrary degrees). In this formluation
we immediately see KO,KU ∈ CAlg. The associated cohomology theories KU∗(−) and
KO∗(−) were studied by Atiyah and Hirzebruch, and are known as (periodic) topological
K-theory. They coincide with ku∗(−) and ko∗(−) in nonnegative degrees (which correspond
to nonpositive degrees in the usual sign convention).
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III.17. Adams Operations on K-Theory. — The Adams operations are certain maps
ψi : ku! ku. We’ll construct them in two steps:
(1) We’ll massage the exterior power maps Λi : VectC(X)! VectC(X) on complex vector

bundles long enough to turn them into maps λi : ku! ku of anima (not respecting any
E∞-structures though).

Let’s suppose X is finitely dominated at first. Then ku0(X) ≃ (π0VectC(X))grp by
Corollary III.15. The main obstacle later on will be to bypass the finiteness assumptions on
X, but right now, there’s another problem: We would like to extend

Λi : π0VectC(X) −! ku0(X)

to all of ku0(X). However, knowing that ku0(X) ≃ (π0VectC(X))grp (as X is assumed to be
finitely dominated) doesn’t help us as Λi is not even a map of monoids! However, this can
be easily fixed as follows: Instead of considering each Λi on its own, we combine all of them
into a single map

Λ: π0VectC(X) −! ku0(X)JtK

[V ] 7−!
∑
i⩾0

[ΛiV ]ti ,

where ku0(X)JtK denotes the ring of power series over ku0(X), which is a ring itself as noted
before Theorem III.16. From the formula

Λn(V ⊕W ) =
⊕
i+j=n

Λi(V ) ⊗ Λj(V ) ,

we get that Λ is a homomorphism onto the subgroup 1 + t · ku0(X)JtK ⊆ ku0(X)JtK× of
the group of units of the ring ku0(X)JtK. In the case where X is finitely dominated, hence
ku0(X) ≃ (π0VectC(X))grp, we may thus extend Λ to a map

Λ: ku0(X) −! ku0(X)JtK ,

which is a group homomorphism into ku0(X)JtK×. Writing Λ =
∑
i⩾0 t

iΛi, we obtain natural
maps Λi : ku0(X) ! ku0(X) for all finitely dominated X (but note that the Λi neither
preserve the additive, nor the multiplicative structure).

We would like to extend the Λi to natural maps Λi : ku0(X) ! ku0(X) for all anima
X, i.e., to a natural transformation from the functor ku0(−) : (πAn)op ! Set to itself. By
definition, we have

ku0(X) = π0 HomAn(X, ku) = HomπAn(X, ku) ,

hence ku0(−) = HomπAn(−, ku) is represented by ku. By the 1-categorical Yoneda lemma,
any endotransformation of ku0(−) thus corresponds to a map ku ! ku in πAn, or put
differently, to an element of ku0(ku). The idea how to construct the element λi ∈ ku0(ku)
we’re looking for is simple: We “approximate” ku by suitable finite anima, on which we
already know what Λi does, and show that all finite stages together combine into a unique
element of ku0(ku). Let’s give a sketch of how to make this precise!

First off, we need to compute ku0(ku). Now both ku and KU (and more generally any
E∞-ring spectrum E satisfying π3(E) = π5(E) = . . . = π2n+1(E) = . . . ) is an example of a
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multiplicative complex oriented cohomology theory. These are E∞-ring spectra E for which
the natural inclusion S2 ≃ CP1 ⊆ CP∞ induces a surjection E2(CP∞) ↠ E2(S2). A general
fact about multiplicative complex oriented cohomology theories is the formula

E∗(BU(n)
)

≃ π∗(E)Jc1, . . . , cnK ,

where the ci ∈ E−2i(BU(n)) are the Chern classes in E-cohomology. The power series ring
is to be understood in a graded sense. That is, we allow infinite sums of elements of the
same degree, but not of different degrees. Alternatively, you can work with the convention
that graded cohomology rings are products E∗(X) =

∏
n∈ZE

n(Z) rather than direct sums⊕
n∈NE

n(X) and get a power series ring on the nose. A proof of the formula can be found
in [Lur10, Lecture 4], but be warned that Lurie’s sign convention is E∗(X) = π−∗(EX). So
in particular, Lurie has to invert the grading on π∗(E) to make the formula work (which he
doesn’t tell you). Here we have a clear instance where Fabian’s sign convention is superior!

Apply the above formula to E ≃ ku, which has π∗(ku) = Z[β], where β in degree 2 is the
Bott element from Theorem III.16. Using ku ≃ Z ×BU, we find

ku0(ku) =
∏
n∈Z

Z
q
βici

∣∣ i ⩾ 1
y
.

Now that we have computed ku0(ku), we enter phase 2 of our plan and try to “approximate”
ku by finite anima. Let Grk(Cm) be the Grassmannian parametrising k-dimensional sub-C-
vector spaces of Cn, and let γCk,m ! Grk(Cm) be the tautological bundle. By the classification
of vector bundles, it defines a homotopy class of maps Grk(Cm)! BU(k). Furthermore, we
have a maps BU(k)! {n} ×BU ⊆ ku for all n ∈ Z. Letting k, m, and n vary thus provides
a single map

ku0(ku) −!
∏
n∈Z

∏
0⩽k⩽m

ku0(Grk(Cm)
)
.

This map is injective, which follows essentially from the formula for ku0(ku) above and from
the definition of Chern classes. Now the Grassmannians Grk(Cm) are finite CW complexes,
hence we already know what Λi : ku0(Grk(Cm))! ku0(Grk(Cm)) is supposed to do. Using
the injectivity above, one checks that the [ΛiγCk,n] combine into a unique element λi ∈ ku0(ku),
which is what we’re looking for.

The upshot is that we get natural maps λi : ku! ku (these are maps of anima, but fon’t
preserve any E∞-structures). For any anima X, they induce maps λi : ku0(X) ! ku0(X)
which satisfy

λn(x+ y) =
∑
i+j=n

λi(x) · λj(y) ∈ ku0(X)

for all x, y ∈ ku0(X). We’ve thereby reached our goal of Step (1).
(2) We show how one can extract ring homomorphisms ψi : ku0(X)! ku0(X) from the λi

by a purely algebraic procedure.
The buzzword here is that {λi | i ⩾ 0} turn ku0(X) into a λ-ring. For a precise definition,

consult the nLab; in a nutshell, it means one has a ring R together with maps λi : R! R
of sets that satisfy the relation above, as well as a bunch of other relations for λn(xy) and
λn(λm(x)), which are all satisfied for exterior powers of vector bundles, and thus also in our
case. And now extracting the ψi from the λi is a purely algebraic procedure in that it can
be done for any λ-ring.
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Just as the Λi in Step (1) behave nicer once combined into a single power series, the same
happens for the λi. For better normalisation behaviour later one, we put

λ̃(x) :=
∑
i⩾0

(−1)iλi(x)ti ∈ ku0(X)JtK

this time. As for Λ, one checks that λ̃ : ku0(X)! 1 + t · ku0(X)JtK ⊆ ku0(X)JtK× is a group
homomorphism into the unit group of ku0(X)JtK. To get a homomorphism into the additive
group of ku0(X)JtK instead, we would like to take “logarithms”. To this end, let

ℓ(t) :=
∑
i⩾1

(−1)i−1ti

i
∈ QJtK

be the formal power series of the Taylor expansion of log(1 + x) : (−1, 1) ! R. Then the
coefficients φi(x) of ℓ(λ̃(x) − 1) ∈ (ku0(X) ⊗ Q)JtK are additive functions of x (note that
λ̃− 1 has constant coefficient 0, so we may plug it into any other formal power series). To
get integer coefficients instead of rational ones, we take formal derivatives (which preserves
additivity of the coefficients), and therefore we arrive at the following definition:

III.17a. Definition. — For i ⩾ 1, the ith Adams operation ψi : ku0(X) ! ku0(X) is
defined by

−ℓ
(
λ̃(x) − 1

)′ =
∑
i⩾0

ψi+1(x)ti ∈ ku0(X)JtK ,

and for i = 0 we put ψ0(x) = rk(x) · [C] ∈ ku0(X), where rk : ku ≃ Z × BU ! Z is the
projection to path components.

Lecture 22
26th Jan, 2021

For later use, we record that the derivative in Definition III.17a evaluates to

ℓ
(
λ̃(x) − 1

)′ = − λ̃(x)′

λ̃(x)
= −

∑
i⩾0

(
1 − λ̃(x)

)i · λ̃(x)′ .

III.18. Proposition. — For all X ∈ An we have:
(a) For all i ⩾ 0, ψi : ku0(X)! ku0(X) is a ring homomorphism.
(b) For all i, j ⩾ 0, ψi ◦ ψj = ψij.
(c) If L ∈ Vect1

C(X) is a line bundle on X, then ψi([L]) = [L]i = [L⊗i] for all i ⩾ 0.
(d) If p is a prime, then ψp(x) ≡ xp mod p. That is, the ψp are Frobenius lifts!
(e) For all i, n ⩾ 0, ψi(βn) = inβn ∈ ku0(S2n, ∗).

We should perhaps explain the notation from Proposition III.18(e), as well as why βn is
an element of ku0(S2n, ∗). The relative ku-group ku0(S2n, ∗) is defined as

ku0(S2n, ∗) := ker
(
ku0(S2n)! ku0(∗)

)
= ker

(
π0 HomAn(S2n, ku)! π0 HomAn(∗, ku)

)
.

Using π1(HomAn(∗, ku), 0) = π1(ku0) = 0 by Theorem III.16, we see that ku0(S2n, ∗) equals
π2n(ku0) ≃ Z⟨βn⟩. Hence (e) makes indeed sense.

Combining Proposition III.18(a), (b), and (d), we see that the {ψi | i ⩾ 0} are uniquely
determined by the ψp for p a prime, and these guys are commuting Frobenius lifts. This
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holds in fact for all λ-rings! Moreover, it is a theorem of Wilkerson that conversely any choice
of commuting Frobenius lifts on a Z-torsion free ring defines a unique λ-structure. This
makes λ-rings interesting to number theorists; in particular, to people working in finite or
mixed characteristic—and especially, I’d like to add, to people working in “characteristic 1”.

Proof sketch of Proposition III.18. Parts (a), (b), and (d) work for arbitrary λ-rings and can
thus be proved by horrible manipulations of power series (for (a) and (b) you’ll need some
additional properties of the λi that we didn’t specify). We’ll immediately see that in the
case of K-theory, there’s a dirty shortcut, but before we do that, let me prove (d) in general
because it isn’t so horrible at all and I like Frobenii.

By Definition III.17a, ψp(x) is the coefficient of tp−1 in ℓ(λ̃(x)−1)′. In our formula above,
only those summands (1 − λ̃(x))i · λ̃(x)′ with i ⩽ p− 1 will contribute to the coefficient of
tp−1. Using this together with(

1 − λ̃(x)
)p ≡ 1 − λ̃(x)p mod p ,

we get that ψp(x) modulo p is the coefficient of tp−1 in

−
p−1∑
i=0

(
1 − λ̃(x)

)i · λ̃(x)′ ≡ −
1 −

(
1 − λ̃(x)

)p
1 −

(
1 − λ̃(x)

) · λ̃(x)′

≡ − λ̃(x)p

λ̃(x)
· λ̃(x)′

≡ −λ̃(x)p−1 · λ̃(x)′ mod p

(dividing by λ̃(x) is fine since it is an element of ku0(X)JtK× as seen above). Now observe
that −λ̃(x)p−1 · λ̃(x)′ = − 1

p (λ̃(x)p)′ and that

λ̃(x)p ≡
∑
i⩾0

(−1)ipλi(x)iptip mod p .

Hence the coefficient of tp in λ̃(x)p is (−1)pλ1(x)p + py = −xp + py for some y. Hence the
coefficient of tp−1 in − 1

p (λ̃(x)p)′ is − 1
p (−pxp + p2y) ≡ xp mod p and we’re done.

Next, we prove (c) and explain how it can be used to give a quick and dirty proof of (a),
(b), and (d), which only works for ku0(X), but not for general λ-rings. For (c), we find that
λ̃([L]) = 1 − [L]t, hence

−ℓ
(
λ̃([L]) − 1

)′ =
∑
i⩾0

[L]i+1ti ,

and thus ψi([L]) = [L]i for all i ⩾ 1. For i = 0 it holds by Definition III.17a.
To show (a), (b), and (d), we first verify that all ψi : ku0(X)! ku0(X) are additive. This

is easy and holds more or less by construction (we took the logarithm of a homomorphism
into the multiplicative unit group of ku0(X)JtK). To show multiplicativity as well as (b) and
(d), note the these follow from additivity and (c) whenever our vector bundles [V ] ∈ ku0(X)
can be decomposed into a direct sum V = L1 ⊕ · · · ⊕Ln of line bundles. This clearly doesn’t
hold in general. However, by the splitting principle, there’s always a map f : F ! X such
that f∗ : ku∗(X)! ku∗(F ) is injective and f∗(V ) decomposes into a sum of line bundles. By
naturality of the Adams operations, this allows us to reduce everything to the decomposable
case, whence we are done.
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Finally, we prove (e). From the 1-categorical Yoneda lemma we know that the ψi also
exist as (homotopy classes of) maps ψi : ku ! ku. Then ψi(βn) ∈ ku0(S2n, ∗) = π2n(ku0)
corresponds to the map

S2n βn

−! ku ψi

−! ku .

Using (a), we see that ψi(βn) = ψi(β)n also holds in the homotopy ring π∗(ku0). Hence it
suffices to consider the case n = 1. In this case, recall β = [γC1 ] − [C], where [C] ∈ ku0(S2n)
acts as the multiplicative unit, and compute

ψi(β) = ψk
(
[γC1 ] − [C]

)
= [γC1 ]i − [C] = β

i−1∑
j=0

[γC1 ]j = iβ .

Here we used (c) as well as the general fact that cup products in generalised cohomology
theories vanish on suspensions, so β2 = 0 ∈ ku0(S2, ∗) and thus β[γC1 ]j = β holds for all
j = 0, . . . , i− 1.

A Sketch of Quillen’s Computation
Throughout this subsection, p is a prime number and q some power of p. By Proposi-
tion III.18(a) and the 1-categorical Yoneda lemma, the Adams operations induce (homotopy
classes of) maps ψi : ku! ku, which preserve the 0-component ku0 ≃ {0} ×BU.

III.19. Theorem (Quillen [Qui72]). — Any embedding ρ : F×
p ↪! C× as the group⊕

ℓ ̸=p µℓ∞ of all roots of unity of order coprime to p gives an equivalence

Brρ : k(Fq)0
∼−! fib(ψq − id : BU −! BU

)
.

Consequently,

Ki(Fq) =


Z if i = 0
Z/(qn − 1) if i = 2n− 1
0 else

.

The group µℓ∞ of ℓ-power roots of unity is called the Prüfer ℓ-group. There are many
more ways to write it down, such as Z[ℓ−1]/Z or Qℓ/Zℓ or Z/ℓ∞. Using that the group of
units in any finite field is cyclic, one easily finds F×

p ≃
⊕

ℓ ̸=p µℓ∞ . But there is no canonical
embedding of this into C×, hence we remember ρ in the notation Brρ. It should be noted
that Brρ also depends on the embedding Fq ↪! Fp into an algebraic closure, which we chose
to suppress in the notation

Proof sketch of Theorem III.19. The computation of K∗(Fq) = π∗(k(Fq)0) is a consequence
of the long exact sequence of homotopy groups associated to the fibre sequence

fib(ψq − id) −! BU ψq−id
−−−−! BU ,

using that π∗(BU) vanishes in odd degrees by Theorem III.16, and that in even degrees the
map ψq − id : π2n(BU)! π2n(BU) acts as (qn−1) : Z⟨βn⟩! Z⟨βn⟩ by Proposition III.18(e).

Now we’ll sketch a proof of the first part, up to the extensive group homology calculations
that go into it. To get a map

k(R)0 −! fib(ψq − id) ,
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we will first construct “compatible” maps BGLn(R) ! fib(ψq − id) for all n ⩾ 1 to get a
map BGL∞(Fq) ! fib(ψq − id). Then observe that the right-hand side is simple: Indeed,
it’s a general fact about fibre sequences F ! E ! B that the action of π1(F, f) on π∗(F, f)
factors through an action of π1(E, f) on π∗(F, f). Since no one (including Quillen) ever seems
to spell that out, I’ll give the details in Lemma* III.19b below. Anyway, this shows that
fib(ψq− id) is indeed simple since π1(BU) = 0. The fundamental group of any simple space is
abelian, hence the universal property from Proposition III.13 together with Corollary III.14a
provide an extension

k(R)0 ≃ BGL∞(Fq)+ −! fib(ψq − id) .

If we can show that this is an isomorphism on homology, then we’re done by Whitehead’s
theorem, since both sides are simple: k(R)0 because it is an H-space, and fib(ψq− id) because
we just checked this. By Proposition III.13, we may replace BGL∞(Fq)+ by BGL∞(Fq), and
by “standard arguments”, it suffices to have isomorphisms on homology with coefficients in Q,
Z/p, and Z/ℓ for all ℓ ̸= p. The latter is again something no one ever spells out, so we’ll give
a proper argument in our brief discussion of completions of spectra, see Lemma III.22h(b∗).

Since π∗ fib(ψq − id) are p-torsionfree torsion abelian groups, the “Hurewicz theorem
modulo a Serre class” (see for example [Hat02, Theorem 5.7] in Hatcher’s additional chapter
on spectral sequences) shows that the same must be true for H∗(fib(ψq − id),Z), hence

H∗
(

fib(ψq − id),Q
)

= 0 and H∗
(

fib(ψq − id),Z/p
)

= 0 .

Furthermore, if G is a finite group, then the group homology Hgrp
∗ (G,A) for any coefficients

A is annihilated by #G. In particular, it vanishes for A = Q, hence

H∗
(
BGL∞(Fq),Q

)
= colim

n∈N
Hgrp

∗
(

GLn(Fq),Q
)

= 0

The bulk of Quillen’s proof goes into comparing the homology H∗(BGL∞(Fq),Z/ℓ) and
H∗(fib(ψq− id),Z/ℓ) for ℓ ̸= p, and another significant portion into H∗(BGL∞(Fq),Z/p) = 0.
Both problems are essentially about group homology and would take us too much time, so
we’ll refer to Quillen’s original paper [Qui72] instead.

What we will do, however, is to construct the desired map BGL∞(Fq) ! fib(ψq − id).
To give this construction some structure, I decided to divide it into four steps.
(0) We recall some facts from the representation theory of finite groups.

If you are someone like me who dodged representation theory for their entire mathematical
life, Fabian recommends you put a copy of [Ser77] on your nightstand and read a page per
day; it will make you a better mathematician within a semester. So let G be a finite group
and Rk(G) its representation ring over some field k (that is, Rk(G) = K0(k[G])). We’ll need
the following facts:
(a) There is a map

rep: RC(G) −! ku0(BG) ,

sending a representation V ∈ RC(G), i.e. a C-vector space with a G-action, to the
vector bundle EG×G V ! BG. Alternatively, it can be described as sending a group
homomorphism r : G! U(n) to the map BG! BU(n)! {n} ×BU ⊆ ku. It suffices
to consider homomorphisms r : G ! U(n) ⊆ GLn(C), since we can always find a G-
equivariant scalar product on any G-representation V (start with any scalar product
⟨ , ⟩′ on V and put ⟨u, v⟩ = #G−1∑

g∈G⟨r(g)u, r(g)v⟩′ to make it G-equivariant).
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(b) For any field k, there are exterior power maps Λi : LModk[G] ! LModk[G]. Just as in
Step (1) of III.17 (minus the technical mumbo-jumbo about complex oriented cohomology
theories), these induce maps of sets λi : Rk(G)! Rk(G), turning the representation ring
Rk(G) = K0(k[G]) into a λ-ring. And just as in Step (2) of III.17, we can then extract
Adams operations ψi : Rk(G)! Rk(G) from them. In the case k = C, it follows from
the constructions that rep: RC(G) ! ku0(BG) from (a) commutes with the Adams
operations on both sides.

(c) Recall that a class function on G is a function G! C which is constant on conjugacy
classes. One of the first result about complex representations is that the function

χ : RC(G) ↪−! {class functions G! C}

is injective (and an isomorphism on RepC(G) ⊗ C). Here χ sends a representation V to
the class function χV : G! C given by χV (g) = tr(g : V ! V ).

(d) The map χ from (c) interacts with the Adams operations ψn from (b) as follows:

χ
(
ψn(V )

)
(g) = χ(V )(gn) .

To see this, fix V and g, and let λ1, . . . , λd be the eigenvalues of g : V ! V , counted with
algebraic multiplicity (so that d = dimV ). Then the eigenvalues of Λmg : ΛnV ! ΛnV
are given by the products λi1 · · ·λim for 1 ⩽ i1 < · · · < im ⩽ m. In particular, tr(Λmg)
is the mth elementary symmetric polynomial in the λi. Hence

χ
(
λ̃(V )

)
(g) =

d∑
m=0

χ(ΛmV )(g)tm =
d∏
i=1

(1 − λit) .

The derivative of the right-hand side is −
∑d
i=1 λi

∏
j ̸=i(1 − λjt). Plugging in our

definitions, together with the formula after Definition III.17a, thus shows

∑
n⩾0

χ
(
ψn+1(V )

)
(g)tn =

d∑
i=1

λi
1 − λit

=
∑
n⩾0

d∑
i=1

λn+1
i tn .

Comparing coefficients, plus the fact that the eigenvalues of gn are precisely λn1 , . . . , λnd
(for example by Jordan decomposition) proves the claim.

With that out of the way, let’s start with the actual construction.
(1) For any embedding ρ : F×

p ↪! C× as the group
⊕

ℓ ̸=p µℓ∞ of all roots of unity of order
coprime to p we construct the famous Brauer lift

Brρ : RFp

(
GLn(Fq)

)
−! RC

(
GLn(Fq)

)
.

For any Fp-representation V of GLn(Fq), we form its Brauer character

χρV : GLn(Fq) −! C ,

sending an element g to χρV (g) =
∑
λ mult(λ)ρ(λ), where the sum runs over the Fp-eigenvalues

of g : V ! V , with their algebraic multiplicities mult(λ). Since eigenvalues are preserved
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under conjugation, χρV is a class function on GLn(Fq). By a classical result of Green [Gre55,
Theorem 1], χρV is in the image of the injection

χ : RC(GLn(Fq)) ↪−! {class functions GLn(Fq) −! C}

from (c) above. This gives rise to the Brauer lift Brρ : RFp
(GLn(Fq))! RC(GLn(Fq)). We

can now form a diagram

RFp

(
GLn(Fq)

)
RC
(

GLn(Fq)
)

RFq

(
GLn(Fq)

)
ku0(BGLn(Fq)

)
Brρ

repFp⊗Fq −

Also recall that ku0(BGLn(Fq)) = π0 HomAn(BGLn(Fq), ku). Hence the canonical represen-
tation GLn(Fq) ↷ Fnq defines a homotopy class of maps BGLn(Fq)! ku. We have yet to
show that these maps lift to fib(ψq − id), and that the lifts are compatible for varying n.
(2) As a first step in that direction, we verify that the composition

RFq

(
GLn(Fq)

)
−! RFp

(
GLn(Fq)

) Brρ

−! RC
(

GLn(Fq)
)

takes values in the fixed points of ψq.
Since the map χ from (c) above is injective, it’s enough to verify this after composition

with χ. Recall that Fq ⊆ Fp is the fixed field of the Frobenius (−)q : Fp ! Fp. Hence, if λ is
an eigenvalue of g : Fp ⊗Fq V ! Fp ⊗Fq V , then so are λq, λq2

, λq
3
, . . . , each of them with the

same multiplicity as λ. Hence

χρ
Fp⊗FqV

(g) =
∑
[µ]

mult(µ)
∑
λ∈[µ]

ρ(λ) ,

where the first sum ranges over all Frobenius orbits [µ]. Using assertion (d) from Step (0)
shows that applying ψq only replaces g by gq. But the eigenvalues of gq are the qth powers
of the eigenvalues of g (for example by Jordan decomposition), and replacing each λ by λq
only permutes the summands in

∑
λ∈[µ] ρ(λ), hence χρ

Fp⊗FqV
is indeed invariant under the

action of ψq.
The upshot is that we obtain a compatible sytem of maps

RFq

(
GLn(Fq)

)
−! ku0(BGLn(Fq)

)ψq

= π0 HomAn
(
BGLn(Fq), ku

)ψq

,

where (−)ψq denotes fixed points under ψq. Here we also use that the canonical map
rep: RC(GLn(Fq)) ! ku0(BGLn(Fq)) from assertion (c) above is compatible with the
Adams operations on both sides.
(3) To get a compatible system of maps BGLn(Fq)! fib(ψq − id), we show that there are

bijections

π0 HomAn
(
BGLn(Fq),fib(ψq − id)

) ∼−! π0 HomAn
(
BGLn(Fq), ku

)ψq

,

π0 HomAn
(
BGL∞(Fq),fib(ψq − id)

) ∼−! lim
n∈N

π0 HomAn
(
BGLn(Fq),fib(ψq − id)

)
.
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The first map is automatically surjective. Indeed, the left-hand side consists of maps to the
homotopy fibre fib(ψq − id), which given by maps to ku plus a homotopy to the identity after
composition with ψq : ku! ku. On the right-hand side, we forget the choice of homotopy and
only remember that there is some. To show injectivity, we use that HomAn(BGLn(Fq),−)
preserves fibre sequences. Hence, by the long exact sequence of a fibration, there is a
surjection from π1(BGLn(Fq), ku) = ku1(BGLn(Fq)) onto the kernel. But we have the
following general result:

III.19a. Theorem (Atiyah–Segal completion theorem). — If G is a finite group (or a
compact Lie group), then

KUi(BG) =
{
RC(G)Î if i is even
0 if i is odd

,

where I is the kernel of rk : RC(G)! Z, and (−)Î denotes I-adic completion.

Proof of Theorem III.19a*. See [Ati61] for the case where G is finite, and [AS69] for the case
of compact Lie groups.

Back to the proof of Theorem III.19. The completion theorem shows ku1(BGLn(Fq)) = 0,
and thus the first map in (3) is indeed a bijection. I suspect that there should be a less
overkill proof that ku1 vanishes, but right now I’m too lazy to think about this.

The second map in (3) is part of a Milnor exact sequence. In general, the homotopy
groups of a sequential limit limn∈NXn in ∗/An sit in an exact sequence

0 −! R1 lim
n∈N

πi+1(Xn) −! πi

(
lim
n∈N

Xn

)
−! lim

n∈N
πi(Xn) −! 0 .

A proof of this general fact can be found in the corresponding nLab article, but it’s also not
hard to prove this yourself. The Milnor sequence now shows that the second map in (3) is
surjective and its kernel is given by

R1 lim
n∈N

π1 HomAn
(
BGLn(Fq),fib(ψq − id)

)
= R1 lim

n∈N
ku1(BGLn(Fq)

)
.

By the long exact homotopy group sequence and Theorem III.19a, ku1(BGLn(Fq)) is a
quotient of RC(GLn(Fq))Î . Since R2limn∈N vanishes, it thus suffices to show

R1 lim
n∈N

RC
(

GLn(Fq)
)
Î

= 0 .

For simplicity, put Rn = RC(GLn(Fq)) and In = ker(rk : Rn ! Z). Then limm∈NRn/I
m
n ≃

Rlimm∈NRn/I
m
n , because the Mittag-Leffler condition is satisfied. Moreover, the short exact

sequences 0 ! In/I
m
n ! Rn/I

m
n ! Rn/In ! 0 show Rn/I

m
n = Z ⊕ In/I

m
n . Finally, the

quotient In/Imn is a finite abelian group by [Ati61, Proposition (6.13)]. Putting everything
together, we obtain

Rlim
n∈N

(
lim
m∈N

Rn/I
m
n

)
≃ Rlim

n∈N

(
R lim
m∈N

Rn/I
m
n

)
≃ Rlim

n∈N
Rn/I

n
n

≃ Rlim
n∈N

Z ⊕Rlim
n∈N

In/I
n
n ,
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where we use that the diagonal ∆: N ! N × N is final (which is straightforward to verify
via the dual of Theorem I.43(b)). But R1limn∈N In/I

n
n vanishes, because the Mittag-Leffler

condition is satisfied in any inverse system of finite abelian groups, and R1limn∈N Z vanishes
because the Mittag-Leffler condition is trivially satisfied. This proves what we want and
finishes Step (3).

Therefore, we have constructed a homotopy class of maps BGL∞(Fq) ! fib(ψq − id).
Now extend it over the Quillen plus construction BGL∞(Fq)+ and the computation of group
homology may begin . . .

We have yet to show the fibration lemma that was used to prove that fib(ψq − id) is
simple. The topology gang will probably find it trivial . . .

III.19b. Lemma*. — Let F ! E
p
−! B be a fibre sequence of anima. Then for all f ∈ F ,

the action of π1(F, f) on π∗(F, f) factors through an action of π1(E, f) on π∗(F, f).

Proof *. Let’s first recall how the action of π1(F, f) on π∗(F, f) works. So let □n denote the
n-cube and α : (□n, ∂□n)! (F, f) a map of pairs representing an element of πn(F, f), and
let γ : ∆1 ! F represent a loop in F with basepoint f . Consider

γ · α :=
(
α× {0}

)
∪
(

id∂□n ×γ
)

:
(
□n × {0}

)
∪
(
∂□n × ∆1) −! F .

Once we remember (□n × {0}) ∪ (∂□n × ∆1) ≃ □n, it provides a well-defined element
[γ] · [α] ∈ πn(F, f), which is the action we’re looking for.

Now suppose γ : ∆1 ! E only represents an element of π1(E, f). We can still apply the
construction γ · α above and obtain a lifting diagram(

□n × {0}
)

∪
(
∂□n × ∆1) E

□n × ∆1 B

γ·α

p

id□n ×p(γ)

Restricting any lift to □n × {1} gives a map □n ! E, whose restriction to ∂□n is constant
on f and whose composition with p is constant on p(f), hence an element [γ] · [α] ∈ πn(F, f).
It’s straightforward to check that the action of π1(F, f) on π∗(F, f) factors through this new
action.

Next, we investigate how the equivalence Brρ depends on the choices of embeddings of
Fq into an algebraic closure Fp, and ρ : F×

p ↪! C× as the group
∏
µ∞

ℓ
.

III.20. Proposition. — The computation of K-groups from Theorem III.19 via Brρ
satisfies the following functoriality behaviour:
(a) If f : Fq ! Fqn is a field homomorphism compatible with the chosen embeddings into an

algebraic closure Fp, then the following diagram commutes:

K2i−1(Fq) K2i−1(Fqn)

Z/(qi − 1) Z/(qni − 1)

Brρ

∼

f∗

Brρ

∼∑n−1
k=0

qki
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(b) The Frobenius Frob = (−)p : Fq ! Fq induces the maps

pi : K2i−1(Fq) −! K2i−1(Fq)

on K-theory.

Proof. For (a), note first that ψqn − id = (ψq)n − id = (ψq − id)
∑n−1
k=0 ψ

qk by Proposi-
tion III.18(b). Now per construction of the Brauer lift also the left square in

k(Fq)0 ku ku

k(Fq)0 ku ku

Brρ

f∗

ψq−id ∑n−1
k=0

ψqk

Brρ ψqn
−id

commutes. From the bijectivity of

π0 HomAn
(
BGLn(Fq),fib(ψq − id)

) ∼−! π0 HomAn
(
BGLn(Fq), ku

)ψq

(Step (3) in the proof of Theorem III.19), we then obtain that f∗ agrees with the map induced
by the right-hand square on fibres. Hence the claim follows from Proposition III.18(e) and
the way we used it in the proof of Theorem III.19.

For (b), one similarly computes from the definition of the Brauer lift and Proposi-
tion III.18(b) that

k(Fq)0 ku ku

k(Fq)0 ku ku

Brρ

Frob∗ ψp

ψq−id

ψp

Brρ ψq−id

commutes. Then the same argument works.

III.21. Corollary. — Any embedding ρ : F×
p ↪! C× induces isomorphisms

Ki(Fp) ≃


Z if i = 0⊕

ℓ ̸=p µℓ∞ if i is odd
0 else

Moreover, if Fq ↪! Fp is any inclusion into an algebraic closure, then

K∗(Fq) ∼−! K∗(Fp)Gal(Fp/Fq) .

One can actually make the computation of K∗(Fp) canonical. We already know from
Corollary III.7 and Proposition III.8 that K1(Fp) ≃ F×

p canonically. In general, using that
F×
p ⊗L

Z F×
p ≃ F×

p [1], we get

K2i−1(Fp) = Hi−1
(
F×
p ⊗L

Z · · · ⊗L
Z F×

p︸ ︷︷ ︸
i times

)
,

and hence an Gal(Fp/Fp) = Ẑ-equivariant isomorphism

K∗(Fp) = H∗

(
FreeAlg

D(Z)⊗L
Z

(
F×
p [1]

))
.

Be warned, however, that this isomorphism only exists at the level of homology, but not at
the level of E∞-ring spectra.
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Proof of Corollary III.21.Lecture 23
28th Jan, 2021

Note that K-theory commutes with filtered colimits. One way
to see this is that GLn(−) : Ring ! Grp(Set) commutes with filtered colimits by inspec-
tion, hence so does BGLn(−) : Ring ! An, as one can check on homotopy groups (by
Remark* II.31c). Now (−)+ : An! An doesn’t commute with colimits in general (it only
does if the target is replaced with Anhypo). But in a filtered colimit colimi∈I BGL∞(Ri)+,
all BGL∞(Ri)+ have abelian fundamental groups rather than just hypoabelian ones (be-
cause they are E∞-groups), and filtered colimits of abelian groups are abelian again, hence
colimi∈I BGL∞(Ri)+ is an element of Anhypo and thus coincides with BGL∞(colimi∈I Ri).

With that out of the way, we may write Fp = colimn∈N Fpn! (instead of n!, we could have
used any sequence converging to 0 in Ẑ = limm∈N Z/m) and get

K2i(Fp) = 0 and K2i−1(Fp) = colim
n∈N

Z/
(
(pn!)i − 1

)
.

The transition maps in the colimit on the right-hand side are those from Proposition III.20(a).
Clearly, the formula shows that K2i−1(Fp) is p-torsion free. Let’s determine its ℓ-power
torsion part for primes ℓ ≠ p. Note that for every r ⩾ 1 there is an m ⩾ 1 such that ℓr | pm−1.
To see this, one doesn’t need to invoke splitting fields and cyclotomic polynomials, as Fabian
decided to do; it suffices to note that p, being coprime to ℓ, is an element of the multiplicative
group (Z/ℓr)×, which has finite order.

In particular, we obtain ℓr | (pn!)i − 1 for all n ⩾ m. This shows that the colimit above is
cofinal in the colimit ⊕

ℓ ̸=p
µℓ∞ = colim

p∤s
Z/s ,

in which there are transition maps Z/s! Z/t given by multiplication with t
s , whenever s | t.

This proves K2i−1(Fp) =
⊕

ℓ̸=p µℓ∞ . The additional assertion follows by inspection.

III.22. Completions of Spectra. — Fabian would like to end the chapter with some
remarks on the Suslin rigidity theorem. But before we can do that, we need to introduce
completions of spectra. This took us on a short detour in the lecture. I decided to make
it a slightly longer detour (so mind the asterisks!), to elaborate more on the connection to
derived completion in ordinary algebra and to explain one small technical step in the proof
sketch of Theorem III.19.

Let’s do the spectra case first. Let R be an E∞-ring spectrum, s ∈ π0(R) some element,
and M ∈ ModR a module over R. We define the s-completion of M as

M̂s := lim
n∈N

M/snM ,

where we define M/snM as the pushout

M M

0 M/snM

sn

.

In the case M = R we often just write R/sn, and in general, M/snM ≃ M ⊗R R/s
n since

− ⊗R R/s
n commutes with colimits. Since homR(−,M) : ModR ! ModR (defined as in
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II.62c(a)) preserves but flips fibre sequences, we see that M/snM can equivalently be written
as homR((R/sn)[−1],M). This also shows

M̂s ≃ homR

(
(R/s∞)[−1],M

)
,

where we denote R/s∞ ≃ R[s−1]/R. In particular, the latter description shows that M̂s

doesn’t depend on the choice of representative of s ∈ π0(R). Moreover, it motivates the
following lemma/definition:

III.22a. Lemma/Definition*. — For an R-module spectrum M and some s ∈ π0(R),
the following are equivalent:
(a) homR(R[s−1],M) ≃ 0.
(b) homSp(T,M) ≃ 0 for all s-local R-module spectra T .

(c) The canonical morphism M ∼−! M̂s into the s-completion is an equivalence.
Such R-module spectra are called s-complete. The s-completion functor

(−)ŝ : ModR −! Mods-comp
R

is a left Bousfield localisation onto the full stable sub-∞-category Mods-comp
R ⊆ ModR of

s-complete R-module spectra.

Proof *. The implication (b) ⇒ (a) is clear, and since T ≃ T ⊗R[s−1] by Corollary III.4a,
the reverse implication follows from the general tensor-Hom adjunction (see II.62c(a)).

Using the the fact that

R[s−1] ⊗R R[s−1]/R ≃ R[s−1]/R[s−1] ≃ 0

together with the tensor-Hom adjunction, we see that M̂s ≃ homR((R/s∞)[−1],M) is indeed
s-complete in the sense of (a), which shows (c) ⇒ (a). Conversely, from the fibre sequence
(R/s∞)[−1]! R! R[s−1] we get that M is s-complete in the sense of (a) iff it equals its
own s-completion. The final assertion about (−)ŝ being a Bousfield localisation follows from
Proposition I.61a, as usual. We know from Corollary II.56e that ModR is stable, and its
clear from (a) that Mods-comp

R ⊆ ModR is closed under finite direct sums as well as fibres
and cofibres, hence it is indeed a full stable sub-∞-category.

Completion of spectra shares many properties with the completion of ordinary rings and
modules. For example:

III.22b. Lemma*. — Let R be an E∞-ring spectrum and s ∈ π0(R).

(a) For all R-module spectra M and all n ⩾ 0, we have M ⊗R R/s
n ≃ M̂s ⊗R R/s

n.
(b) (Beauville–Laszlo) The functors (−)ŝ : ModR ! ModR and −[s−1] : ModR ! ModR

are jointly conservative, and for all R-module spectra M there is a pushout/pullback
square

M M̂s

M [s−1] M̂s[s−1]

.
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(c) (Nakayama’s lemma) If M is s-complete and M⊗RR/s ≃ 0, then M ≃ 0. In particular,
− ⊗R R/s : Mods-comp

R ! ModR is conservative.
Note that combining all three assertions from Lemma* III.22b implies that also the

functors − ⊗R R/s : ModR ! ModR and −[s−1] : ModR ! ModR are jointly conservative.

Proof of Lemma* III.22b*. It’s straightforward to show that sn : M ⊗RR/s
n !M ⊗RR/s

n

is the zero morphism. This implies that M ⊗R R/s
n is s-complete. Indeed,

sn : homR

(
R[s−1],M ⊗R R/s

n
)
−! homR

(
R[s−1],M ⊗R R/s

n
)

is an equivalence, because it is an equivalence on R[s−1], but it’s also the zero map because
it is zero on M ⊗R R/s

n. This forces homR(R[s−1],M ⊗R R/s
n) ≃ 0, whence M ⊗R R/s

n

is s-complete by Lemma/Definition III.22a(a). The same holds for M̂s ⊗R R/s
n. Now let N

be another s-complete R-module spectrum. Since (−)ŝ is a Bousfield localisation,

homR(M ⊗R R/s
n, N) ≃ homR

(
R/sn,homR(M,N)

)
≃ homR

(
R/sn,homR(M̂s, N)

)
≃ homR(M̂s ⊗R R/s

n, N) .

Thus the assertion of (a) follows from the Yoneda lemma in Mods-comp
R . We have silently used

that the adjunction involving (−)ŝ upgrades to the internal Hom of ModR. But it clearly
upgrades to the underlying spectra homModR

of homR by Theorem II.30 and II.62c(a), and
equivalences in ModR can be detected on underlying spectra by the Segal condition from
Theorem II.56c.

We prove (b) next. Since a morphism in ModR is an equivalence iff its fibre vanishes,
it suffices to show that M̂s ≃ 0 and M [s−1] ≃ 0 together imply M ≃ 0. Suppose that
0 ≃ M̂s ≃ homR((R/s∞)[−1],M). Since (R/s∞)[−1] ! R ! R[s−1] is a fibre sequence,
this implies

homR

(
R[s−1],M

)
≃ homR(R,M) ≃ M .

Hence M is already s-local, which implies M ≃ M [s−1]. Thus M [s−1] ≃ 0 iff M ≃ 0, as
claimed. To prove that the commutative square from (b) is really a pullback square, it
now suffices to do so after applying (−)ŝ and −[s−1]. But one immediately checks that the
s-completion of s-local R-module spectra vanishes, hence the pullback becomes trivial after
s-completion, just as it becomes trivial after applying −[s−1].

Finally, let’s prove Nakayama’s lemma. From the pushout diagram

R R R

0 R/sn R/sn+1

0 R/s

sn

.

s

.
s

.

we get a fibre sequence R/sn s
−! R/sn+1 ! R/s for all n ⩾ 0 (note that we don’t need any

non-zero divisor condition on s—that’s the blessing of working in a “fully derived” setting).
Thus M ⊗R R/s ≃ 0 inductively implies M ⊗R R/s

n ≃ 0 for all n ⩾ 0, hence also

M̂s ≃ lim
n∈N

(M ⊗R R/s
n) ≃ 0 .
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But M ≃ M̂s by assumption and Lemma/Definition III.22a(c).

III.22c. Derived Completion over Ordinary Rings*. — Let’s leave the land of
spectra for the moment and consider an ordinary commutative ring R with an element s ∈ R.
Following [Stacks, Tag 091N], we call a complex K ∈ D(R) derived s-complete if

RHomR

(
R[s−1],K

)
≃ 0 .

Combining Theorem II.57, Corollary II.30a, and II.62c, we find that K is derived s-complete
iff HK ∈ ModHR is an s-complete HR-module spectrum. In particular, if Ds-comp(R) ⊆ D(R)
denotes the full sub-∞-category of derived s-complete complexes, then the Eilenberg–MacLane
spectrum functor restricts to an equivalence

H : Ds-comp(R) ∼−! Mods-comp
HR .

Moreover, if C denotes the chain complex (R! R[s−1]) concentrated in degrees 0 and −1,
then the derived s-completion functor

(−)ŝ := RHomR(C,−) : D(R) −! D(R)

is a Bousfield localisation onto Ds-comp(R). It’s perhaps somewhat confusing why we use
the complex C rather than (R[s−1]/R)[−1]. This is because we have to take the derived
quotient. In fact, one easily checks that C[1] is the mapping cone of R! R[s−1], hence it
sits inside a pushout diagram

R R[s−1]

0 C[1]
.

Thus C ≃ (R[s−1]/LR)[−1] and therefore

HC ≃ (HR/s∞)[−1] ,

which implies that our definitions of (−)ŝ in D(R) and ModHR are indeed compatible.
Over an ordinary ring, the Nakayama lemma can be slightly improved (although again it

doesn’t look like an improvement at first glance, until one realises that the quotient R/s is
an underived one this time):

III.22d. Corollary* (Derived Nakayama lemma). — If K is a derived s-complete complex
over R, then K ⊗L

R R/s ≃ 0 implies K ≃ 0.

Proof *. We already know from Lemma* III.22b(c) and Proposition II.63 that K⊗L
RR/

Ls ≃ 0
implies K ≃ 0, where the derived quotient R/Ls can be represented by the complex (R s

−! R)
concentrated in degrees 0 and −1. But the cohomology of R/Ls are R/s-modules, hence
K ⊗L

R R/s ≃ 0 already implies K ⊗L
R R/

Ls ≃ 0.

III.22e. Derived Completion over Noetherian Rings*. — It is not true, in general,
that derived s-completion is given by

K̂s ≃ Rlim
n∈N

(
K ⊗L

R R/s
n
)

188

https://stacks.math.columbia.edu/tag/091N


Towards the K-Theory of Finite Fields

(here Rlim denotes the limit in the ∞-category D(R)). The problem is, as usual, that the
ordinary quotients R/sn don’t coincide with the derived quotients R/Lsn, which are required
in general to make the formula correct. Neither is it true (I think, but don’t take my word
for it) that derived completion is the left-derived functor of

Λs = lim
n∈N

−/sn− : ModR −! ModR

in general. Fabian remarks that Λs is neither left- nor right-exact in general1 . . . but we
need a right-exact functor to form left derivatives, right? Wrong! Grothendieck formulated
his theory for arbitrary additive functors between abelian categories without any exactness
requirements; it just won’t be true anymore that L0Λs ≃ Λs.

Both of the problems above go away if we assume R is a noetherian ring (or, more
generally, has bounded s-power torsion). Indeed, in this case K̂s ≃ Rlimn∈N(K ⊗L R/sn)
holds by [Stacks, Tag 0923], which also implies that (−)ŝ ≃ LΛs, since it takes the correct
values on free R-modules.

III.22f. Derived p-Completion over Z vs. p-Completion of Spectra. — Let p ∈ Z
be a prime. Our considerations in III.22c allow us to compare derived p-completion over Z
with p-completion over HZ. But p is also an element of π0(S) = Z, and it turns out that we
can also describe p-completion over the sphere spectrum S (somewhat) in terms of derived
p-completion over Z.

Let’s first analyse derived p-completion over Z a bit more. Since Z! Z[p−1] is injective,
the complex C = (Z ! Z[p−1]) concentrated in degrees 0 and −1 is quasi-isomorphic to
(Z[p−1]/Z)[−1] ≃ µp∞ [−1]. Hence derived p-adic completion in D(Z) is given by

LΛp ≃ RHomZ
(
µp∞ [−1],−

)
: D(Z) −! Dp-comp(Z) .

In particular, if A is an abelian group, then

L0Λp(A) = ExtZ(µp∞ , A) , L1Λp(A) = HomZ(µp∞ , A) and LiΛp(A) = 0 for i ⩾ 2 .

It’s easy to determine L1Λp(A): Writing µp∞ = colimn∈N Z/pn, with transition maps given
by multiplication with p, we obtain

L1Λp(A) = lim
n∈N

HomZ(Z/pn, A) = lim
n∈N

A[pn] ,

where A[pn] denotes the pn-torsion part of A and the transition morphisms are again given
by multiplication with p. Moreover, there is a short exact sequence

0 −! R1 lim
n∈N

A[pn] −! L0Λp(A) −! Λp(A) −! 0 ,

To see where this sequence comes from, choose a projective resolution 0! P1 ! P0 ! A! 0
(Z has global dimension 1), note that A[pn] = ker(P1/p

nP1 ! P0/p
nP0) since the right-hand

side computes TorZ1 (Z/pn, A), and play a bit around with exact sequences.
The upshot is that if A has bounded p-power torsion (for example, if A is finitely

generated), then there is an n ≫ 0 such that pn : A[p2n] ! A[pn] is the zero morphism.
Hence

Rlim
n∈N

A[pn] ≃ 0

1 . . . which confused me a bit, since R1limn∈N M/snM = 0 holds by the Mittag-Leffler condition. However,
this isn’t enough to ensure right-exactness. For an inclusion N ⊆ M , the kernel of N/snN ! M/snM is
(snM ∩ N)/snN , so we would need R1limn∈N(snM ∩ N)/snN = 0 instead—which isn’t true in general.
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in this case and we see that LΛp(A) coincides with the usual underived p-adic completion
Λp(A)[0] placed in degree 0. These considerations can be exploited to compute homotopy
groups of p-completions of spectra:

III.22g. Lemma. — For every spectrum E and all i ∈ Z, there are short exact sequences

0 −! L0Λp
(
πi(E)

)
−! πi(Êp) −! L1Λp

(
πi−1(E)

)
−! 0 .

In particular, if π∗(E) has degreewise bounded p-power torsion, then its degreewise p-
completion Λpπ∗(E) coincides with π∗(Êp). Moreover, the homotopy groups of any p-complete
spectrum are derived p-complete.

Proof *. The homotopy groups of Êp sit inside the Milnor exact sequence

0 −! R1 lim
n∈N

πi+1(E/pnE) −! πi(Êp) −! lim
n∈N

πi(E/pnE) −! 0

(see the nLab article and note that Ω∞+i : Sp ! An commutes with limits, hence the
Milnor sequence works for spectra as well). The morphism pn : E ! E clearly also induces
pn : π∗(E)! π∗(E) on homotopy groups. Hence the long exact sequence associated to the
fibre sequence E ! E ! E/pnE provides short exact sequences

0 −! πi(E)/pnπi(E) −! πi(E/pnE) −! πi−1(E)[pn] −! 0 .

Now take limits over n. We have R1limn∈N πi(E)/pnπi(E) = 0 by Mittag-Leffler, hence the
six-term exact sequence splits into a short exact sequence

0 −! Λp
(
πi(E)

)
−! lim

n∈N
πi(E/pnE) −! L1Λp

(
πi−1(E)

)
−! 0

and an isomorphism R1limn∈N πi(E/pnE) ≃ R1limn∈N πi−1(E)[pn]. Summarising the infor-
mation we’ve got so far and plugging in the short exact sequence that computes L0Λp(πi(E)),
we obtain a solid commutative diagram

0

0 R1 lim
n∈Nop

πi−1(E)[pn] L0Λp
(
πi(E)

)
Λp
(
πi(E)

)
0

0 R1 lim
n∈Nop

πi(E/pnE) πi(Êp) lim
n∈Nop

πi(E/pnE) 0

L1Λp
(
πi−1(E)

)
0

∼

If we can show that the dashed arrow exists, then we’ll be done. Indeed, the snake lemma
will then show that L0Λp(πi(E))! πi(Êp) is injective and that its cokernel is isomorphic to
L1Λp(πi−1(E)), which is what we want to show.
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To construct the dashed arrow, it suffices to show that πi(Êp) is derived p-complete, since
then the canonical morphism πi(E) ! πi(Êp) will extend over the derived p-completion
LΛp(πi(E)) and hence also over L0Λ(πi(E)) since πi(Êp) is concentrated in degree 0. But
the solid diagram is already enough to conclude that πi(Êp) is derived p-complete! Indeed, we
know from [Stacks, Tag 091U] that if two out of three abelian groups in a short exact sequence
are derived p-complete, then so is the third. Moreover, this result and [Stacks, Tag 091T]
imply that the homology of a derived p-complete complex is derived p-complete, and that
p-complete abelian groups are also derived p-complete. hence L0Λp(πi(E)), Λp(πi(E)), and
L1Λp(πi−1(E)) are all derived p-complete, which suffices to show the same for the rest of the
diagram.

Regarding the additional two assertions: We’ve already seen that π∗(Êp) is degreewise
derived p-complete. If π∗(E) has degreewise bounded p-power torsion, then LΛp(πi(E)) ≃
Λpπi(E)[0] by our discussion in III.22f , hence πi(Êp) = Λp(πi(E)) in this case.

Only the third part of the following lemma was mentioned in the lecture, but the other two
fit nicely and provide a proof of a small technical step in the proof sketch of Theorem III.19,
as promised at the beginning of III.22.

III.22h. Lemma. — (a∗) The functors − ⊗ HQ : Sp ! Sp and (−)p̂ : Sp ! Sp for all
primes p are jointly conservative. The same is true for (−)p̂ replaced by − ⊗ S/p.

(b∗) The functors − ⊗Z Q : D(Z)! D(Z) and − ⊗L
Z Z/p : D(Z)! D(Z) for all primes p are

jointly conservative. In particular, if f : X ! Y is a map of anima such that

f∗ : H∗(X,Q) ∼−! H∗(Y,Q) and f∗ : H∗(X,Z/p) ∼−! H∗(Y,Z/p)

are isomorphisms, then f is also an isomorphism on homology with Z-coefficients.
(c) For all spectra E, there is a canonical pullback square (the “arithmetic fracture square”)

E
∏
p

Êp

E ⊗HQ

(∏
p

Êp

)
⊗HQ

.

Observe that Lemma III.22h(b∗) is wildly false for underived tensor products. For example,
Q/Z vanishes upon tensoring with Q or any Z/p.

Proof of Lemma III.22h*. For (a∗), it suffices to show that E ⊗ HQ ≃ 0 and Êp ≃ 0 for
all p imply E ≃ 0. By the same argument as in Lemma* III.22b(b), Êp ≃ 0 implies that
E is p-local. If that’s the case for all p, then E ≃ E ⊗ HQ by Corollary III.5, hence the
right-hand side vanishes iff E vanishes. Moreover, we can replace (−)p̂ by − ⊗ S/p because
− ⊗ S/p : Spp-comp ! Sp is conservative by Nakayama’s lemma for spectra.

Part (b∗) is completely analogous, except that we have to use the slightly stronger derived
Nakayama lemma from Corollary* III.22d. The “in particular” follows as

H∗(−,Q) = H∗
(
C•(−) ⊗Z Q

)
and H∗(−,Z/p) = H∗

(
C•(−) ⊗L

Z Z/p
)
.
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For (c), we may apply (a) to see that it suffices to check the pullback property after p-
completion and after tensoring with HQ. It’s easy to check that p-completion kills all rational
spectra and all ℓ-complete spectra for ℓ ̸= p. Hence after p-completion the lower row becomes
zero, whereas the upper row becomes the identity on Êp. Similarly, the pullback property
becomes trivial after tensoring with HQ.

As a consequence of Lemma III.22h, to understand the connective K-theory spectrum
K(F ) = B∞k(F ) of a field F , it suffices to understand its p-completions and its rationalisation.
Surprisingly, it is the latter which causes problems in praxis, even though we have a formula
for its homotopy groups: Ki(F ) ⊗ Q = indeciHgrp

∗ (GL∞(F ),Q) by Corollary III.10. But
computing the right-hand side is an insanely hard problem and very much depends on F , as
one can already see in the special case K1(F ) = F× (by Proposition III.8).

In contrast to that, at least when F is a separably closed field, the ℓ-adic completions
K(F )ℓ̂ are well understood and don’t really depend on F :

III.23. Theorem (Suslin’s rigidity theorem). — For any morphism F ! F ′ of separably
closed fields and all primes ℓ,

K(F )ℓ̂
∼−! K(F ′)ℓ̂

is an equivalence. The same is true for the tautological map

K(C)ℓ̂
∼−! (B∞ku)ℓ̂ .

Moreover, if p ̸= ℓ is a prime, Op ⊆ Qp the absolute ring of integers over Zp, and m ⊆ Op

its maximal ideal, then also

K(Op)ℓ̂
∼−! K(Qp)ℓ̂ and K(Op)ℓ̂

∼−! K(Op/m)ℓ̂

are equivalences.

We won’t prove Theorem III.23. But note that Op/m ≃ Fp. Hence any pair of embeddings
Q ↪! Qp and Q ↪! C induces an equivalence K(Fp)ℓ̂ ≃ (B∞ku)ℓ̂ . This fits with our
calculations of their homotopy groups: Since π∗(B∞ku) = Z[β] has degreewise bounded
ℓ-power torsion, Lemma III.22g implies

πi
(
(B∞ku)ℓ̂

)
=
{
Zℓ if i is even
0 if i is odd

.

Also recall that K∗(Fp) is 0 in even degrees and
⊕

q ̸=p µq∞ in odd degrees by Corollary III.21.
But one can compute

L0Λℓ

(⊕
q ̸=p

µq∞

)
= 0 and L1Λℓ

(⊕
q ̸=p

µq∞

)
= Zℓ ,

hence Lemma III.22g implies that ℓ-completion shifts the homotopy groups of K(Fp) from
odd degrees into even degrees. Thus

πi
(
K(Fp)ℓ̂

)
=
{
Zℓ if i is even
0 if i is odd

,
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as Theorem III.23 predicts. Fabian also mentioned that even though the Adams operations
ψi : B∞ku! B∞ku aren’t maps of E∞-ring spectra, they can be refined to an action of Ẑ
on the ℓ-completion (B∞ku)ℓ̂ through E∞-ring spectra maps.

To end this chapter, we state the analogue of Theorem III.19 for Hermitian K-theory/Gro-
thendieck–Witt theory.

III.24. Theorem (Friedlander, Fiedorowicz–Priddy [FP78]). — For odd q, Brauer lifting
induces equivalences

gw−sym(Fq)0
∼−! fib(ψq − id : BSp −! BSp)

gwsym(Fq)0
∼−! fib(ψq − id : BO −! BO)

(where Sp denotes the symplectic group and not the ∞-category of spectra) and in the even
case we obtain

gwsym(F2n) ≃ gweven(F2n) ∼−! fib(ψq − id : BSp −! BSp)
gwquad(F2n) ≃ gwsym(F2n) ×BZ/2 .
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Chapter IV.

The K-Theory of Stable
∞-Categories

IV
The Modern Definition of K-Theory
K0 of a Stable ∞-Category
IV.1. Some Motivation. — Throughout, we define the connective K-theory spectrum
of a ring R to be K(R) := B∞k(R). One of our goals in this chapter will be to explain
Quillen’s fibre sequence ⊕

p prime
K(Fp) −! K(Z) −! K(Q) ,

and more generally, for R a Dedekind domain,⊕
0 ̸=m prime

K(R/m) −! K(R) −! K(FracR) .

The immediate problem here is that K(Fp)! K(Z) and K(R/m)! K(R) can’t possibly
be induced by by ring maps Fp ! Z or R/m! R, since there are none. However, there are
perfectly fine exact (but not fully faithful) functors D(Fp) ! D(Z) and D(R/m) ! D(R),
with essential image the p-torsion or m-torsion complexes, respectively. Motivated by that,
we’ll define K-theory of a ring in terms of its derived ∞-category D(R) (or really its sub-
∞-category Dperf(R), see below), and once we’re there, nothing can stop us from defining
K-theory of arbitrary stable ∞-categories.

Before we move on, Fabian remarks that the sequences above already contain interesting
information in low degrees. For example, after taking homotopy groups in degrees 0 and 1,
the first sequence becomes

K1(Z) K1(Q)
⊕

p prime
K0(Fp) K0(Z) K0(Q)

{±1} Q×
⊕

p prime
Z Z Z∼

(we use Proposition III.8 to get K1(Z) = Z× = {±1}). The lower row yields an exact
sequence

0 −! {±1} −! Q× −!
⊕

p prime
Z −! 0 ,
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which says precisely that Z has unique prime decomposition. In a similar way, the sequence
for arbitrary Dedekind domains encodes their unique prime ideal decomposition.

IV.1a. Perfect Modules and Complexes. — To get started, we note that K0(R)
admits more cycles than just projective modules: Let M ∈ ModR be a perfect module, that
is, a module admitting a finite projective resolution

0 −! Pn −! Pn−1 −! . . . −! P0 −!M −! 0 .

Then we can put

[M ] :=
n∑
i=0

(−1)i[Pi] ∈ K0(R) .

IV.1b. Exercise. — Show that [M ] is independent of the choice of resolution!

So you don’t need a projective module to specify an element in K0(R), all you need is a
perfect one! More generally, let Dperf(R) ⊆ D(R) denote the full sub-∞-category spanned by
the finite complexes of finite projective R-modules. One can show that these are precisely
the compact objects in D(R).

IV.2. Lemma. — Sending a perfect complex (Pn ! Pn−1 ! . . . ! P−m) to its “Euler
characteristic”

∑n
i=−m(−1)i[Pi] defines an isomorphism(

π0 core Dperf(R)
)
/ ∼ext

∼−! K0(R)

where “∼ext” is the equivalence relation generated by B ∼ext A⊕ C for all fibre sequences
A! B ! C in Dperf(R).

Proof *. Well-definedness of the map follows from a sufficient generalisation of Exercise IV.1b.
If P is any finite projective module over R, then also P [1] ∈ Dperf(R), which is mapped to
−[P ]. Hence the map in question hits all inverses and is thus surjective.

It remains to show injectivity. Since the map in question is compatible with the addition
on both sides, it suffices to show that K ∈ Dperf(R) being mapped to 0 implies K ∼ext 0.
Write K ≃ (Pn ! Pn−1 ! . . . ! P−m). Taking stupid truncations gives fibre sequences
P−m[−m] ! K ! K⩾−m+1, which proves K ∼ext P−m[−m] ⊕ K⩾−m+1. Continuing
inductively, we may thus replace K by the sum of its entries, with all differentials being
0. Next, we note that P−m[i − 1] ! 0 ! P−m[i] are fibre sequences for all i ∈ Z, so we
get P−m[i− 1] ⊕ P−m[i] ∼ext 0. Applying this first for i = −m+ 2 and then backwards for
i = −m+ 1 gives

K ≃
n⊕

i=−m
Pi[i] ∼ext P−m[−m+ 2] ⊕ P−m[−m+ 1] ⊕

n⊕
i=−m

Pi[i]

∼ext P−m[−m+ 2] ⊕
n⊕

i=−m+1
Pi[i] .

Continuing inductively, we see that we may shift all even degrees into degree 0, and all odd
degrees into degree 1. Hence we may assume K ≃ P0[0] ⊕ P1[1]. Now K being mapped to
0 implies [P0] = [P1], hence, by construction of the Grothendieck group completion, there
exists a finite projective module Q such that P0 ⊕Q ≃ P1 ⊕Q. But by an argument we’ve
already seen, Q⊕Q[1] ∼ext 0, hence K ∼ext (P0 ⊕Q)[0] ⊕ (P1 ⊕Q)[1]. This has again the
form P ′[0] ⊕ P ′[1], hence K ∼ext 0 and we’re done.
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IV.3. Definition. — Given a (small) stable ∞-category C, put

K0(C) := π0 core(C)/ ∼ext ,

where again “∼ext” is the equivalence relation generated by b ∼ext a⊕ c for all fibre sequences
sequence a! b! x in C.

One easily checks that taking direct sums in C descends to an abelian group structure on
K0(C). For example, inverses are given by −[c] = [Σc] = [Ωc].

The functor K0(−) : Catst
∞ ! Ab is already an interesting invariant, in that it parametrises

dense sub-∞-categories: We call a full sub-∞-category D ⊆ C dense if every object in C can
be written as a retract of some d ∈ D, i.e., there are maps

c −! d −! c

composing to idc. For example, free R-modules are dense in Proj(R).

IV.4. Theorem (Thomason [Tho97, Theorem 2.1]). — If C is a stable ∞-categories and
D ⊆ C a dense stable sub-∞-category, then the inclusion induces an injection

K0(D) ↪−! K0(C) .

Moreover, there’s a “Galois correspondence” of partially ordered sets

{dense stable sub-∞-categories of C} ∼−! {subgroups of K0(C)}
D ⊆ C 7−! K0(D)

CH :=
{
x ∈ C

∣∣ [x] ∈ H
}
 − [ H ⊆ K0(C)

IV.4a. Remark*. — Two remarks on our “sub-∞-category” terminology.
(a) By saying stable sub-∞-category, we always implicitly assume that D ! C is a functor

in Catst
∞, i.e. exact. In particular, being a stable sub-∞-category is slightly stronger

than being a sub-∞-category that happens to be stable.
(b) The left-hand side of the “Galois correspondence” is a bit ambiguous in that a priori

there might be equivalent but non-equal sub-∞-categories of C. So depending on your
taste, you either have to identify two sub-∞-categories if their essential images agree, or
you have to restrict to only those sub-∞-categories D ⊆ C which are equal (as simplicial
sets) to their essential image, or equivalently, those D ⊆ C such that D ! C is an
isofibration.

IV.4b. Example. — Theorem IV.4 tells us that the smallest dense stable sub-∞-category

Dfree(R) ⊆ Dperf(R)

containing R[0] corresponds to im(Z ! K0(R)), since the image of R[0] in K0(R) is 1.
Moreover, any stable ∞-category C has a smallest dense stable sub-∞-category

Cmin = C0 =
{
x ∈ C

∣∣ [x] = 0 in K0(C)
}
.

Already the existence of such a smallest dense stable sub-∞-category is not quite obvious.
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Proof of Theorem IV.4. Injectivity will be the very last thing we check, so throughout the
proof we work with the image

HD := im
(
K0(D)! K0(C)

)
instead. We will proceed in two steps.
(1) In (temporary) absence of injectivity, we will show the “Galois correspondence” with

K0(D) replaced by HD.
We will do this by verifying that the map H 7! CH in the reverse direction is an inverse.

So the first thing to check is that CH is indeed a dense stable sub-∞-category of C. Since
C ! K0(C) is additive with respect to finite direct sums and fibre sequences, one immediately
verifies that CH ⊆ C is closed under finite limits and colimits, hence it is indeed a stable sub-
∞-category. It is also dense because every x ∈ C is a retract of x⊕ Σx, but [x⊕ Σx] = 0 ∈ H,
so x⊕ Σx is always an element of CH .

Next, we check HCH = H. Clearly im(K0(CH)! K0(C)) ⊆ H. But for any h ∈ H there
is an x ∈ C with [x] = h, and then x ∈ CH by definition, hence the inclusion must be an
equality. This shows HCH = H.

It remains to check CHD = D. Unravelling, what we need to check is that x ∈ D iff
[x] ∈ HD, which is the case iff [x] = 0 in K0(C)/HD. To show this, we introduce another
equivalence relation “∼” on C: Put x ∼ x′ iff there exist d, d′ ∈ D with x⊕ d ≃ x′ ⊕ d′. It’s
easy to check that “∼” is indeed an equivalence relation, and also it clearly descends to
π0 core(C). Moreover, we have x ∼ 0 iff x ∈ D. Indeed, x ∈ D implies x ∼ 0 as x⊕ 0 ≃ 0 ⊕ x
and 0, x ∈ D. Conversely, if x⊕d ≃ d′ for some d, d′ ∈ D, then x! d′ ! d is a fibre sequence
in C, two of whose terms are in D, hence the third term must be in D as well because D ⊆ C
is a stable sub-∞-category (in the sense of Remark* IV.4a(a)).

By our newfound knowledge, we see now that to prove CHD = D, it suffices to check
that x ∼ x′ iff [x] − [x′] ∈ HD. To show this, we first observe that taking direct sums
turns π0 core(C)/ ∼ into an abelian group. Indeed, well-definedness, associativity and
commutativity of addition is clear, as is the existence of a neutral element. For inverses,
recall that every x ∈ C is a retract of some d ∈ D by assumption, hence d ≃ x ⊕ x′ for
x′ ≃ cofib(x ! d) ∈ C. But then x′ provides an inverse of x. Furthermore, the map
π0 core(C)! π0 core(C)/ ∼ descends to a map

K0(C) −! π0 core(C)/ ∼ .

To verify this, we must check that y ∼ x⊕ z for every fibre sequence x! y ! z in C. But
there elements x′, z′ ∈ C such that x⊕ x′, z ⊕ z′ ∈ D, and x⊕ x′ ! y ⊕ x′ ⊕ z′ ! z ⊕ z′ is
still a fibre sequence. But now two of its terms are in D, hence also y ⊕ x′ ⊕ z′ ∈ D because
D ⊆ C is a stable sub-∞-category (in the sense of Remark* IV.4a(a)). Now the elements
d = x⊕ x′ ⊕ z ⊕ z′ ∈ D and d′ = y ⊕ x′ ⊕ z′ ∈ D satisfy y ⊕ d ≃ x⊕ z ⊕ d′, thus witnessing
y ∼ x⊕ z. This shows that we really get a homomorphism K0(C)! π0 core(C)/ ∼ of abelian
groups.

This homomorphism is surjective for trivial reasons. Since we checked above that x ∼ 0
iff x ∈ D, the kernel must consist precisely of those [x] such that [x] = [d] for some d ∈ D.
That is, the kernel is HD, which means the proof of the “Galois correspondence” is done!
(2) Finally, we prove that K0(D)! K0(C) is injective.

Thomason does this with a bit of a trick: Let’s denote N = ker(K0(D)! K0(C)). Since
D is stable too, we can also run the Galois correspondence machinery for D and obtain dense
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stable sub-∞-category D0 ⊆ DN ⊆ D, corresponding to the trivial subgroup of K0(D) and
N ⊆ K0(D), respectively. One easily checks that D0 and DN are also dense stable sub-∞-
categories of C. But K0(D0) ! K0(C) and K0(DN ) ! K0(C) both have image 0, hence
D0 = DN as full sub-∞-categories of C. But then K0(D0)! K0(D) and K0(DN )! K0(D)
must have the same image, which proves N = 0.

The S-Construction and the Q-Construction
Lecture 24
2nd Feb, 2021

Our next goal is to construct a K-theory functor

k : Catst
∞ −! CGrp(An) .

As we’ve already seen in the baby case of K0(C), we now longer have to group complete.
Instead, what we have to do is to “split all fibre sequences”. A fibre sequence a ! b ! c
can be thought of as a filtered object a! b of length 1, together with its filtration quotient
c ≃ b/a. So the logical next step is to consider filtered objects of arbitrary length. This
leads us to the Segal S-construction (people keep calling it Waldhausen S-construction, even
though Waldhausen himself wrote Segal S-construction).

IV.5. Construction. — Let C be a stable ∞-category. For all [n] ∈ ∆∆op, let

Sn(C) ⊆ Fun
(

Ar([n]), C
)

be the full sub-∞-category of those functors F : Ar([n]) ! C satisfying the following two
conditions:
(a) F (i ⩽ i) = 0 for all i = 0, . . . , n.
(b) All “squares” in Ar([n]) go to pushouts/pullbacks (these are the same in the stable

∞-category C), as indicated in the picture below.
To make sense of (b), recall from I.28 that Ar([n]) can be pictured as follows (the colour
coding will be explained in a moment):

(0 ⩽ 0)

(0 ⩽ 1) (0 ⩽ 2) (0 ⩽ 3) (0 ⩽ 4) (0 ⩽ n − 1)
(0 ⩽ n)

(1 ⩽ n)

(2 ⩽ n)

(3 ⩽ n)

(n − 2 ⩽ n)

(n − 1 ⩽ n)

(n ⩽ n)

(1 ⩽ 1)

(2 ⩽ 2)

(3 ⩽ 3)

(n − 2 ⩽ n − 2)

(n − 1 ⩽ n − 1)

. . . .

. . .

. .

.

. . .

. . .

. . .

. . .

...

. . .

...

...
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Now (b) is equivalent to F being left Kan extended from the “yellow” part. Together with
(a), this implies

Sn(C) ≃ Fun
(
[n− 1], C

)
via restriction to the “dotted” part in the top row. Hence Sn(C) is stable again. Moreover,
Fun(Ar[n], C) is clearly functorial both in [n] and C, and one checks that the full subcategories
Sn(C) are preserved under the face and degeneracy maps in ∆∆op. Hence S(C) : ∆∆op ! Catst

∞
is a simplicial stable ∞-category, and we get a functor

S : Catst
∞ −! sCatst

∞ .

Unravelling, we find that S0(C) ≃ ∗, S1(C) ≃ C, and S1(C) ≃ Ar(C). But we think of the
typical element of S2(C) as a diagram

0 a b

0 b/a

0

.

rather than an arrow a ! b. In this picture, the face maps d0, d1, d2 : S2(C) ! S1(C) ≃ C
extract the objects b/a, b, and a, respectively.

Also note that we have π0 |coreS(C)| = 0, since it is a general fact that π0X0 ! π0 |X| is
surjective for all simplicial anima X (see (∗) in the proof of Proposition II.2).

IV.6. Definition. — For a stable ∞-category C, we define

k(C) := Ω |coreS(C)| .

Since |coreS(C)| is connected, there’s no need to specify a basepoint.

IV.7. Lemma. — For all stable ∞-categories C, there is a canonical isomorphism

K0(C) ≃ π0
(
k(C)

)
≃ π1

(
|core(C)|

)
.

Proof. The second isomorphism is clear as the loop functor shifts homotopy groups down.
Hence it suffices to show K0(C) ≃ π1(|core(C)|). This will be done using skeletal induction.
We didn’t talk about how this works for simplicial anima, so this proof also serves as a
demonstration of the technique (although we will actually do skeletal induction for semi-
simplicial anima, since that’s somewhat easier and sufficient for our purposes).

Let ∆∆inj ⊆ ∆∆ be the subcategory spanned by the injective maps. It is wide, i.e. contains
all objects, but obviously not full. Using the criterion from Theorem I.43(b), one easily checks
that ∆∆op

inj ⊆ ∆∆op is cofinal. So instead of the realisation |X| ≃ colim∆∆op X of some simplicial
anima X, we may consider the colimit over ∆∆op

inj of its restriction. Somewhat abusingly, we
won’t distinguish between X and its restriction to ∆∆op

inj.
Next, let’s define the skeletal filtration on X. For all n ⩾ 0, let in denote the inclusion

∆∆inj,⩽n ⊆ ∆∆op
inj. Then put

sknX := Lanin i∗nX .
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Using the explicit fromulas from Theorem I.52, one unravels

(sknX)k ≃

{
Xk if k ⩽ n

∅ if k > n
.

The sknX assemble into a functor skX : N! Fun(∆∆op
inj,An) with colimit X (which is clear

from the above description and the fact that colimits in functor categories are pointwise).
Now consider

∆̃n = Hom∆∆op
inj

(
−, [n]

)
and ∂∆̃n = skn−1 ∆̃n

in Fun(∆∆op
inj,An), the “semi-simplicial n-simplex” and its “boundary”. Note that ∆̃n and

∂∆̃n are not the restrictions of ∆n and ∂∆n to ∆∆op
inj! However, ∆n and ∂∆n are the left Kan

extensions of ∆̃n and ∂∆̃n along ∆∆op
inj ⊆ ∆∆op by Corollary I.48. Hence

|∆̃n| ≃ |∆n| ≃ ∗ and |∂∆̃n| ≃ |∂∆n| ≃ Sn−1 ,

where we use that colim∆∆op
inj

and colim∆∆op are the left Kan extension functors along ∆∆op
inj ! ∗

and ∆∆op ! ∗, respectively, and left Kan extension composes.
By direct inspection there are pushouts

∂∆̃n+1 × constXn+1 sknX

∆̃n+1 × constXn+1 skn+1 X

. (IV.7.1)

for all n ⩾ 0 (just write out the definitions and everything will be trivial in each degree).
Taking realisations everywhere gives pushouts

Sn ×Xn+1 |sknX|

Xn+1 |skn+1 X|
. (IV.7.2)

for all n ⩾ 0. But be aware of Warning IV.7a below!
Now apply (IV.7.2) to X ≃ coreS(C) in the case n = 0. We know S1(C) ≃ C and hence

S0 × coreS1(C) ≃ core(C) ⊔ core(C). Thus the pushout diagram in question appears as

core(C) ⊔ core(C) |sk0 coreS(C)|

core(C) |sk1 coreS(C)|
.

We also know S0(C) ≃ ∗, hence sk0 coreS(C) ≃ ∆̃0. Plugging this into the pushout above
and playing a bit around with it then shows |sk1 coreS(C)| ≃ Σ(core(C) ⊔ ∗) ≃ Σ(core(C)+).
Hence Ω |sk1 coreS(C)| ≃ ΩΣ(core(C)+) ≃ FreeGrp(core(C)) by Proposition II.10. Therefore

π1 |sk1 coreS(C)| = π0 FreeGrp ( core(C)
)

= FreeGrp(Set) (π0 core(C)
)

is the free ordinary group on the set π0 core(C).
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Next, we apply (IV.7.2) to X ≃ coreS(C) in the case n = 1. Plugging in what we know
so far, the pushout in question appears as

S1 × coreS2(C) Σ
(

core(C) ⊔ ∗
)

coreS2(C) |sk2 coreS(C)|

.

This enables us to compute π1 |sk2 coreS(C)| using the Seifert–van Kampen theorem ([Hat02,
Theorem 1.20]). But note that coreS2(C) isn’t necessarily connected; rather, each equivalence
class in S2(C) defines a connected component. So in order to use Seifert–van Kampen in its
usual formulation, we have to decompose coreS2(C) ≃

∐
s(coreS2(C))s into pathcomponents

and then iteratively form the pushout along S1 × (coreS2(C))s ! (coreS2(C))s (where the
“number” of iterations can be any ordinal).

So choose an element s ∈ coreS2(C), which we may think of as a cofibre sequence

s = (a −! b −! b/a)

in C, and let’s unravel what the top row map does on fundamental groups. We know
π1Σ(core(C)⊔∗) = FreeGrp(Set)(π0 core(C)), π1(S1) = Z, and that π1 commutes with products.
We claim that the ensuing map

Z × π1
(

coreS2(C), s
)
−! FreeGrp(Set) (π0 core(C)

)
sends (1, e) 7! a · b−1 · b/a and (0, γ) 7! e for all γ ∈ π1(coreS2(C), s), where e denotes the
respective neutral elements. Indeed, (1, e) corresponds to walking once around the perimeter
of S1 ≃ |∂∆̃1| and taking boundary maps, which are given by d2(s) ≃ a, d1(s) ≃ b, and
d0(s) ≃ b/a in that order (see the end of Construction IV.5). The argument for (0, γ) is
similar. To make all of this really precise, we would have to unravel what the top row map
∂∆̃n+1 × constXn+1 ! sknX from (IV.7.1) does, but let’s not get into the details there.

So taking the pushout

Z × π1
(

coreS2(C), s
)

FreeGrp(Set) (π0 core(C)
)

π1
(

coreS2(C), s
)

?

pr2 .

in Grp(Set) (which is what the Seifert–van Kampen theorem does) precisely enforces the
relation [b] = [b/a] · [a] in the free group FreeGrp(Set)(π0 core(C)). Doing this for all cofibre
sequences in C thus provides an isomorphism

K0(C) ≃ π1
(

|sk2 coreS2(C)|
)

(note in particular that a ! a ⊕ c ! c is always a fibre sequence, hence [a ⊕ c] = [a] · [c],
and then by swapping a and c also [a⊕ c] = [c] · [a]). Thus we are almost done and it only
remains to show π1(| sk2 coreS(C)|) = π1(|core(C)|). But it follows from (IV.7.2) and the
Seifert–van Kampen theorem again that the fundamental group doesn’t change anymore in
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the higher skeleta (because π1(Sn) = 0 for n ⩾ 2). Thus, as π1 commutes with sequential
colimits by Lemma II.31b,

π1
(

|core(C)|
)

= π1

(
colim
n∈N

|skn coreS2(C)|
)

= colim
n∈N

π1
(

|sk2 coreS2(C)|
)

= π1
(

|sk2 coreS2(C)|
)
.

IV.7a. Warning ! . — In contrast to the realisation of simplicial anima (see Proposi-
tion II.18), the realisation functor

| | ≃ colim
∆∆op

inj

: Fun(∆∆op
inj,An) −! An

for semi-simplicial anima doesn’t commute with finite products in general. For example
∆̃0 × ∆̃1 ≃ ∆̃0 ⊔ ∆̃1, so |∆̃0 × ∆̃1| ≃ |∆̃0| ⊔ |∆̃1|. But it does if one object is constant, since
both |X× const −| : An! An and |X|×− : An! An preserve colimits and agree on ∗ ∈ An,
hence they must agree by Theorem I.51.

IV.7b. Edgewise Subdivision. — Let’s give another construction of k(C) using the
Quillen Q-construction from I.70. To get a relation between the Q- and the S-construction,
consider

∆∆op −! ∆∆op

[n] 7−! [n] ⋆ [n]op .

It induces a functor (−)esd : sAn ! sAn, called edgewise subdivision. For example, by
Lemma I.69,

Nr(C)esd ≃ Nr
(

TwAr(Cop)
)

holds for all ∞-categories C. Moreover, we have

|X| ≃ |Xesd|

for all simplicial anima X. Indeed, both sides are colimit preserving functors sAn ! An,
hence it suffices to check that they coincide on simplices by Theorem I.51. Clearly |∆n| ≃ ∗.
To get the same for (∆n)esd, we use Nr([n]) ≃ ∆n (see before Theorem/Definition I.64)
and thus (∆n)esd ≃ Nr(TwAr([n]op)) by the formula above. But TwAr([n]op) has an initial
object, hence its realisation is contractible too.

Abstractly, [n]op ⋆ [n] = [2n+ 1]. But rather than as the poset (0 < 1 < · · · < 2n+ 1), we
think of [n]op ⋆ [n] as the poset

(0ℓ < 1ℓ < · · · < nℓ < nr < (n− 1)r < · · · < 0r) ,

where the indices (−)ℓ and (−)r indicate the “left” and “right” part, corresponding to [n]
and [n]op respectively.

IV.8. Proposition. — The map TwAr
(
[n]op)! Ar([n]⋆ [n]op) sending (i ⩽ j) to (iℓ ⩽ jr)

induces an equivalence
S(C)esd ∼−! Q(C)

for any stable ∞-category C. In particular, k(C) ≃ Ω |Span(C)|, where we put Span(C) ≃
asscat(coreQ(C)), as defined in Proposition/Definition I.71.
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Proof sketch. It’s easy to check that TwAr
(
[n]op)! Ar([n]⋆[n]op) defines a map of simplicial

posets and that the induced map upon taking Fun(−, C) restricts to a map S(C)esd ! Q(C),
as required.

To show that this map is indeed an equivalence, we draw a picture in the case n = 2, that
is, a picture of Ar([2] ⋆ [2]op) ≃ Ar([5]):

(0ℓ ⩽ 0ℓ)

(0ℓ ⩽ 1ℓ) (0ℓ ⩽ 2ℓ) (0ℓ ⩽ 2r) (0ℓ ⩽ 1r)
(0ℓ ⩽ 0r)

(1ℓ ⩽ 0r)

(2ℓ ⩽ 0r)

(2r ⩽ 0r)

(1r ⩽ 0r)

(0r ⩽ 0r)

(1ℓ ⩽ 1ℓ)

(2ℓ ⩽ 2ℓ)

(2r ⩽ 2r)

(1r ⩽ 1r)

We let In denote the image of TwAr([n]op) ! Ar([n] ⋆ [n]op). This is the yellow part in
the picture. Also let ∆ℓ

n and ∆r
n be the subposets spanned by {(0ℓ ⩽ 0ℓ), . . . , (nℓ ⩽ nℓ)}

and {(nr, nr), . . . , (0r, 0r)}, respectively. In the picture these are coloured pink and purple.
Finally, let Jn be the subposet spanned by {(iℓ ⩽ jℓ), (iℓ ⩽ jr) | i ⩽ j}. This is the dotted
part in the picture.

By definition, an element lies in S2n+1(C) iff all squares go to pushouts/pullbacks in
the stable ∞-category C. Moreover, Qn(C) ⊆ Fun(In, C) is the full sub-∞-category of those
functors that send all squares in In to pushouts/pullbacks. Now consider the composition

Fun(In, C) Fun
(

Ar([n] ⋆ [n]op), C
)

Fun(In ∪ ∆ℓ
n, C) Fun(In ∪ ∆n ∪ ∆r

n, C) Fun(Jn ∪ ∆r
n, C)

Lan

Ran Ran

Lan

(where “∪” always means that we take the full subposet spanned by the union). That is, we
start with the yellow part, left-Kan extend to the pink part, right-Kan extend to the purple
part, right-Kan extend to the dotted part, and the left-Kan extend to all of Ar([n]⋆ [n]op). All
of these Kan extensions are along fully faithful embeddings of subposets, hence fully faithful
by Corollary I.54. Breaking up each of the Kan extensions into a sequence of Kan extensions
by adding one vertex at a time, and using the formulas from Theorem I.52, we verify that
the essential image of Qn ⊆ Fun(In, C) is precisely S2n+1(C) ⊆ Fun(Ar([n] ⋆ [n]op), C), which
is what we want.

For the “in particular”, note that |coreS(C)| ≃ | coreS(C)esd| ≃ |coreQ(C)| holds by IV.7b
and what we’ve shown so far, and |coreQ(C)| ≃ |Span(C)| follows from Remark I.66.
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The Resolution Theorem
Proposition IV.8 allows us to define a map core(C)! k(C) via

core(C) ≃ HomSpan(C)(0, 0) −! Hom|Span(C)|(0, 0) ≃ Ω |Span(C)|

(the equivalence on the left follows from (I.65.2) applied to Span(C) ≃ asscat(coreQ(C)) and
some playing around with the pullback involved). This morphism is clearly natural in C,
hence it defines a natural transformation core ⇒ k in Fun(Catst

∞,An). But both functors
preserve finite products (because they are built from right adjoints, except for the realisation
| |, but this also preserves finite products by Proposition II.18). Hence it lifts canonically to
a natural transformation

(core =⇒ k) : Catst
∞ −! CMon(An)

by Theorem II.19 and the following observation:

IV.9. Observation. — Catst
∞ is semi-additive (and the same is true for Cat⊔

∞, Cat×
∞,

and Catsemi-add
∞ ).

Proof sketch. Evidently, Catst
∞ inherits products from Cat∞, and the zero category 0 ∈ Catst

∞
is a zero object. Next, recall Proposition II.40, which associates to every ∞-category C an
∞-operad C⊔ !

Lop. If you stare at the construction, you’ll find it is clearly functorial in C,
hence we get a functor

(−)⊔ : Cat∞ −! Op∞ .

But if C is stable, then it has finite coproducts and thus C⊔ !
Lop is a symmetric monoidal

∞-category. Moreover, any map F : C ! D in Catst
∞ preserves finite coproducts, so its image

F⊔ : C⊔ ! D⊔ is strongly monoidal. Hence (−)⊔ restricts to a functor

(−)⊕ : Catst
∞ −! CMon(Cat∞) .

From this, we can extract functors ⊕C : C × C ! C in Catst
∞ which assemble into a natural

transformation ⊕ : ∆ ⇒ id in Fun(Catst
∞,Catst

∞) with the properties from Lemma II.20.
Hence that lemma implies that Catst

∞ is semi-additive. The other cases are similar.

IV.9a. — So for all stable ∞-categories C we get a map of E∞-monoids core(C)! k(C).
But k(C) is an E∞-group (because π0(k(C)) = K0(C) is an ordinary abelian group), hence
this map factors over an E∞-group map

core(C)∞-grp −! k(C) .

In particular, via Proj(R) ⊆ core Dperf(R) this gives a map

k(R) ≃ Proj(R)∞-grp −!
(

core Dperf(R)
)∞-grp

−! k
(
Dperf(R)

)
.

And this map turns out to be an equivalence! Thereby we’ve reduced algebraic K-theory
of rings, as constructed in Definition II.12a, to the more general construction from Defini-
tion IV.6.

In fact, the equivalence Proj(R)∞-grp ≃ k(Dperf(R)) can be proved in much more gener-
ality, but this needs a bit more terminology.
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IV.10. Weight Structures*. — We didn’t introduce this in the lecture, but here’s what
Fabian told the audience in his talk in Regensburg. A weight structure on a stable ∞-category
consists of two full sub-∞-categories C⩽0, C⩾0 ⊆ C subject to the following conditions:
(a) C⩾0 is closed under pushouts, C⩽0 is closed under pullbacks, and both are closed under

retracts.
(b) If x ∈ C⩽0 and y ∈ C⩾0, then the spectrum homC(x, y) is connective (i.e. its homotopy

groups vanish in negative degrees).
(c) For all y ∈ C there is a fibre sequence x! y ! z with x ∈ C⩽0 and z ∈ C⩾1. Here we

put C⩾a := (C⩾0)[a] and C⩽b := (C⩽0)[b].
We also put C[a,b] := C⩾a ∩ C⩽b, and C♡ := C[0,0] = C⩾0 ∩ C⩽0. A weight structure on C is
called exhaustive if

C =
⋃
n∈N

C[−n,n] .

Fabian remarks that the notion of a weight structure is different from that of a t-structure
(which you might know from [HA, Definition 1.2.1.4]; we’ll introduce it properly in IV.37).
For example, in a t-structure the roles of “⩽” and “⩾” in (c) would be swapped. You should
think of t-structures as generalisations of “smart” truncation of chain complexes, whereas a
weight structure behaves more like “stupid” truncation. In particular, the fibre sequence in
C is highly non-canonical, whereas in a t-structure there’s always a canonical choice using
the truncation functors. Moreover, the heart of a t-structure is always an abelian category,
whereas it need not even be a 1-category for a weight structure.

Note that (a) implies that both C⩾0 and C⩽0 contain 0, since it is a retract of everything
(and both sub-∞-categories are non-empty by (c)), and both are closed under finite direct
sums. To acquaint myself a bit more with weight structures, let me also list the following
further properties:

IV.10a. Lemma*. — (a) An object x ∈ C lies in C⩽0 iff homC(x, y) is connective for all
y ∈ C⩾0. Similarly, y ∈ C lies in C⩾0 iff homC(x, y) is connective for all x ∈ C⩽0.

(b) Both C⩾0 and C⩽0 are closed under extensions. That is, if the outer two terms in a fibre
sequence lie in C⩾0, then the same is true for the inner term, and likewise for C⩽0.

(c) C♡ is an additive ∞-category, and every fibre sequence x! y ! z in C splits if all of
its terms lie in C♡.

Proof *. For (a), we only do the second case since the first one is analogous. The “only if”
holds by assumption. So assume y ∈ C satisfies that homC(x, y) is connective for all x ∈ C⩽0.
Apply IV.10(c) to y[1] to get a fibre sequence x! y ! z with x ∈ C⩽−1 and z ∈ C⩾0. Then
π0 homC(x, y) = π−1 homC(x[1], y) = 0 by IV.10(b). Hence the long exact homotopy groups
sequence associated to the fibre sequence homC(z, y)! homC(y, y)! homC(x, y) in spectra
becomes

. . . −! π0 homC(z, y) −! π0 homC(y, y) −! 0 .

In particular, π0 homC(z, y) ! π0 homC(y, y) is surjective. Choosing a preimage of idy
witnesses y as a retract of z, hence y ∈ C⩾0 because it is closed under retracts. This shows (a).
Part (b) is an immediate consequence of (a) and the long exact homotopy groups sequence.

It’s clear that C♡ is contains 0 and is closed under finite direct sums (in fact, under fibre
sequences by (b)), hence it inherits additivity from C. If x! y ! z is a fibre sequence in C
whose terms lie in C♡, then homC(z, x) ! homC(z, y) ! homC(z, z) is a fibre sequence in
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spectra. But all of its entries are connective, hence the long exact sequence of homotopy
groups reads

. . . −! π0 homC(z, x) −! π0 homC(z, y) −! π0 homC(z, z) −! 0 .

In particular, π0 homC(z, y) ! π0 homC(z, z) is surjective, whence we get a split z ! y by
choosing a preimage of idz. Now consider the diagram

0 x 0

z y z

. .

The right square is a pushout by assumption, and the outer rectangle is a pushout too since
z ! y ! z is equivalent to the identity on z. Hence the left square is a pushout as well,
which establishes y ≃ x⊕ z.

The prime example of an exhaustive weight structure is Dperf(R) for a ring R, with

Dperf(R)[a,b] =
{
C ∈ Dperf(R)

∣∣∣∣ C has a projective representative
concentrated in degrees [a, b]

}
.

Note that this is stronger than heaving homology concentrated in degrees [a, b]! The heart of
this weight structure is Dperf(R)♡ ≃ Proj(R). With this, we can formulate a general version
of the “resolution theorem”, also often called the “weight version of the theorem of the heart”.

IV.11. Theorem (Resolution theorem, Gillet–Waldhausen). — If C is a stable ∞-category
equipped with an exhaustive weight structure, then composing core(C♡)∞-grp ! core(C)∞-grp

with the map from IV.9a induces an equivalence

core(C♡)∞-grp −! k(C) .

In particular, k(R) ≃ Proj(R)∞-grp ≃ k(Dperf(R)) for every ring R.

We won’t prove Theorem IV.11. But Fabian has promised he will sketch a new proof
due to Wolfgang Steimle and himself in the official notes. In fact, they proved an even more
general statement about Poincaré categories, which Fabian will also introduce in his notes.

K-Theory as the Universal Additive Invariant
Lecture 25
4th Feb, 2021

Our next goal is to analyse the functor k : Catst
∞ ! CGrp(An), and in particular to prove

the following result from [BGT13]:

IV.12. Theorem. — The inclusion Fungrp(Catst
∞,CGrp(An)) ⊆ Funadd(Catst

∞,An) admits
a left adjoint (−)grp ≃ Ω| Span(−)(−)|, and

k ≃ coregrp .

In other words, K-theory is the initial grouplike functor under core : Catst
∞ ! An.

The proof of Theorem IV.12 has to wait till page 224. Let’s start with explaining all that
new terminology in it, and to do that, we’ll introduce even more.
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Verdier Sequences
IV.13. Definition. — Let’s define things named after Verdier:
(a) A Verdier sequence is a sequence A! B ! C in Catst

∞ that is both a fibre and a cofibre
sequence. It is called left/right split if both functors admit left/right adjoints, and split
if it is both left and right split (so all four possible adjoints exist).

(b) A functor B ! C participating in a Verdier sequence as in (a) is called a Verdier
projection, and similarly A! B is called a Verdier injection. A Verdier projection or
injection is called left/right split if the corresponding Verdier sequence has that property.

(c) A Verdier square is a pullback square in Catst
∞

A B

C D

.

such that the vertical maps are Verdier projections. A Verdier square is called (left/right)
split if the Verdier projections have the respective property.

Moreover, a functor F : Catst
∞ ! E , where E has finite limits, is additive or Verdier-localising

if F (0) is a final object of E and F takes split Verdier squares or all Verdier squares to
pullback squares in E . It is called Karoubi-localising if it is Verdier-localising and takes dense
inclusions to equivalences. The corresponding full sub-∞-categories of Fun(Catst

∞, E) are
denoted

FunKar(Catst
∞, E) ⊆ FunVerd(Catst

∞, E) ⊆ Funadd(Catst
∞, E) .

Finally, an additive functor F : Catst
∞ ! E is called grouplike if it factors over CGrp(E) (the

factorisation is automatically canonical, see IV.14(c)). The corresponding full sub-∞-category
is denoted

Fungrp(Catst
∞, E) ⊆ Funadd(Catst

∞, E) .

IV.14. More on Verdier Sequences and Additive Functors. — Having introduced a
plethora of new terminology in Definition IV.13, some explanations are in order.
(a) The functor categories Fun(Catst

∞, E) are usually not locally small. But we’ll ignore
set-theoretic issues in the following.

(b) In Catst
∞ it is really a property (rather than a structure) to be a Verdier sequence: Given

A! B ! C, an extension to
A B

0 C

is unique (up to contractible choice) because 0 ∈ Fun(A, C) is initial and terminal.
(c) Because Catst

∞ is semi-additive by Observation IV.9, we obtain that

A × C C

A 0

.
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is always a split Verdier square. Moreover, C ! C ! 0 is always a split Verdier sequence,
and so is C ! A × C ! A in general. Hence additive functors preserve finite products.
But then Theorem II.19 implies that

Funadd(Catst
∞, E) ≃ Funadd (Catst

∞,CMon(E)
)

≃ CMon
(

Funadd(Catst
∞, E)

)
for any ∞-category E with finite limits. Thus Fungrp(Catst

∞, E) ⊆ Funadd(Catst
∞, E) as

defined in Definition IV.13 makes sense, and also

Fungrp(Catst
∞, E) ≃ Funadd (Catst

∞,CGrp(E)
)

≃ CGrp
(

Funadd(Catst
∞, E)

)
.

Moreover, the arguments above show that Funadd(Catst
∞, E) is semi-additive, and thus

the same is true for Fungrp(Catst
∞, E), FunVerd(Catst

∞, E), and FunKar(Catst
∞, E). Finally,

all of them are closed under limits in Fun(Catst
∞, E).

(d∗) If F : Catst
∞ ! An is a grouplike additive functor, then F (B) ≃ F (A) × F (C) for every

split Verdier sequence A! B ! C. Indeed, F (A)! F (B)! F (C) is a fibre sequence
in An, hence also in CGrp(An). Either of the fully faithful adjoints C ! B induces
a split F (C)! F (B), so in particular, π0(F (B))! π0(F (C)) is surjective. Hence the
fibre fib(F (B)! F (C)) in Sp must be connective too, whence it coincides with the fibre
F (A) taken in CGrp(An) ≃ Sp⩾0. Now every fibre sequence in Sp with a split must
actually be split, using the same argument as in the proof of Lemma* IV.10a(c).

(e) An example of a Verdier-localising but not grouplike functor is core : Catst
∞ ! An. It

is Verdier-localising simply because it takes arbitrary pullbacks (and not just Verdier
squares) to pullbacks in An.

Here we should probably mention that Catst
∞ ⊆ Cat∞ is closed under pullbacks (and

in fact, arbitrary finite limits). To see this, first note that Catst
∞ ⊆ Catlex

∞ has both
adjoints by Theorem II.30 and the remark after it. Hence it suffices that Catlex

∞ ⊆ Cat∞
is closed under pullbacks. But if we are given a pullback diagram in Cat∞ such that
both legs preserve finite limits, then any finite limit in the pullback can be computed
componentwise (and in particular, exists if it exists componentwise).

For even more facts about Verdier sequences, see [Fab+20II, Appendix A] and IV.15a below.

IV.14a. Fibre Sequences in Catst
∞. — We can explicitly characterise fibre sequences in

Catst
∞. Given an exact functor p : B ! C between stable ∞-categories, the fibre fib(p) is the

full subcategory
fib(p) ≃ {b ∈ B | p(b) ≃ 0 in C} ⊆ B .

Since p is exact, it’s easy to show that fib(p) ⊆ B is closed under finite direct sums and
fibre/cofibre sequences, hence it is really a stable sub-∞-category, and one immediately
checks that fib(p) also satisfies the desired universal property.

IV.14b. Cofibre Sequences in Catst
∞. — There’s also an explicit description of cofibres

in Catst
∞. Given an exact functor f : A! B, by the essential image of f we mean the full

sub-∞-category of B spanned by all objects which are equivalent to some f(a). Since f is
exact, the essential image is closed under finite direct sums, but not necessarily under fibres
and cofibres, since there might be more morphisms in B than in A. But there’s always a
smallest stable sub-∞-category of B containing the essential image of f . In any case, we have

cofib(f) ≃ B/A := B
[
{mod-A equivalences}−1] ,
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where the mod-A equivalences are all those maps φ : x! y whose fibre/cofibre is a retract
of an object in the stable sub-∞-category generated by the essential image of f . As
fib(φ) ≃ cofib(φ)[−1], it really suffices to assume that either one is such a retract.

In contrast to (c), it’s not so easy to show that cofib(f) ≃ B/A is a stable ∞-category
again and that B ! B/A is an exact functor, so we’ll postpone the proof until Lemma IV.27.
But assuming this is true, it’s easy to check that B/A is indeed the correct cofibre: Let C be
another stable ∞-category. By definition (see Example I.37),

HomCatst
∞

(B/A, C) ⊆ HomCatst
∞

(B, C)

is the collection of path components of functors that invert mod-A equivalences. But note
that also

HomCatst
∞

(
cofib(f), C

)
≃ HomCatst

∞
(B, C) ×HomCatst

∞
(A,C) {0} ⊆ HomCatst

∞
(B, C)

is also a collection of path components. This is because the zero functor is initial (and
terminal) in Fun(A, C), hence its path component in HomCatst

∞
(A, C) ⊆ core Fun(A, C) is a

contractible anima, hence the inclusion of {0} into it is an equivalence.
Therefore, it suffices to show HomCatst

∞
(B/A, C) and HomCatst

∞
(cofib(f), C) comprise the

same path components. But that’s easy: Any exact functor p : B ! C inverting the mod-A
equivalences satisfies p ◦ f ≃ 0, as 0! p(a) is a mod-A equivalence for all a ∈ A Conversely,
any exact p : B ! C with p ◦ f ≃ 0 also kills all retracts of the stable sub-∞-category
generated by the essential image of f . Hence it inverts mod-A equivalences.

IV.15. Theorem. — Let F : A! B be an exact functor of stable ∞-categories.
(a) F is a Verdier projection iff it is a localisation. In this case it automatically inverts

precisely the mod-fib(F ) equivalences.
(b) F is a left/right split Verdier projection iff it admits a fully faithful left/right adjoint

(i.e., iff it is a left/right Bousfield localisation).
(c) F is a Verdier inclusion iff it is fully faithful and its essential image is closed under

retracts in B.
(d) F is a left/right split Verdier inclusion iff it is fully faithful and has a left/right adjoint.
Furthermore, if

A B C
f p

g q

or A B Cf p

g′ q′

is a left or right split Verdier sequence, with adjoints as indicated, then for all b ∈ B there
are fibre sequences qp(b)! b! fg(b) or fg′(b)! b! q′p(b), respectively. Moreover, in this
case the sequences

C B Aq g

p f

or A B C
q′ g′

p f
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are right or left split Verdier, respectively. Finally, if

A B C
f p

g

g′

q

q′

is a split Verdier sequence, then gq′ ≃ cofib(q ⇒ q′) ≃ cofib(g′ ⇒ g) ≃ g′q[1] (we’ll explain in
the proof how the middle two are functors C ! A), and for all b ∈ B there are pushout/pullback
squares

b fg(b)

q′p(b) fgq′p(b)

. and
fg′qp(b) fg′(b)

qp(b) b

.

Proof *. The proof is essentially trivial (assuming the description of cofibres in IV.14b, which
we’ll prove in Lemma IV.27) and was left as an exercise in the lecture.

We begin with (a). Every Verdier projection is a localisation by IV.14b, hence it suffices
to prove the converse. If B ≃ A[W−1] for some W ⊆ π0 core Ar(A), then all morphisms
φ : x! y in W satisfy F (fib(φ)) ≃ 0 since φ is sent to an equivalence and F is exact. Hence
W is contained in the mod-fib(F ) equivalences. This might well be a proper inclusion. But
every exact functor B ! C automatically inverts all mod-fib(F ) equivalences, hence also

B ≃ A
[
{mod-fib(F ) equiv.}−1]

and thus fib(F ) ! A ! B is also a cofibre sequence. Finally, the inverted morphisms
are precisely the mod-fib(F ) equivalences: Indeed, if F (φ) is an equivalence in B for some
φ : x! y in A, then F (fib(φ)) ≃ 0, hence fib(φ) ∈ fib(F ).

Next, we prove (b). Proposition/Definition I.58 and Proposition I.59 take care of most
of the statement, and all that’s left is to show that if F : A ! B is a left/right Bousfield
localisation, then fib(F ) ⊆ A has a left/right adjoint. Let’s only do the left case; the right
case is entirely analogous. Let q : B ! A be a left adjoint, with counit c : qF ⇒ idA. We
claim that g ≃ cofib(c : qF ⇒ idA) defines a left adjoint g : A! fib(F ) of the fully faithful
inclusion fib(F ) ⊆ A.

First off, F (g(a)) ≃ cofib(idF (a) : F (a)! F (a)) ≃ 0 since F is exact, hence g takes values
in the full sub-∞-category fib(F ), as required. We must show that g is a left Bousfield
localisation onto fib(F ), so of course we’ll apply our favourite criterion, Proposition I.61a.
We get a natural transformation η : idA ⇒ g for free, since g was defined as a cofibre. It’s
easy to see that ηg(a) : g(a) ∼−! g(g(a)) is an equivalence for all a ∈ A. Indeed, qF (g(a)) ≃ 0,
hence

g
(
g(a)

)
≃ cofib

(
cg(a) : qF (g(a))! g(a)

)
≃ g(a) ,

as required. Proving that g(ηa) : g(a) ∼−! g(g(a)) is an equivalence is only slightly harder:
We have get a morphism of cofibre sequences

qF (a) a g(a)

qF
(
g(a)

)
g(a) g

(
g(a)

)qF (ηa) . ηa

∼

g(ηa)
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But qF (g(a)) ≃ 0, hence the square on the left is a pushout as indicated, which implies
that the induced map on cofibres must be an equivalence. Thus Proposition I.61a can be
applied, which shows that g is a left Bousfield localisation with image in fib(F ). But η is an
equivalence on all of fib(F ), hence the image of g is all of it. This shows (b).

The “only if” part of (c) is clear from our description of fibres in IV.14a. Conversely,
assume F is fully faithful and its essential image is closed under retracts. We must show
that A is the fibre of B ! B/A. This can be verified on homotopy categories. So assume
b ∈ B has the property that the unique morphism 0! b in πB becomes an equivalence in
the localisation

π(B/A) ≃ (πB)
[
{mod-A equiv.}−1] .

We must show that b lies in (the essential image of) πA. Usually, such a question is notoriously
difficult, but here we are lucky. By assumption on B, a morphism φ : x! y in B is a mod-A
equivalence iff fib(φ) lies in (the essential image of) A. Using this, it’s not hard to verify
that the mod-A equivalences form a left multiplicative system in πB in the sense of [Stacks,
Tag 04VB]. In such a situation, the localisation is easy to describe. Since we assume that
the identity idb : b! b and the zero morphism 0: b! b coincide in π(B/A), there must be a
commutative diagram

b

b c b

b
0

s

in πB, where s is a mod-A equivalence. But a simple diagram chase shows s = 0. Hence
fib(s) ≃ b⊕ c[1] is in contained in (the essential image of) A, and thus so is b by closedness
under retracts.

For (d), the “only if” is trivial from (c) and the definitions. So assume F is fully faithful
with left adjoint g : B ! A and unit η : idB ⇒ Fg. In the same way as in (b), we prove that
p ≃ fib(η : idB ⇒ Fg) is a right Bousfield localisation p : B ! B onto the full sub-∞-category
im(p) ⊆ B. By the dual of Proposition/Definition I.58(d), im(p) is a localisation at those
morphisms φ : x! y for which

φ∗ : HomB
(
p(b), x

) ∼−! HomB
(
p(b), y

)
is an equivalence for all b ∈ B. But this is equivalent to

∗ ≃ HomB
(
p(b),fib(φ)

)
≃ Homim(p)

(
p(b), p(fib(φ))

)
,

which is in turn equivalent to p(fib(φ)) ≃ 0. This again is equivalent to fib(φ) ∼−! Fg(fib(φ))
being an equivalence, or in other words, to fib(φ) lying in the essential image of A. Hence
the localisation p is a localisation at all those morphisms whose fibre is in the essential image
of A. But then it inverts all mod-A equivalences, hence im(p) ≃ B/A is the localisation
we’re looking for. This proves the left case of (d). The right case is analogous.

Now for the additional assertions. Assume that

A B C
f p

g q
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is a left split Verdier sequence (the right case is analogous). The desired fibre sequences were
already constructed in the proof of (b). Let’s show that

C B Aq g

p f

is a right split Verdier sequence. We already know from (d) that q is a right split Verdier
inclusion, so we only need to check that A is its cofibre. By Proposition/Definition I.58(d), A
is a localisation of B at the f -local equivalences, i.e. at those morphisms φ : x! y for which

φ∗ : HomB
(
y, f(a)

) ∼−! HomB
(
x, f(a)

)
is an equivalence for all a ∈ A. Dualising the argument from the proof of (d), this is equivalent
to cofib(φ) lying in the image of C, hence the f -local equivalences coincide with the mod-C
equivalences (here we also use that q is fully faithful and its essential image is closed under
retracts by (c)). This shows that indeed A ≃ cofib(q).

Finally, suppose

A B C
f p

g

g′

q

q′

is a split Verdier sequence. By adjunction, constructing a natural transformation q ⇒ q′ is
equivalent to constructing a natural transformation pq ⇒ idC . But the unit η : idC ⇒ pq is
an equivalence, hence we can take its inverse. Now

p
(

cofib(q ⇒ q′)
)

≃ cofib(pq ⇒ pq′) ≃ cofib(id: idC ⇒ idC) ≃ 0 ,

hence cofib(q ⇒ q′) : C ! B factors naturally over A. Now recall the natural fibre sequences
qp(b)! b! fg(b), plug in b ≃ q′(c) and use pq′ ≃ idC to get cofib(q(c)! q′(c)) ≃ fgq′(c).
Since everything is natural in c, this implies

gq′ ≃ cofib(q ⇒ q′) in Fun(C,A) .

Moreover, plugging b ≃ q(c) into the fibre sequences fg′(b)! b! q′p(b) and using pq ≃ idC
implies fg′q(c) ≃ fib(q(c) ! q′(c)) ≃ cofib(q(c) ! q′(c))[−1]. This is natural in c, and
moreover one checks that the morphisms q(c)! q′(c) are the same as above. Hence also

gq′[1] ≃ cofib(q ⇒ q′) in Fun(C,A) .

To construct a natural transformation g′ ⇒ g, we apply g to the counit fg′ ⇒ idB and use
gf ≃ idA. Now gq ≃ 0 and thus cofib(g′q ⇒ gq) ≃ g′q[1]. Similarly, g′q′ ≃ 0 and thus
cofib(g′q′ ⇒ gq′) ≃ gq′. But we already know g′q[1] ≃ gq′, hence

cofib(g′q ⇒ gq) ≃ cofib(g′q′ ⇒ gq′) in Fun(C,A) .

We call this functor simply cofib(g′ ⇒ g) : C ! A. Thereby we’ve obtained the desired
equivalences gq′ ≃ cofib(q ⇒ q′) ≃ cofib(g′ ⇒ g) ≃ g′q[1].
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It remains to construct the pushout/pullback squares. Consider the following solid
pushout/pullback diagram:

?[−1] fg′(b) 0

qp(b) b q′p(b)

0 fg(b) ?

. .

. .

Plugging b ≃ q′p(b′) into the fibre sequence qp(b) ! b ! fg(b) and using pq′ ≃ idC
shows that there is a fibre sequence qp(b′) ! q′p(b′) ! fgq′p(b′) for all b′ ∈ B. Upon
inspection, the first arrow coincides with the horizontal composition in the middle row of
the diagram. Hence ? ≃ fgq′p(b), which establishes the first pullback square. Moreover,
fgq′p(b)[−1] ≃ f(gq′[−1])p(b) ≃ fg′qp(b), which establishes the second pullback square.
We’re done, at last.

IV.15a. Even More on Verdier Sequences. — As a consequence of Theorem IV.15(b)
and (d), for a Verdier sequence to be left/right split, it suffices that one of the two functors
has a left/right adjoint. Moreover, for a pullback square

A B

C D

.

in Catst
∞ to be a left/right split Verdier square, it suffices that the left vertical map B ! D is

a left/right split Verdier projection; we don’t even need to assume that A! C is a Verdier
projection at all. Indeed, if there is a fully faithful left/right adjoint D ! B, then we also
get a fully faithful left/right adjoint C ! A from the pullback property. Hence A ! C is
automatically a left/right split Verdier projection as well.

IV.16. Stable Recollements. — A split Verdier sequence

A B C
f p

g

g′

q

q′

is also known as a stable recollement (with French pronounciation), and gq′, or any of its
three other equivalent descriptions from Theorem IV.15 is called its classifying functor c.
This is because one can check that

B Ar(A)

C A

g⇒cp

.
t

c

213



K-Theory as the Universal Additive Invariant

is a pullback, and in fact a split Verdier square, so

A Ar(A) AidA⇒0 t

s

fib(−)

0⇒idA

idA⇒idA

is the universal stable recollement with fibre A.
Let’s look at an example. A map f : R ! S is called a localisation of E∞-rings if the

multiplication map µ : S⊗RS
∼−! S is an equivalence. For example, we could take HA! HB

for A ! B a derived localisation of ordinary rings (see Proposition/Definition I.63, and
Proposition II.63 for why derived localisations give localisations of E∞-ring spectra), or
R! R[s−1] for some s ∈ π0(R). In any case, we have the following lemma.

IV.16a. Lemma. — For any localisation f : R! S of E∞-ring spectra, there is a stable
recollement

ModS ModR ModS-tors
Rf∗ I⊗R−

S⊗R−

homR(S,−)

incl.

homR(I,−)

where f∗ denotes the forgetful functor, I ≃ fib(f : R! S), and ModS-tors
R ⊆ ModR denotes

the full stable sub-∞-category of those R-module spectra that die upon S ⊗R −.

Proof *. We’ve seen in II.62c(c) that f∗ has left adjoint S⊗R− and right adjoint homR(S,−).
Moreover, as f : R! S is a localisation, f∗ is fully faithful by Proposition/Definition I.63(b).
Note that this proposition/definition only deals with derived localisations of ordinary rings,
but the proof can be copied verbatim for arbitrary localisations of E∞-ring spectra. Hence
f∗ is a split Verdier inclusion by Theorem IV.15(d), and we only need to identify its cofibre
as ModS-tors

R .
We know that the cofibre is a left Bousfield localisation p : ModR ! C onto some full

sub-∞-category C ⊆ ModR. From Theorem IV.15 again, we get functorial fibre sequences
p(M) ! M ! S ⊗R M for all M ∈ ModR. Since I ! R ! S is a fibre sequence and
M ≃ R⊗RM , this implies p(M) ≃ I⊗RM , as claimed. Now C is spanned precisely by those
M for which p(M) ∼−!M is an equivalence. But this is equivalent to S ⊗RM ≃ 0 by the
fibre sequence above, hence C ≃ ModS-tors

R , as claimed. It remains to show that homR(I,−)
is a right adjoint of I ⊗R −, but that’s clear from the tensor-Hom adjunction.

IV.16b. Torsion Modules and Complete Modules. — Lemma IV.16a already has
cool consequences in the special case where f is the localisation R ! R[s−1] at a single
element s ∈ π0(R) (we only considered the special case S! S[p−1] for some prime p in the
lecture, but everything will work in general). To this end, we consider the following two
stable sub-∞-categories:

Mods-comp
R ⊆ ModR and Mods

∞-tors
R ⊆ ModR

The left one is spanned by the s-complete R-module spectra, as introduced in Lemma/Defi-
nition III.22a. The right one is spanned by the s-power torsion R-module spectra. These
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are those M for which M ≃ M ⊗R (R/s∞)[−1], where we denote R/s∞ ≃ R[s−1]/R. Then
R/s∞ ≃ colimn∈NR/s

n, and in general

M ⊗R (R/sn)[−1] ≃ fib(sn : M −!M) ≃ M [sn]

is the sn-torsion part of M . Hence M is an s-power torsion R-module spectrum iff it is the
colimit of its sn-torsion parts, as one would expect.

Also recall that M̂s ≃ homR((R/s∞)[−1],M) denotes the s-completion of M as defined
in III.22. Additionally, we introduce the notation

divs(M) := homR

(
R[s−1],M

)
≃ lim

Nop

(
. . .

s
−!M

s
−!M

s
−!M

)
for the s-divisible part of M . With this terminology out of the way, we obtain that Theo-
rem IV.15 and Lemma IV.16a imply a version of Greenlees–May duality.

IV.16c. Corollary. — The functors

(−)ŝ : Mods
∞-tors
R

∼
∼ Mods-comp

R : − ⊗R(R/s∞)[−1]

are inverse equivalences. Furthermore, for all R-module spectra M there are canonical
pushout/pullback squares

M M̂s

M [s−1] M̂s[s−1]

. and
divs(M ⊗R R/s

∞) divs(M)[1]

M ⊗R R/s
∞ M [1]

.

Proof. We apply Lemma IV.16a in the special case S ≃ R[s−1]. Then I ≃ (R/s∞)[−1] and
thus homR(I,−) ≃ (−)ŝ is the s-completion functor. Likewise, homR(R[s−1],−) ≃ divs(−)
extracts the s-divisible part as above. Finally, we have

Mods
∞-tors
R ≃ ModR[s−1]-tors

R .

Indeed, from the fibre sequence (R/s∞)[−1] ! R ! R[s−1] we get that M ⊗R R[s−1] is
equivalent to M ≃ M ⊗R (R/s∞)[−1], hence the R[s−1]-torsion modules are precisely the
s-power torsion modules, as claimed.

By Theorem IV.15, the bottom half in Lemma IV.16a is a left split Verdier sequence.
Applying this in our special case S ≃ R[s−1] together with our considerations above, this
left split Verdier sequence appears as

Mods
∞-tors
R ModR ModR[s−1]

(−)ŝ divs(−)

−⊗R(R/s∞)[−1] f∗

In particular, the s-completion functor (−)ŝ is fully faithful with essential image the fibre
of divs(−) : ModR ! ModR[s−1]. By Lemma/Definition III.22a, this means that (−)ŝ
is an equivalence onto Mods-comp

R . Hence its left adjoint − ⊗R (R/s∞)[−1] is an inverse
equivalence. This proves the first half of the corollary, and the second half follows straight
from Theorem IV.15.
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Note that the left pullback square from Corollary IV.16c already made its appearance
in Lemma* III.22b(b). But now we’ve seen that it also follows from ridiculously general
principles. Cool, right? Similarly, applying Lemma IV.16a to the localisation S! HQ gives
the arithmetic fracture square from Lemma III.22h(c)!

The Additivity Theorem and a Proof of Theorem IV.12
Onwards to the proof of Theorem IV.12. We start with a somewhat random lemma/definition.
IV.17. Lemma/Definition. — Let C be a stable ∞-category. For each 0 ⩽ i ⩽ n the
pushout square

[0] [n− i]

[i] [n]

0

i . +i

in ∆∆ gives a Verdier square
Qn(C) Qi(C)

Qn−i(C) Q0(C)

.

In particular, for an additive functor F : Catst
∞ ! An, the simplicial anima F (Q(C)) ∈ sAn

is a (not necessarily complete) Segal anima and we put

SpanF (C) := asscat
(
F (Q(C))

)
.

Proof. Let’s first check that our would-be split Verdier square is a pullback square at all (in
Cat∞ or Catst

∞, that doesn’t matter by IV.14(e)). This follows from direct inspection, as
the Quillen Q-construction satisfies the Segal condition by Proposition/Definition I.71, so
Qn(C) can be written as the (n+ 1)-fold pullback Q1(C) ×Q0(C) · · · ×Q0(C) Q1(C). A similar
argument shows that once we know that the pullback square is split Verdier, F (Q(C)) will
indeed satisfy the Segal condition, since F sends split Verdier squares to pullbacks.

So it remains to show that the pullback square is split Verdier. Recall from the proof of
Proposition/Definition I.71 that Qn(C) ≃ Fun(Jn, C), where Jn is a zigzag

. . .

︸ ︷︷ ︸
n zigs and zags

In general, if ι : [k] ↪! [ℓ] is the inclusion of an interval, then it induces a fully faithful functor
ι : Jk ! Jℓ. Since the Ji are finite and C has finite limits and colimits, ι∗ : Fun(Jℓ, C) !
Fun(Jk, C) has both adjoints, given by left and right Kan extension, and they are fully
faithful again by Corollary I.54, Thus Qℓ(C) ! Qk(C) is a split Verdier projection by
Theorem IV.15(b). This clearly applies in our case, whence we’re done.

IV.18. Theorem (Waldhausen’s additivity theorem). — If F : Catst
∞ ! An is additive,

then so is ∣∣SpanF (−)
∣∣ : Catst

∞ −! An .
In particular, k : Catst

∞ ! An is additive.
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This particular general formulation of the additivity theorem, or to be really precise, its
further generalisation to Poincaré categories, first appeared in [Fab+20II, Theorem 2.4.1].
But of course the original formulation (with F ≃ core) is due to Waldhausen.

Proof of Theorem IV.18. The “in particular” follows as k(C) ≃ Ω |Span(C)| ≃ Ω |Spancore(C)|
by Proposition IV.8, core is additive by I.28(d), and Ω preserves pullbacks. The proof of the
main statement consists of four steps.
(1) We prove that if p : C ! D is a split Verdier projection, then it is a bicartesian fibration

(i.e. both cartesian and cocartesian).
This step is basically a consequence of the following simple lemma.

IV.19. Lemma. — Let g : B A :f be an adjoint pair in Cat∞, with counit c : gf ⇒ idA.
(a) A morphism φ : x! y in A is f -cocartesian iff the square

gf(x) gf(y)

x y

gf(φ)

c . c

φ

is a pushout in A.
(b) If A admits pushouts, f preserves pushouts, and g is fully faithful, then f is a cocartesian

fibration.

Proof of Lemma IV.19. For (a), plug the (g, f)-adjunction into the pullback square from
Definition I.24(a). For (b), let φ′ : x′ ! y′ be a morphism in B and let x ∈ A with f(x) ≃ x′

be given. Since g is fully faithful, we have y′ ≃ fg(y′), hence the morphism φ′ : f(x)! y′

induces a morphism gf(x)! g(y′) by adjunction. Now form the pushout

gf(x) g(y′)

x y

c .
φ

in A. Note that f(c) : fgf(x)! f(x) ≃ x′ is equivalent to the identity on x′ since g is fully
faithful. Moreover, f preserve pushouts. Therefore, applying f to the pushout square above
gives a pushout

x′ y′

x y

φ′

.
f(φ)

Hence f(φ) ≃ φ′, so φ : x! y is a lift of φ′. By (a), it is even an f -cocartesian lift, proving
that f is indeed a cocartesian fibration.

Now we resume the proof of Theorem IV.18. Applying Lemma IV.19(b) to p and its fully
faithful left adjoint (which are exact functors between stable ∞-categories, so all assumptions
are verified) shows that p is a cocartesian fibration. By a dual argument applied to p and its
fully faithful right adjoint, p is also cartesian. This finishes Step (1).
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(2) We prove that if p : C ! D is a split Verdier projection (thus an exact bicartesian
fibration by Step (1)), then

SpanF (p) : SpanF (C) −! SpanF (D)

is a bicartesian fibration as well.
Lecture 26
9th Feb, 2021

Let’s first discuss the case F ≃ core, which is of course the one of most interest to us,
since it leads to K-theory, but it will also be half of the argument for the general case. We
claim:
(⊠) A morphism x! z in Span(C), i.e., a span x y ! z in C, is Span(p)-cocartesian if

y ! x is p-cartesian and y ! z is p-cocartesian.
Unravelling what a map Λ2

0 ! Span(C) and a map ∆2 ! Span(D) look like, we have to show
the following: Suppose we’re given two solid diagrams

x z v

y •

w

(1) (2)

(3) (4)

. p
7−!

p(x) p(z) p(v)

p(y) u

p(w)

.

in C and D, respectively, such that the left one is mapped into the right one under p. We
must show that we can fill in all the dotted arrows (along with the missing object •) in the
left diagram in such a way that the square in the middle becomes a pullback. We can fill in
the dotted arrow labelled “(1)” since y ! x is p-cartesian. Next, we can choose the dotted
arrow “(2)” to be a p-cocartesian lift of p(w)! u. Since w ! • is now p-cocartesian, we can
fill in the two missing dotted arrows “(3)” and “(4)”. Playing around with Definition I.24(a)
easily shows that the square in the middle is a pushout iff w ! • is p-cocartesian. Hence it
is a pushout by construction, and thus also a pullback since C is a stable ∞-category. This
proves (⊠). Let us also remark that our argument shows that filling in the dotted arrows is
unique up to contractible choice. Indeed, this is clear for “(1)”, “(3)”, and “(4)”, and for
“(2)” we’ve just argued that we need to choose w ! • as a p-cocartesian lift of p(w)! u to
make the middle square a pullback.

We can now conclude that Span(p) : Span(C) ! Span(D) is a bicartesian fibration.
Indeed, p is bicartesian by Step (1), and given any span p(x) y′ ! z′ in D, we can lift the
left map to a p-cartesian edge y ! x, and then the right map to a p-cocartesian edge y ! z,
which proves that Span(p) is a cocartesian fibration by (⊠). Dualising the argument shows
that Span(p) is also cartesian.

Now for the general case. Let E ⊆ Q1(C) ≃ Fun(J1, C) be the full sub-∞-category where
the left edge is p-cartesian and the right edge is p-cocartesian. Then the diagram

E C

Q1(D) D

p

d1

. p

d1

is a pullback. Informally, this is because we can lift any span (p(x) y′ ! z′) ∈ Q1(D) to
a span (x  y ! z) ∈ E as argued in the previous paragraph, and this lift is necessarily
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unique up to contractible choice since so is taking p-cartesian and p-cocartesian lifts. For a
more formal argument, you would have to show that the map from E to the pullback is fully
faithful and essentially surjective. Essential surjectivity follows from the argument we’ve just
given. For fully faithfulness, use Corollary I.49 to compute Hom anima in Q1(C) and Q1(D)
(we have TwAr(J1) ≃ Jop

2 , so the formula really is not too bad) and then simplify using the
pullback square from Definition I.24(a) and its dual for cartesian edges. I’ll leave working
out the details to you.

Likewise, we get a pullback diagram

E ×Q1(C) Q2(C) E ×C Q1(C)

Q2(D) Q1(D) ×D Q1(D)

p

(idE ,d1)

. p

(d2,d1)

where the fibre product in the upper left corner is formed using d2 : Q2(C) ! Q1(C).
Informally, this square being a pullback is precisely what we proved in (⊠). Indeed, E ×CQ1(C)
encodes the data of the diagram without the dotted arrows filled in, Q2(D) encodes the
data of the solid diagram in D, and Q1(D) ×D Q1(D) makes sure these two are compatible
under p. We’ve seen in (⊠) that it’s always possible to fill in the dotted arrows, so that
we obtain an object of E ×Q1(C) Q2(C). Moreover, this object is unique up to contractible
choice, as we’ve noted at the end of the proof of (⊠). This is the informal reason why
E ×Q1(C)Q2(C) is the pullback. To make this argument formal, you would again have to show
that the map from E ×Q1(C) Q2(C) to the pullback is fully faithful and essentially surjective.
Essential surjectivity follows from the informal argument, and for fully faithfulness you have
to compute Hom anima again using Corollary I.49 (and even Hom anima in Q2(C) are not
too bad since limits over TwAr(J2) ≃ Jop

3 are very manageable).
Long story short, we get two pullback squares. But in fact they are split Verdier squares!

Indeed, by IV.15a, we only need to check that C ! D and E ×C Q1(C)! Q1(D) ×D Q1(D)
are split Verdier projection. For the first one, this holds by assumption. The second one
is a pullback of Q1(C) ! Q1(D) (using the first pullback square), which is a split Verdier
projection because the fully faithful left and right adjoints of C ! D extend to functor
∞-categories.

Thus, both diagrams stay pullback squares after applying the additive functor F . The
second diagram then witnesses that the image of

F (E) −! F
(
Q1(C)

)
−! HomCat∞

(
[1],SpanF (C)

)
consists of SpanF (p)-cocartesian edges (essentially by running the above arguments back-
wards), and the first diagram gives a sufficient supply of these. This shows that SpanF (p) is
indeed a cocartesian fibration. By a dual argument we see that it is cartesian as well. This
finishes Step (2).

(3) We prove that the functor | | : Cat∞ ! An preserves pullback squares if one of the legs
is a bicartesian fibration.

This step is easy again. Suppose we’re given a pullback

A B

C D

.

p
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in Cat∞, such that B ! D and thus also A ! C are bicartesian fibrations. We denote
by F := Stcocart(B ! D) : D ! Cat∞ be the cocartesian straightening of B ! D. Since
unstraightening turns compositions into pullbacks, we obtain

Uncocart(F ◦ p) ≃ A and Uncocart(F ) ≃ B .

Now consider the diagram
D Cat∞ An

|D|

F | |

|F |

Note that since F is a bicartesian fibration, every morphism φ : x ! y in D is sent to a
left-adjoint functor F (φ) : F (x)! F (y), hence to an equivalence |F (φ)| : |F (x)| ∼−! |F (y)|.
Hence the dashed arrow exists by the universal property of localisations of ∞-categories.

By unstraightening of functors into An, we now get a pullback diagram

Unleft (|F | ◦ |p|
)

Unleft (|F |
)

|C| |D|

.

|p|

So we’re done if we can show that Unleft(|F |) and Unleft(|F | ◦ |p|) are the realisations
of Uncocart(F ) and Uncocart(F ◦ p), respectively. The easiest way to see this is probably
Proposition I.36: We know that colim(F : D ! Cat∞) is some localisation of Uncocart(F ),
hence ∣∣Uncocart(F )

∣∣ ≃
∣∣∣ colim

(
D F
−! Cat∞

)∣∣∣ ≃ colim
(

D F
−! Cat∞

| |
−! An

)
≃ colim

(
|D| |F |
−! An

)
≃ Unleft (|F |

)
,

as desired. The second equivalence follows from the fact that | | : Cat∞ ! An, being a left
adjoint, preserves colimits. For the third equivalence, we use that the localisation D ! |D| is
cofinal, as we noted after Definition I.44. For Uncocart(F ◦ p) we can use a similar argument.
This finishes Step (3).
(4) We prove that SpanF (−) sends split Verdier squares to pullbacks in Cat∞ and finish

the proof of Theorem IV.18.
If we can show the first assertion, then a combination of Step (2) and (3) seals the deal.

Recall that SpanF ≃ asscat(F (Q(−))) by Lemma/Definition IV.17. So let

A B

C D

.

be a split Verdier square. We know that Qn(−) : Catst
∞ ! Catst

∞ preserves split Verdier
squares for all n ∈ N (because Qn(−) ≃ Fun(Jn,−) preserves pullbacks and the required
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fully faithful adjoints extend to functor ∞-categories) and F turns them into pullbacks in
An, hence

F
(
Q(A)

)
F
(
Q(B)

)
F
(
Q(C)

)
F
(
Q(D)

).

is a pullback in sAn. In fact, it is even a Segal anima by Lemma/Definition IV.17. However,
asscat(−) : sAn! Cat∞ doesn’t necessarily preserve pullbacks of incomplete Segal anima.
However, the canonical (up to contractible choice) morphism

asscat(X ×Y Z) −! asscat(X) ×asscat(Y ) asscat(Z)

is always fully faithful for Segal anima X,Y, Z ∈ sAn, as follows from (I.65.2). So only
essential surjectivity can go wrong. Recall that core asscat(X) ≃ |X×| for X Segal by (I.65.1).
We claim that

π0
∣∣X× ×Y × Z×∣∣ −! π0

(
|X×| ×|Y ×| |Z×|

)
is surjective if asscat(X)! asscat(Y ) is a bicartesian fibration, which will be sufficient for
our case by Step (2). Every connected component on the right-hand side can be represented
by points x ∈ X0, z ∈ Z0, and a path in |Y ×| connecting their images. To see why the
0-skeleta already hit all path components, take a look again at the skeletal method in the
proof of Lemma IV.7, and in particular, at (IV.7.2). Again by considering skeleta, we see
that two points belonging to the same path component in |Y ×| is already determined by Y ×

1 .
Hence there are edges yi ∈ Y ×

1 and a path w in Y0 that connect x and z via

x
y1−! s1

y2 − s2
y3−! . . .

y2n −− s2n
w

z

Using that asscat(X) ! asscat(Y ) is a bicartesian fibration, we can lift this to a similar
sequence in X, which gives a connected component in π0|X× ×Y × Z×|. This shows the
desired surjectivity and the proof is finally done!

We’re now almost in position to prove Theorem IV.12. But Fabian decided to give a
brief discussion of grouplike additive functors and their span ∞-categories first. To make the
results of that discussion more comprehensible, I put them into a separate lemma.
IV.20. Lemma. — Suppose F : Catst

∞ ! An is a grouplike additive functor and let C be a
stable ∞-category. Then

F
(

Ar(C)
)

≃ F (C) × F (C) and F
(
Qn(C)

)
≃ F (C)2n+1

for all n ∈ N. Moreover, SpanF (C) ≃ BF (C), so in particular SpanF (C) is a connected
anima.
Proof sketch. The equivalence F (Ar(C)) ≃ F (C) × F (C) follows from the stable recollement
from IV.16 together with IV.14(d∗). The equivalence F (Qn(C)) ∼−! F (C)2n+1 is induced by
evaluation Qn(C) ≃ Fun(Jn, C)! C at the 2n+ 1 objects of Jn. To see that it is indeed an
equivalence, let’s first consider the case n = 1. In this case we have a split Verdier sequence
C ! Q1(C)! Ar(C) (adjoints are given by left/right Kan extension along [1]! J1), which
proves F (Q1(C)) ≃ F (C)3 by IV.14(d∗). The general case follows either by induction, or by
the an iterative application of the split Verdier square from Lemma/Definition IV.17.

Next, we set out to prove that SpanF (C) is a connected anima. For this, we first prove
the following claim (which wasn’t in the lecture, so I hope it’s correct).
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(⊠) Let F be grouplike. Under the identifications F (Qn(C)) ≃ F (C)2n+1, the “composition
map”

F (C)5 ≃ F
(
Q1(C)

)
×d1,F (C),d0 F

(
Q1(C)

)
F
(
Q2(C)

) d1−! F
(
Q1(C)

)
≃ F (C)3(d0,d2)

∼

is given by (a0, a1, a2, a3, a4) 7! (a0, a1 − a2 + a3, a4) (of course, we shouldn’t think of
this map in terms of objects, but rather in terms of the structure maps of the E∞-group
F (C); however, a precise statement would become utterly unreadable).

After unravelling what the face maps of the simplicial ∞-category Q(C) do, (⊠) reduces to
the following statement.
(⊠′) Let p : Fun(Λ2

2, C)! C be the map given by taking pullbacks. As above, we can identify
F (Fun(Λ2

2, C)) ≃ F (C)3. Then under this identification,

F (p) : F (C)3 −! F (C)

is given by (a1, a2, a3) 7! a1 − a2 + a3.
To prove (⊠′), recall that pullbacks in the stable ∞-category C can be computed as follows:
Let a1 ! a2  a3 be a span in C and consider the map

φ : a1 ⊕ a3
(+,−)
−−−−! a2

given by a1 ! a2 in the first component, and the negative of a3 ! a2 in the second
component. Then fib(φ) is the required pullback. This allows us to write p as a composition

Fun(Λ2
2, C) −! Ar(C) fib(−)

−−−−! C .

Upon applying F and identifying F (Ar(C)) ≃ F (C)2 via source and target, the first arrow
induces the map F (C)3 ! F (C)2 given by (a1, a2, a3) 7! (a1 + a3, a2). Thus, it remains to
show that F (fib(−)) : F (Ar(C)) ! F (C) sends (a, b) 7! a − b. Consider the map the map
q : Ar(C) ! Ar(C) given by q(ψ : a ! b) ≃ (pr2 : fib(ψ) ⊕ b ! b). The lower half of the
universal recollement from IV.16 implies that F (q) : F (Ar(C))! F (Ar(C)) is homotopic to
the identity. Hence F (fib(−)) + F (t) ≃ F (s) holds in HomAn(F (Ar(C)), F (C)). This shows
that F (fib(−)) is indeed given by (a, b) 7! a− b, whence (⊠′) follows.

Using (⊠) and the fact that F (C) is an E∞-group, one easily verifies that

F
(
Q1(C)

)× ≃ F
(
Q1(C)

)
.

Hence SpanF (C) ≃ asscat
(
F (Q(C))

)
is an anima (combine Theorem/Definition I.64(c) with

(I.65.2) to see that all edges are equivalences). Moreover, it is connected. In fact, it’s true
that | SpanF (C)| is connected for every additive functor F . To see this, use Remark I.66,
Proposition IV.8, and IV.7b (in that order) to obtain∣∣ SpanF (C)

∣∣ ≃
∣∣F (Q(C)

)∣∣ ≃
∣∣F (S(C)

)esd∣∣ ≃
∣∣F (S(C)

)∣∣ .
Now π0F (S0(C))! π0 |F (S(C))| is surjective, see claim (∗) in the proof of Proposition II.2.
But S0(C) ≃ ∗, hence indeed π0 |F (S(C))| = 0.
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Back in the situation where F is grouplike, we see that to prove SpanF (C) ≃ BF (C),
it suffices to compute that Ω0 SpanF (C) ≃ F (C) by II.6. Now Ω0 SpanF (C) coincides with
HomSpanF (C)(0, 0). To compute this, consider

C Q1(C)

0 Q0(C) ×Q0(C)

. (d1,d0)

It is a pullback by inspection, as there are C possibilities to fill in the missing spot in a
span 0  • ! 0. It is even a split Verdier square, since the right vertical arrow has both
adjoints, given by left and right Kan extension, which are both fully faithful (in fact, both
adjoints agree and send a pair (x, y) ∈ Q0(C) ×Q0(C) ≃ C × C to the span x x⊕ y ! y
in Q1(C) ≃ Fun(J1, C)). So the pullback property is preserved upon applying F . But after
applying F , the new pullback diagram computes HomSpanF (C)(0, 0) by (I.65.2).

Fabian remarks that the special case k(Ar(C)) ≃ k(C) × k(C) of Lemma IV.20 is the
content of Waldhausen’s original additivity theorem. Moreover, we’ve seen in the proof that
F (Q1(C))× ≃ F (Q1(C)) for every grouplike additive functor F . This tells us that the Segal
anima F (Q(C)) is seldom complete: By Theorem/Definition I.64(c), we would need that

F (C) ≃ F
(
Q0(C)

) ∼−! F
(
Q1(C)

)× ≃ F (C)3

is an equivalence, which only holds if F (C) ≃ 0.

IV.21. Theorem. — If F : Catst
∞ ! An is grouplike and additive and C is a stable

∞-category C, then applying the realisation functor | | : Cat∞ ! An to the pullback square

HomSpanF (C)(0, 0) 0/SpanF (C)

∗ SpanF (C)

.

0

in Cat∞ gives a pullback square

F (C) ∗

∗
∣∣SpanF (C)

∣∣
. 0

0

in An. So in particular, F (C) ≃ Ω| SpanF (C)|.

First proof. We’ve checked (or at least sketched) in Lemma IV.20 that

SpanF (C) ≃
∣∣SpanF (C)

∣∣ ≃ BF (C) .

But F (C) is already an E∞-group by assumption, so ΩBF (C) ≃ F (C) follows from Corol-
lary II.21(c). A posteriori, this implies that the square in question is indeed a pullback.

With that, we can finally prove the theorem of Blumberg–Gepner–Tabuada.
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Proof of Theorem IV.12. First note that Ω| SpanF (−)| is additive again for any additive
functor F , since it is the composition of the additive functor | SpanF (−)| (Theorem IV.18)
with the limits-preserving functor Ω: CMon(An) ! CGrp(An) (Corollary II.21(b)). This
also shows that Ω| SpanF (−)| takes values in the grouplikes.

As always, we’ll use Proposition I.61a to prove that

L ≃ Ω
∣∣ Span(−)(−)

∣∣ : Funadd(Catst
∞,An) −! Fungrp(Catst

∞,An)

is a left Bousfield localisation. First, we need a natural transformation η : id ⇒ L. The
computation in the proof of Lemma IV.20 shows F (C) ≃ HomSpanF (C)(0, 0) for all additive
functors F (although we assumed that F is grouplike there, but this isn’t needed in the
computation). Composing with the natural map

HomSpanF (C)(0, 0) −! Hom| SpanF (C)|(0, 0) ≃ Ω
∣∣SpanF (C)

∣∣
gives a map F (C)! Ω| SpanF (C)| which is functorial in C and F , thus providing the required
transformation η : id ⇒ L. Now Theorem IV.21 implies that ηL,Lη : L ∼=⇒ L ◦ L are
both equivalences, whence L is indeed a left Bousfield localisation. Its essential image is
contained in the grouplike functors as checked above, hence equals the grouplike functors
since Theorem IV.21 precisely says that η is an equivalence on grouplikes.

As the “first proof” above suggests, we will give a second proof of Theorem IV.21. The
second proof won’t rely on the sketchy parts of Lemma IV.20 (at the price of being much
longer), but more importantly, it will introduce some tools that we’ll need later. Where the
first proof showed F ≃ Ω| SpanF (−)| right away and then deduced the pullback property
afterwards, the second proof will verify the pullback property directly. The key to still getting
pullbacks after taking colimits is Rezk’s equifibrancy lemma.

IV.22. Lemma/Definition (Rezk). — Let I be any ∞-category (which we think of as a
digram shape). Suppose we’re given a pullback square

A B

C D

σ . τ

in Fun(I,An) such that τ us equifibred, i.e. such that

Bi Bj

Di Dj

.

is a pullback for all morphisms i! j in I. Then also the diagram

colim
i∈I

A colim
i∈I

Bi

colim
i∈I

Ci colim
i∈I

Di

σ
.

τ

is a pullback in An.
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Proof. We first prove the following claim to get a description of colimI B.
(⊠) Suppose τ is equifibred and let K be any anima. Then a transformation η : B ⇒ constK

together with a map K ! colimi∈I Di make the diagram

Bi K

Di colim
i∈I

Di

.

a pullback for each i ∈ I iff η induces an equivalence colimi∈I Bi
∼−! K.

To prove (⊠), consider the functors Fi ≃ Stleft(Bi ! Di) : Di ! An. We claim that by
equifibrancy of τ , the Fi assemble into a functor

F : colim
i∈I

Di −! An .

On Sil’s insistence, Fabian has given a proper argument for this in the official notes [A&HK,
Chapter IV p. 46], which I’ll include here. The transformation τ corresponds to a map
[1]! Fun(I,An), which we may curry to a map I ! Ar(An). That τ is equifibrant means
that this map sends all morphisms in I to morphisms in Ar(An) which are represented by
pullback squares in An. On the other hand,

Fun
(

colim
i∈I

Di,An
)

≃ lim
i∈Iop

Fun(Di,An) ≃ lim
i∈Iop

An/Di

by straightening. Note that the functor An/− : Anop ! Cat∞ is not the usual slice category
functor (whose codomain would be An rather than Anop). Indeed, to a map i ! j in
I we don’t associate the forgetful functor An/Di ! An/Dj , but the pullback functor
− ×Dj Di : An/Dj ! An/Di. Thus, An/− : Anop ! Cat∞ is represented by the cartesian
(!) straightening of t : Ar(An)! An, which is in fact a cartesian fibration by Exercise I.25b.
Moreover, the t-cartesian edges are precisely the pullback squares, hence I ! Ar(An) sends
every edge to a t-cartesian edge. Therefore, the induced map I ! I ×An Ar(An) is a map of
cartesian fibrations over I, and thus it induces a natural transformation(

const ∗ =⇒ An/D(−)
)

: Iop −! An .

This transformation induces a single map ∗! limi∈Iop An/Di, which provides the functor
F : colimi∈I ! An we’re looking for.

Note that Unleft(F )! colimi∈I Di is a left fibration over the anima colimi∈I Di, hence
Unleft(F ) is an anima itself. Thus Unleft(F ) ≃ | Unleft(F )|, and we may apply Proposition I.36
twice to get

Unleft(F ) ≃ colim
colimi∈I Di

F ≃ colim
i∈I

colim
Di

Di

≃ colim
i∈I

Unleft(Fi)

≃ colim
i∈I

Bi .

This shows that K ≃ colimi∈I Bi ≃ Unleft(F ) does indeed fit into the pullback diagram
from (⊠). Conversely, every K ! colimi∈I Di is uniquely determined by its pullbacks to the
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Di, since straightening implies An/ colimi∈I Di ≃ Fun(colimi∈I Di,An) ≃ limi∈Iop An/Di,
as seen above. So there is only one K that fits into the pullbacks from (⊠), whence
K ≃ colimi∈I Bi is the only possibility. This shows (⊠).

Now the actual proof may start. We first check that σ is equifibred as well. To this end,
let i! j be any morphism in I and consider the diagram

Ai Aj Bj colim
i∈I

Bi

Ci Cj Dj colim
i∈I

Di

. . .
τ

We must show that the left square is a pullback. But the middle square is a pullback by
assumption and the right one is a pullback by (⊠). Hence also the rectangle formed by the
middle and the right square is a pullback. But then the same argument implies that also the
rectangle formed by all three squares must be a pullback. By abstract pullback nonsense,
this implies that the left square must be a pullback as well, as claimed. This shows that σ is
equifibred.

Now consider the diagram

Aj colim
i∈I

Bi ×colimi∈I Di
colim
i∈I

Ci colim
i∈I

Bi

Cj colim
i∈I

Ci colim
i∈I

Di

. .
τ

The right square is a pullback by construction, and that the outer rectangle is a pullback
was checked in the previous step. Hence again the left square is a pullback too for all j ∈ I.
But then (⊠) applied to σ implies that colimi∈I Bi ×colimi∈I Di

colimi∈I Ci ≃ colimi∈I Ai
and we’re done!

Second proof of Theorem IV.21. We split the proof into two major steps.
(1) We construct an easily understood Segal anima Null(C) : ∆∆op ! An satisfying

asscat
(
F (Null(C))

)
≃ 0/ SpanF (C)

Consider the functor [0]⋆− : ∆∆op ! ∆∆op. It induces a functor déc : sAn! sAn, called the
décalage. It already appeared in II.62b, although our convention there was to consider − ⋆ [0]
instead (but who cares). The décalage functor comes equipped with natural transformations

p : déc =⇒ const ev0 and d0 : déc =⇒ id ,

induced by [0] ⊆ [0] ⋆ [n] and [n] ⊆ [0] ⋆ [n] for all [n] ∈ ∆∆op, respectively. One easily checks
that for every Segal anima X and all x ∈ X0 one has a commutative diagram

asscat
(

fibx(p : décX ! constX0)
)

x/ asscat(X)

asscat(X)

d0

∼
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To see this, one first checks that fibx(p : décX ! constX0) is Segal again, so the Hom anima
in its associated category can be computed via (I.65.2). Once we understand the Hom anima
in it, we find that asscat(fibx(p : décX ! constX0)) has an initial element that’s mapped
to x under d0, hence d0 lifts canonically to x/ asscat(X). Then show that the lift is fully
faithful and essentially surjective, again using that Hom anima can be calculated via (I.65.2).
I leave the details to you since I’m too lazy to work them out.

Now put
Null(C) := fib0(p : décQ(C)! const C) .

So explicitly, Nulln(C) ⊆ Qn+1(C) is the full sub-∞-category spanned by diagrams of the
following form (as usual, the dotted part is uniquely determined by the solid part):

0
. .
.

. .
.

. .
.

. .

.

.

︸ ︷︷ ︸
n+1 zigs and zags

Moreover, since p : décQ(C)! const C) is a degreewise split Verdier projection (with left/right
Kan extension as adjoints, as usual), we have

F
(

Null(C)
)

≃ fib0
(
p : décF (Q(C))! constF (C)

)
.

Thus, our considerations above show asscat(F (Null(C))) ≃ 0/ SpanF (C), as desired.
(2) We show that there is a pullback diagram

constF (C) F
(

Null(C)
)

const ∗ F
(
Q(C)

).
F (d0)

0

in which the right vertical arrow is equifibred in the sense of Lemma/Definition IV.22.
It is easy to see that the diagram above is indeed a pullback. Indeed, the pullback

{0} ×Qn(C) Nulln(C) consists of diagrams of the form

0 0 0 0 0

x 0 0 0

x 0 0

x 0

x

. .
.

. .
.

. .
.

. .

.

.

︸ ︷︷ ︸
n+1 zigs and zags
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hence {0}×Qn(C) Nulln(C) ≃ C. Moreover, d0 : Nulln(C)! Qn(C) is a split Verdier projection
(with left/right Kan extension as adjoints, as usual), hence this pullback is preserved by
F and we obtain {0} ×F (Qn(C)) F (Nulln(C)) ≃ F (C), as desired. This proves that we get a
pullback diagram as above.

If we can show that the right vertical arrow is equifibred, then we’re done! Indeed, if
this is the case, then Lemma/Definition IV.22 says that the diagram stays a pullback after
applying | | ≃ colim∆∆op . Hence we get a pullback

|constF (C)|
∣∣F (Null(C)

)∣∣
|const ∗|

∣∣F (Q(C)
)∣∣

. |F (d0)|

0

The upper left corner is F (C), which coincides with the anima HomSpanF (C)(0, 0) as argued
in the proof of Lemma IV.20. The lower left corner is clearly ∗. Applying Remark I.66 to

asscat
(
F (Null(C))

)
≃ 0/SpanF (C) and asscat

(
F (Q(C))

)
≃ SpanF (C)

shows that the upper and lower right corner coincide with |0/ SpanF (C)| ≃ ∗ and | SpanF (C)|,
hence the pullback diagram we get is precisely the one we want!

It remains to show that F (d0) : F (Null(C))! F (Q(C)) is equifibred. That is, we must
show that

F
(

Nullm(C)
)

F
(

Nulln(C)
)

F
(
Qm(C)

)
F
(
Qn(C)

).

is a pullback for every map [m]! [n] in ∆∆op. I think the way we did this in the lecture is
too complicated and I can give a simpler proof. It seems almost too easy, so I feel a bit like
I’m overlooking something, but I couldn’t find anything. Please tell me if I’m wrong.

We’ve seen above that Nulln(C)! Qn(C) is a split Verdier projection with fibre C, and
so is Nullm(C)! Qm(C). Hence the induced map on fibres over 0 in the diagram above is an
equivalence, namely the identity on F (C). But that’s enough to show the pullback property:
Since F is grouplike, all terms in the diagram are E∞-groups, hence all fibres are empty or
equivalent to the fibres over 0. But IV.14(d∗) implies F (Nulln(C)) ≃ F (Qn(C)) × F (C), and
likewise F (Nullm(C)) ≃ F (Qm(C)) × F (C), so none of the fibres can be empty. In fact, I
believe the map F (Nullm(C)) ! F (Nulln(C)) is the product map, which would make the
pullback property even more apparent, but in any case the argument given above should
suffice.

IV.23. Remark. —Lecture 27
11th Feb, 2021

Fabian started the final lecture with two not-so-random and one
very random comment:
(a) We know from Lemma IV.20 and Theorem IV.18 that BF ≃ SpanF (−) ≃ | SpanF (−)|

is additive again whenever F is a grouplike additive functor. In fact, BF is even
grouplike by Corollary II.21(b). More generally, it is true that | SpanF (−)| ≃ |F (Q(−))|
is grouplike for any additive functor F , since π0|F (Q(−))| = 0 as seen in the proof of
Lemma IV.20. However, if F isn’t grouplike, then BF doesn’t even need to be additive
anymore, let alone coincide with |F (Q(−))|.
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(b) Quillen defined k(R) := K0(R) ×BGL∞(R)+ and then showed a posteriori that it is
an infinite loop space, essentially1 by verifying

k(R) ≃ Ωi
∣∣coreQi

(
Dperf(R)

)∣∣ .
Here Qi : Catst

∞ ! Fun((∆∆op)i,Catst
∞) denotes the i-fold Q-construction. It takes values

in “i-simplicial” anima, and subsequently the realisation | | in the formula above doesn’t
denote colimits over ∆∆op, but over (∆∆op)i.

In the script [A&HK, Chapter IV p. 53], Fabian explains a bit more. In general, if
F is an additive functor, then

Ω
∣∣F (Q(−)

)∣∣ ≃ Ωi
∣∣F (Qi(−)

)∣∣ ,
where again | | on the right-hand side denotes the colimit over (∆∆op)i. If F is grouplike,
then both sides are also equivalent to F . To prove the equivalence above, we use
Theorem IV.18 iteratively (along with Corollary I.45 to replace nested colimits over ∆∆op

by colimits over (∆∆op)i) to see that |F (Qi(−))| is additive. By the same argument as
in (a), it is also grouplike. Hence Theorem IV.21 implies |F (Qi(−))| ≃ Ω|F (Qi+1(−))|,
from which the formula above follows by induction.

Therefore, any additive functor F : Catst
∞ ! An upgrades to a prespectra-valued

(see II.31) functor
SpanF : Catst

∞ −! PSp

given by SpanF (C) ≃ (F (C),Ω|F (Q(C))|,Ω2|F (Q2(C))|, . . . ). The construction of SpanF
is clearly functorial in F , hence induces a functor

Span(−) : Funadd(Catst
∞,An) −! Fun(Catst

∞,PSp) .

If we restrict to Fungrp(Catst
∞,An) ⊆ Funadd(Catst

∞,An), then Span(−) takes values
in Fun(Catst

∞,Sp). Moreover, it follows from (a) that Span(−) coincides with B∞ on
grouplike functors. Thus, for a stable ∞-category C, we put

K(C) := Spank(C) ≃ B∞k(C)

and call this the K-theory spectrum or projective class spectrum of C.
(c) Now for the random comment: If Sp[0,1] ⊆ Sp denotes the full subcategory of spectra E

whose homotopy groups πi(E) vanish for i /∈ [0, 1], then

Sp[0,1] ≃ CGrp(An)[0,1] ≃ CGrp(Grpd) .

A symmetric monoidal 1-groupoid G⊗ on the right-hand side corresponds to a gem
(“generalised Eilenberg–MacLane anima”, see Very Long Example I.56) in the middle iff
the symmetry isomorphisms σx,x : x⊗ x ∼−! x⊗ x from II.15c is the identity on x⊗ x
for all x ∈ G.

The Fibration Theorem
To get fibre sequences like in IV.1, it doesn’t suffice to know that K-theory is additive. For
example, if R! S is a derived localisation of ordinary rings (Proposition/Definition I.63),

1Quillen did not put Dperf(R) there, but still that’s basically what he proved.

229



K-Theory as the Universal Additive Invariant

then D(S)! D(R)! D(R)S-tors is a split Verdier sequence by Lemma IV.16a, but this is no
longer true if we restrict to Dperf everywhere. Instead, we’ll have to show that k : Catst

∞ ! An
is Verdier-localising (Definition IV.13), which is our next goal. It will turn out that even
being Verdier-localising isn’t quite enough, but more on that once we’re there.

IV.24. Definition. — If f : A! B is an exact functor of stable ∞-categories, then the
relative Q-construction Q(f) ∈ sCatst

∞ is defined by the pullback

Q(f) Null(B)

Q(A) Q(B)

.
d0

f

By IV.14(e), it doesn’t matter whether this pullback is taken in sCatst
∞ or on sCat∞. We

may think of Qn(f) as diagrams of the following form (as usual, the dotted part is uniquely
determined by the solid part):

0 a0 a2 a2n−2 a2n

b a1 a2n−3 a2n−1
. .
.

. .
.

. .
.

︸ ︷︷ ︸
n+1 zigs and zags

Here a0, . . . , a2n ∈ A, b ∈ B, and of course the arrow b ! a0 should be interpreted as a
morphism b! f(a0) in B.

IV.25. Corollary. — If F : Catst
∞ ! An is grouplike additive, then for all exact functors

f : A! B there is a fibre sequence∣∣F (Q(f)
)∣∣ −! ∣∣F (Q(A)

)∣∣ −! ∣∣F (Q(B)
)∣∣

in An (or equivalently in CGrp(An)).

Proof. Recall the following facts from the second proof of Theorem IV.21:
(a) d0 : Nulln(B)! Qn(B) is a split Verdier projection for all [n] ∈ ∆∆op; see Step (2).
(b) F (d0) : F (Null(B))! F (Q(B)) is equifibred; see Step (2).
(c) |F (Null(B))| ≃ |0/ SpanF (B)| ≃ ∗; see Step (1).
By (a), the pullback square defining Q(f) is a degreewise split Verdier square. Hence it stays
a pullback after applying F . Now (b) together with Lemma/Definition IV.22 ensures that we
still get a pullback after taking realisations. By (c), this pullback square provides the desired
fibre sequence.

IV.26. Corollary. — For a grouplike additive functor F : Catst
∞ ! An, the following are

equivalent:
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(a) F is Verdier-localising and sends Verdier projections to π0-surjections. That is, for all
Verdier-projections B ! C, the induced map π0(F (B))! π0(F (C)) is surjective.

(b) For all Verdier inclusions i : A! B the canonical map∣∣F (Q(i)
)∣∣ ∼−! F (B/A)

is an equivalence.
(c∗) The functor B∞F : Catst

∞ ! Sp is Verdier-localising.

In the lecture, we only had (a) and (b), and we didn’t impose the condition that F sends
Verdier projections to π0-surjections. I think it is needed though. In view of (⊠) below, it’s
a natural question whether one can drop this condition (along with (c∗)) and in turn only
ask for |F (Q(i))|! F (B/A) to be an inclusion of path components. However, I believe this
breaks the argument why F sends Verdier squares to pullbacks. Please tell me if it’s true
after all.

Also note that K-theory does send Verdier projections to π0-surjections, which is clear
from Definition IV.3 and the fact that B ! B/A is essentially surjective.

Proof of Corollary IV.26*. Let’s first explain where the canonical map comes from. So for
the moment, F is only grouplike additive. Theorem IV.21 implies Ω|F (Q(A))| ≃ F (A) and
likewise for B. Thus, rotating the fibre sequence from Corollary IV.25 gives a fibre sequence

F (A) −! F (B) −!
∣∣F (Q(i)

)∣∣
in CGrp(An). We claim:
(⊠) The induced map π0(F (B))! π0 |F (Q(i))| is surjective and thus the sequence above is

also a fibre/cofibre sequence in Sp.
If C denotes the cofibre in Sp, then by Lemma* II.23c it suffices to show that the canonical map
C ! |F (Q(i))| induces isomorphisms on all homotopy groups. Observe that C is connective,
so this holds for all negative homotopy groups, and the usual five lemma arguments show
the same for all positive homotopy groups. It remains to check that π0(C)! π0 |F (Q(i))|
is an isomorphism. For that, we must show that π0(F (B))! π0 |F (Q(i))| is surjective. By
Lemma IV.20, the fibre sequence from Corollary IV.25 can be rewritten as∣∣F (Q(i)

)∣∣ −! BF (A) −! BF (B) .

Hence π1(BF (B))! π0 |F (Q(i))|! π0(BF (A)) is exact. But π1(BF (B)) = π0(F (B)) and
π0(BF (A)) = 0 since B shifts homotopy groups up. Thus π0(F (B))! π0 |F (Q(i))| is indeed
surjective and we’ve proved (⊠).

Now for the actual proof. Since F (A) ! F (B) ! F (B/A) always composes to 0,
(⊠) provides the desired natural map |F (Q(i))| ! F (B/A). Assume (a) holds. Then
F (A) ! F (B) ! F (B/A) is a fibre sequence too. By the usual five lemma arguments,
|F (Q(i))| ! F (B/A) is an isomorphism on all homotopy groups except possibly π0. But
since π0(F (B))! π0(F (B/A)) is surjective by assumption and π0(F (B))! π0 |F (Q(i))| is
surjective by (⊠), the five lemma also works in π0. This shows (a) ⇒ (b).

Conversely, assume that |F (Q(i))| ∼−! F (B/A). Then F sends Verdier sequences to fibre
sequences and Verdier projections to π0-surjections. It remains to show that F transforms
Verdier squares into pullbacks. But whether a square in CGrp(An) is a pullback square
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can be tested on fibres. Since F sends Verdier projections to π0-surjections, all fibres are
non-empty and thus all fibres are equivalent to the respective fibres over 0. But the induced
map on fibres over 0 is an equivalence since we know what F does on Verdier sequences.
This shows (b) ⇒ (a).

Finally, for (a) ⇔ (c∗) it suffices to observe that a fibre sequence X ! Y ! Z in CGrp(An)
stays a fibre sequence under B∞ : CGrp(An) ! Sp iff π0(Y ) ! π0(Z) is surjective, which
follows from the argument in (⊠).

We still owe a proof that cofibres in Catst
∞ can be described as in IV.14b. The following

takes care of the essential case.

IV.27. Lemma. — Let C ⊆ D be a stable sub-∞-category (in the sense of Remark* IV.4a)
and let D/C be the localisation of D at the mod-C equivalences. Then for all x, y ∈ D,

HomD/C(x, y) ≃ colim
c∈C/y

HomD
(
x, cofib(c! y)

)
.

In particular, D/C is stable and D ! D/C is an exact functor.

Lemma IV.27 only takes care of the fully faithful case, but it follows at once that the
description from IV.14b also holds for arbitrary exact functors. Moreover, note that the
slice category C/y := C ×D D/y is filtered. Indeed, given any map K ! C/y from a finite
simplicial set K, we can find an extension K▷ ! C/y by taking the colimit in C, which maps
canonically to y since C ⊆ D preserves finite colimits. Moreover, recall that filtered colimits
in An commute with finite limits. This is proved in [HTT, Proposition 5.3.3.3], but I think
it also follows from Remark* II.31c after some fiddling.

Proof of Lemma IV.27. Let W ⊆ π0 core Ar(D) be the collection of morphisms whose fibre
is in C. In the definition of mod-C equivalences we also allowed morphisms whose fibre is only
a retract of an object of C, but once we’ve shown that D[W−1] is stable and p : D ! D[W−1]
is exact, it will be clear that D[W−1] coincides with the localisation D/C at all mod-C
equivalences.

Recall from Lemma I.60 that HomD[W−1](x,−) : D[W−1] ! An is left-Kan extended
from HomD(x,−) : D ! An. Moreover, left Kan extension p! sits in an adjunction

p! : Fun(D,An) Fun
(
D[W−1],An

)
:p∗

in which p∗ is fully faithful. Hence p∗p! : Fun(D,An)! Fun(D,An) defines a left Bousfield
localisation onto the full sub-∞-category of functors that invert W .

The idea is now to guess an explicit description of p∗p! and verify its correctness using
Proposition I.61a. Consider the functor L : Fun(D,An)! Fun(D,An) defined by

LF (x) ≃ colim
c∈C/x

F
(

cofib(c! x)
)
.

The functorial maps x! cofib(c! x) define a map

F (x) ≃ colim
c∈C/x

F (x) −! colim
c∈C/x

F
(

cofib(c! x)
)
,

where the equivalence on the left follows from the fact that any filtered ∞-category is weakly
contractible. One checks that these maps are functorial in x and F , whence they assemble
into a natural transformation η : id ⇒ L. We claim:

232

http://people.math.harvard.edu/~lurie/papers/HTT.pdf#theorem.5.3.3.3


K-Theory as the Universal Additive Invariant

(1) For all F , the functor LF inverts W .
(2) If F already inverts W , then η : F ! LF is an equivalence.
Claims (1) and (2) together easily imply that the conditions of Proposition I.61a are met, so
indeed L ≃ p∗p!. This also proves that Hom anima in D[W−1] are given by

HomD[W−1](x, y) ≃ colim
c∈C/y

HomD
(
x, cofib(c! y)

)
.

Using this formula together with Corollary I.50 and the fact that filtered colimits commute
with finite limits shows that D ! D[W−1] preserves finite colimits. Using the same argument
for Dop ! Dop[(W op)−1] shows that D ! D[W−1] also preserves finite limits. Moreover,
we can get that D[W−1] has finite limits out of this. We already have a terminal object,
hence it suffices to have pullbacks. But every span x! y  z in D[W−1] can be represented
by a span x ! cofib(c ! y)  z in D for some c ∈ C/y, since the colimit in the formula
above is filtered. Now y ! cofib(c! y) is in W , hence an equivalence in D[W−1], thus it
suffices to take the pullback in D to get the desired pullback in D[W−1]. In the same way,
one shows that D[W−1] has finite colimits. Moreover, our argument also shows that pullback
and pushout squares coincide, whence D[W−1] is stable by Proposition/Definition II.27(c).
This proves everything we want, safe for the two claims above.

We didn’t prove these claims in the lecture, but here’s what I think should work. Let’s
first check (1). Suppose φ : x! y has fibre in C. Then also cofib(x! y) ∈ C. Now, for any
c ∈ C/y, consider the following diagram:

φ∗c x 0

c y cofib(x! y)

0 cofib(c! y)

. φ .

.

From the upper two squares we obtain that φ∗c! c! cofib(x! y) is a fibre sequence in D,
two of whose terms are in C. Hence also φ∗c ∈ C. Thus, taking pullbacks along φ defines a
functor φ∗ : C/y ! C/x, which one readily checks to be right-adjoint to the forgetful functor
φ! : C/x! C/y. Recall that right adjoints are cofinal; see the discussion after Definition I.44.
Moreover, the left two squares in the diagram above show cofib(φ∗c ! x) ≃ cofib(c ! y).
Hence φ∗ defines an equivalence

φ∗ : LF (y) ≃ colim
c∈C/y

F
(

cofib(φ∗c! x)
) ∼−! colim

c′∈C/x
F
(

cofib(c′ ! x)
)

≃ LF (x) .

One checks that φ∗ is an inverse to the induced map LF (φ) : LF (x)! LF (y), so that LF
indeed inverts W . This shows (1).

It remains to show (2), which is easy: x! cofib(c! x) lies in W because its fibre is c.
Hence F (x) ∼−! F (cofib(c! x)) is an equivalence, which proves that F (x) ∼−! LF (x) is an
equivalence as well for all x ∈ D.

To prove that K-theory is Verdier-localising, we invoke a somewhat non-standard formu-
lation of Waldhausen’s fibration theorem.
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IV.28. Theorem (Waldhausen’s fibration theorem). — Let A ⊆ B be a stable sub-
∞-category, let K be a finite ∞-category, and let FunA(K,B) ⊆ Fun(K,B) be the wide
sub-∞-category spanned by all objects but only the pointwise mod-A equivalences. Then∣∣FunA(K,B)

∣∣ −! Fun(K,B/A)

is faithful, i.e., it induces inclusions of path components on Hom anima. Furthermore:
(a) If A ⊆ B is a Verdier inclusion (i.e. closed under retracts), then the map above is an

equivalence onto core Fun(K,B/A).
(b) If A ⊆ B is dense, then | FunA(K,B)| is discrete (since B/A ≃ 0). In fact, it is the

discrete group K0 Fun(K,B)/K0 Fun(K,A).
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IV.29. Corollary. — The K-Theory functor k : Catst
∞ ! An is Verdier-localising. The

same is true for its spectra-valued variant K ≃ B∞k : Catst
∞ ! Sp.

Proof sketch. Let i : A! B be a Verdier inclusion. Consider the simplicial stable ∞-category

Fun(−,B) : ∆∆op −! Catst
∞

sending [n] 7! Fun([n],B). We claim that there is a degreewise fully faithful inclusion

Q(i) ⊆ Fun(−,B)esd

(where (−)esd denotes the edgewise subdivision; see IV.7b) with degreewise essential image
those functors in Fun([n],B) that land in the mod-A equivalences. To see this, recall that
the elements of Qn(i) can be pictured as diagrams

0 a0 a2 a2n−2 a2n

b0 a1 a2n−3 a2n−1

b1

b2n−1

b2n

. .
.

. .
.

. .
.

where a0, . . . , a2n ∈ A, b0 ∈ B, and the b1, . . . , bn as well as the rest of the diagram are
uniquely determined by the pullback conditions. To such a diagram, we can associate the
sequence

fib(b0 ! a0) −! . . . −! fib(b2n ! a2n) −! b2n −! . . . −! b0 ,
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which evidently is an element of Fun([2n+ 1],B) ≃ (Fun(−,B)esd)n, and one easily checks
that all maps are actually mod-A equivalences. Conversely, the diagram can be uniquely
reconstructed from the sequence. To make this precise, one should argue similar to Proposi-
tion IV.8, but we’ll leave the details to you.

We conclude that QnQm(i) consists of functors Jn× [2m+1]! B that take all morphisms
(j, k) ! (j, ℓ) to mod-A equivalences. Thus QnQm(i) ≃ Fun([2m + 1],FunA(Jn,B)) and
therefore

coreQnQ(i) ≃
(

Nr FunA(Jn,B)
)esd

.

Taking realisations and using Theorem IV.28(a), we obtain

|coreQnQ(i)| ≃
∣∣FunA(Jn,B)

∣∣ ≃ core Fun(Jn,B/A) .

Combining this with Lemma IV.20 shows∣∣Bk(Q(i)
)∣∣ ≃

∣∣coreQ
(
Q(i)

)∣∣ ≃ |coreQ(B/A)| ≃ Bk(B/A)

(the second realisation is actually a colimit over (∆∆op)2, similar to Remark IV.23(b)). By
Corollary IV.26, this shows that Bk : Catst

∞ ! CGrp(An) and B∞+1k : Catst
∞ ! Sp are

Verdier-localising. Hence so are k ≃ ΩBk and K ≃ B∞k ≃ (B∞+1k)[−1].

IV.30. Corollary. — If A ⊆ B is a dense stable sub-∞-category, then Ki(A) ∼−! Ki(B)
is an isomorphism for all i ⩾ 1.

Proof *. Throughout the proof, let i : A! B denote the inclusion and let A = K0(B)/K0(A).
Recall from the proof of Corollary IV.26 that there is a fibre sequence

Bk(A) −! Bk(B) −!
∣∣Bk(Q(i)

)∣∣ .
Since B shifts homotopy groups up, the statement of the corollary is equivalent to |Bk(Q(i))|
being the Eilenberg–MacLane anima K(A, 1). As in the proof of Corollary IV.29, but using
Theorem IV.28(b) instead, we get

|coreQnQ(i)| ≃
∣∣FunA(Jn,B)

∣∣ ≃ K0 Fun(Jn,B)/K0 Fun(Jn,A) .

Now Lemma IV.20 implies K0 Fun(Jn,B)/K0 Fun(Jn,A) = A2n+1, and thus∣∣Bk(Q(i)
)∣∣ ≃

∣∣coreQ
(
Q(i)

)∣∣ ≃ colim
[n]∈∆∆op

A2n+1 .

Be aware that the colimit on the right-hand side is taken in An, regarding the abelian groups
A2n+1 as discrete anima, and thus the simplicial abelian group A2•+1 : ∆∆op ! Ab as a
discrete simplicial anima. Let’s analyse the face maps in A2•+1. Elements of Fun(Jn,B) are
given by zigzags

b0 b2 b4 b2n−2 b2n

b1 b3 b2n−1

. . .

for some b0, . . . , b2n ∈ B. The outer face maps d0, dn : Fun(Jn,B) ! Fun(Jn−1,B) simply
chop of b0, b1 or b2n−1, b2n, respectively. The inner face maps dj : Fun(Jn,B)! Fun(Jn−1,B)
for 1 ⩽ j < n remove b2j−1, b2j , b2j+1 and replace them by the pullback b2j−1 ×b2j

b2j+1 in
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B. Once we note that [b2j−1 ×b2j
b2j+1] = [b2j−1] + [b2j+1] − [b2j ] in K0(B), it follows that

the face maps dj : A2n+1 ! A2n−1 in A2•+1 are given thusly:

dj(a0, . . . , a2n) =


(a2, . . . , a2n) if j = 0
(a0, . . . , a2j−2, a2j−1 + a2j+1 − a2j , a2j+2, . . . , a2n) if 1 ⩽ j < n

(a0, . . . , a2n−2) if j = n

.

The simplicial abelian group A2•+1 is a Kan complex by Example I.6(c). Hence Remark I.66
implies that colim[n]∈∆∆op A2n+1 is just given by A2•+1 itself, considered as an anima. By
Theorem I.16, the homotopy groups of A2•+1 are the homology groups of its normalised
chain complex N∗(A2•+1), where Nn(A2•+1) =

⋂
1⩽j⩽n ker(dj) ⊆ A2n+1 and the differentials

are given by d0. One easily checks N0(A2•+1) = A, N0(A2•+1) = A2, and Nn(A2•+1) = 0 for
n ⩾ 2, which upon inspection of the differentials shows that A2•+1 is indeed the Eilenberg–
MacLane anima K(A, 1).

Localisation and Dévissage
IV.31. — Two final things are left to do:
(a) If R ! S is a derived localisation of rings (we will soon see how to generalise this to

an arbitrary localisation of E∞-ring spectra), we wish to show that under a soon to be
specified mild technical condition (R ! S having perfectly generated fibre) there is a
fibre sequence

k
(
Dperf(R)S-tors) −! k

(
Dperf(R)

)
−! k

(
Dperf(S)

)
.

This is not yet trivial since Corollary IV.29 isn’t applicable right away: Even though
D(R)S-tors ! D(R)! D(S) is a Verdier sequence by Lemma IV.16a and Theorem IV.15,
the same need not be true anymore after restricting to the full sub-∞-categories of
perfect complexes everywhere. For example, S ⊗R − : Dperf(R)! Dperf(S) may fail to
be essentially surjective. This can already be the case for S ⊗R − : Proj(R)! Proj(S).
However, its essential image is always a dense subcategory, since every finite free S-
module is hit and every finite projective S-module is a retract of a finite free one. This
observation leads us on the right track, as we’ll see in a moment.

(b) If R and S are nice enough, we wish to show that the K-theory of Dperf(R)S-tors can
be computed in terms of the K-theory of suitable quotients of R. For example, we’d
like to have ⊕

p prime
K(Fp) ≃ K

(
Dperf(Z)Q-tors) .

More generally, a similar formula should hold for arbitrary Dedekind domains. This
will be the content of Quillen’s dévissage.

Before we can tackle (a), we must take two brief detours: One into Karoubi-land, and one
into the land of inductive completions.

IV.32. Karoubi Things. — A Karoubi equivalence is an inclusion of a dense sub-∞-
category. We put

Catst
∞,♮ := Catst

∞
[
{Karoubi equiv.}−1] .
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A Karoubi sequence is a sequence in Catst
∞ that becomes both a fibre and a cofibre sequence

in Catst
∞,♮. Moreover, we define Karoubi inclusions and Karoubi projections in the obvious

way.
We didn’t have time to discuss the following lemma in the lecture, but it appears in

Fabian’s notes [A&HK, Lemma/Definition IV.34] and should be mentioned here.

IV.32a. Lemma. — The localisation Catst
∞ ! Catst

∞,♮ is both a left and a right Bousfield
localisation. A left adjoint is given by C 7! Cmin, where Cmin denotes the minimalisation from
Example IV.4b, and a right adjoint is given by C 7! C♮, where C♮ denotes the idempotent
completion of C.

Proof *. Let Catst,K0=0
∞ ⊆ Catst

∞ be the full sub-∞-category spanned by those stable ∞-
categories C that have no dense stable sub-∞-category, or equivalently (by Theorem IV.4)
those C with K0(C) = 0. We claim that C 7! Cmin is a right adjoint of this inclusion (and
yes, we really want a right adjoint here; we’ll explain below where the left/right switch
comes from). First note that (−)min : Catst

∞ ! Catst
∞ is indeed a functor and comes with

a pointwise fully faithful transformation (−)min ⇒ id: Just consider a suitable simplicial
subset of Uncocart(Catst

∞ ! Cat∞). Now Theorem IV.4 implies that (−)min ⇒ id satisfies
the (dual) conditions of Proposition I.61a, whence Catst,K0=0

∞ is indeed a right Bousfield
localisation of Catst

∞.
It’s clear that (−)min inverts dense inclusions. Hence it descends to a functor

(−)min : Catst
∞,♮

∼−! Catst,K0=0
∞ ,

which we claim is an equivalence. To see this, simply note that Catst,K0=0
∞ ⊆ Catst

∞ ! Catst
∞,♮

is an inverse. Together with the adjunction that was verified above, this now implies that
(−)min : Catst

∞,♮
∼−! Catst,K0=0

∞ ⊆ Catst
∞ is indeed a left adjoint of Catst

∞ ! Catst
∞,♮, as

claimed. Moreover, we see where the left/right switch comes from: Whether C 7! Cmin is
a left or right adjoint depends on which side of the adjunction contains the equivalence
(−)min : Catst

∞,♮
∼−! Catst,K0=0

∞ .
The case of idempotent completions is similar. Let Catst,♮

∞ ⊆ Catst
∞ be spanned by the

idempotent complete stable ∞-categories (see [HTT, Corollary 4.4.5.15]). Then this inclusion
has a left adjoint (−)♮. This really doesn’t have anything to do with stable ∞-categories,
as already Cat♮∞ ⊆ Cat∞ has a left adjoint (−)♮ (see [HTT, Proposition 5.4.2.16]), and we
only need to check that C♮ is stable again if C is (and that exactness of functors is preserved,
but that will also fall out from our argument). Lurie constructs C♮ ⊆ P(C) as the retract
closure of C ⊆ P(C). Since HomC(−, c) : Cop ! An is left-exact for all c ∈ C, one easily
checks that the retract closure is contained in Funlex(Cop,An) ≃ Funex(Cop,Sp), where the
equivalence in follows from Theorem II.30. Now Funex(Cop,Sp) is stable (in fact, it is a stable
sub-∞-category of Fun(Cop,Sp)), hence stability of C♮ follows from Lemma* IV.32b below.

The functor (−)♮ : Catst
∞ ! Catst,♮

∞ takes dense inclusions to equivalences. This is
actually not entirely clear from the construction, so we refer to [HTT, Definition 5.1.4.1
and Proposition 5.1.4.9]. Once this is known, it follows as above that (−)♮ descends to an
equivalence

(−)♮ : Catst
∞,♮

∼−! Catst,♮
∞

and thus (−)♮ : Catst
∞,♮

∼−! Catst,♮
∞ ⊆ Catst

∞ is a right adjoint to Catst
∞ ! Catst

∞,♮ (and we get
the same left/right switch as above).
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IV.32b. Lemma*. — Let C ⊆ D be a stable sub-∞-category (in the sense of Re-
mark* IV.4a) and let C′ ⊆ D be the retract closure of C. Then C′ is stable again.

Proof *. It suffices to show that C′ is closed under shifts, finite direct sums, and fibres. The
first two are trivial, so let α : c′ ! d′ be a morphism in C′. By definition, c′ and d′ are retracts
of objects c, d ∈ C. But all retracts in a stable ∞-category are split (by a similar argument
as in the proof of Lemma* IV.10a(c)), hence there are c′′ and d′′ such that c ≃ c′ ⊕ c′′

and d′ ≃ d⊕ d′′. Consider the map α ⊕ 0: c! d. Then fib(α ⊕ 0) is an object of C again.
However, fib(α⊕ 0) ≃ fib(α) ⊕ c′′ ⊕ d′′[−1], which proves that fib(α) is again a retract of an
object in C.

The upshot is that there are two ways to embed Catst
∞,♮ into Catst

∞: As the full sub-∞-
category where K0 vanishes, and as the full sub-∞-category of idempotent complete stable
∞-categories. Moreover, Lemma IV.32a implies that a functor f : A! B in Catst

∞ becomes
an equivalence under Catst

∞ ! Catst
∞,♮ iff it is a Karoubi equivalence, i.e., a dense inclusion.

The “if” is trivial, so let’s suppose the converse. Then

f ♮ : A♮ ∼−! B♮ and fmin : Amin ∼−! Bmin

are equivalences. Since A ⊆ A♮ and B ⊆ B♮ are fully faithful, f ♮ being an equivalence shows
that f is fully faithful. And fmin being an equivalence shows that f is dense.

Moreover, Lemma IV.32a allows us to characterise Karoubi sequences. We’ll see an even
cooler characterisation in Theorem IV.34 below.

IV.32c. Lemma. — For a nullcomposite sequence A ! B ! C in Catst
∞, the following

are equivalent:
(a) It is a Karoubi sequence.
(b) The induced maps A! fib(B ! C) and B/A! C are Karoubi equivalences.
(c) The induced maps A♮ ∼−! fib(B♮ ! C♮) and Bmin/Amin ∼−! Cmin are equivalences.

Proof *. Since Catst
∞ ! Catst

∞,♮ has both adjoints by Lemma IV.32a, it preserves fibres and
cofibres. Hence (a) ⇔ (b).

Moreover, we’ve seen in the proof above that (−)♮ : Catst
∞,♮

∼−! Catst,♮
∞ is an equivalence

and that Catst,♮
∞ ⊆ Catst

∞ is a right adjoint. Hence fib(B♮ ! C♮) is also the fibre in Catst,♮
∞ .

Thus A! fib(B ! C) and B/A! C is a Karoubi equivalence iff A♮ ∼−! fib(B♮ ! C♮) is an
actual equivalence. Together with a similar argument for (−)min, this implies (b) ⇔ (c).

IV.33. Inductive Completions. — Let C be an ∞-category with finite colimits. Then
we define its inductive completion to be the full sub-∞-category Ind(C) ⊆ P(C) of functors
F : Cop ! An that preserve finite limits. Note that if C is stable, then

Ind(C) ≃ Funlex(Cop,An) ≃ Funex(Cop,Sp)

by Theorem II.30. This implies that Ind(C) is stable again.
One can also define Ind(C) if C doesn’t necessarily have finite colimits, but then the

correct definition is a bit different; see [HTT, Definition 5.3.5.1]. In any case, Ind(C) is the
“free way” of adding filtered colimits to C, as the following lemma shows.
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IV.33a. Lemma. — If D has filtered colimits, then restriction along the Yoneda embedding
Y C
ω : C ! Ind(C) induces an equivalence

Y C,∗
ω : Funfilt-colim ( Ind(C),D

) ∼−! Fun(C,D) ,

where Funfilt-colim ⊆ Fun is the full sub-∞-category of filtered colimits preserving functors.

Proof *. We’ll only do the case where C has finite colimits, since that was our assumption
above (but the general case isn’t really more difficult). First note that since filtered colimits
commute with finite limits in An, Ind(C) ⊆ P(C) is closed under filtered colimits. Next,
observe that every functor f : C ! D admits a left Kan extension LanY C

ω
f : Ind(C)! D. To

see this, it suffices to show that D admits Y C
ω /F -shaped colimits for every F ∈ Ind(C), since

then the formulas from Theorem I.52 provide the desired Kan extension. So we must prove
that Y C

ω /F is filtered.
Let K be a finite simplicial set and let K ! Y C

ω /F be a diagram, which we may think of
as objects ck ∈ C together with maps ck ! F in Ind(C). By Yoneda’s lemma, such maps
correpond to points in F (ck). Since C admits finite colimits, c := colimk∈K ck exists and
satisfies F (c) ≃ limk∈Kop F (ck), since c is given by a finite limit in Cop and F preserves finite
limits. Hence the given maps ck ! F define a contractably unique map c ! F and thus
an extension K▷ ! Y C

ω /F . This shows that Y C
ω /F is filtered and thus there exists a Kan

extension functor LanY C
ω

: Fun(C,D)! Fun(Ind(C),D).
Next, observe that any such Kan extension LanY C

ω
f : Ind(C) ! D preserves filtered

colimits. To see this, choose a colimit-preserving embedding D ⊆ D′ into a cocomplete
∞-category D′ (for example, one could take D′ ≃ Fun(Dop,Anop)) and consider the left Kan
extension LanY C f : P(C)! D′ along the usual Yoneda embedding Y C : C ! P(C). LanY C f
preserves colimits by Theorem I.51, and its restriction to Ind(C) is LanY C

ω
f by Corollary I.54.

Since Ind(C) ⊆ P(C) preserves filtered colimits, this implies that LanY C
ω
f : Ind(C) ! D

preserves filtered colimits as well.
The upshot is that Y C,∗

ω : Funfilt-colim(Ind(C),D)! Fun(C,D) has a left adjoint LanY C
ω

.
One easily checks that unit and counit are equivalences, using that the same is true by
Theorem I.51 for the adjunction LanY C : Fun(C,D) Funcolim(P(C),D) :Y C,∗.

IV.33b. Compact and Tiny Objects. — Let D be an ∞-category. Recall that an
object d ∈ D is called compact if HomD(d,−) commutes with filtered colimits, and tiny if
HomD(d,−) commutes with all colimits. Moreover, we say that a set S of objects of D is a
set of generators if the functors HomD(s,−) for s ∈ S are jointly conservative.

If D ≃ P(C) for some small ∞-category C, then the essential image of the Yoneda
embedding Y C : C ! P(C) is a set of tiny generators, as follows easily from Yoneda’s lemma.
In fact, a cocomplete D is of the form D ≃ P(C) if and only if it has a set of tiny generators,
in which case D ≃ P(Dtiny), where Dtiny ⊆ D is the full sub-∞-category spanned by the tiny
objects. To see this, we apply Criterion (⊠) from the proof of Lemma II.38 to i : Dtiny ! D
to see that the colimit-preserving functor P(Dtiny) ! D induced by Theorem I.51 is an
equivalence. Conditions (a) and (b) are trivially satisfied. To check condition (c), i.e. that
Singi : D ! P(Dtiny) is conservative, recall that Singi(d) ≃ HomD(i(−), d) : (Dtiny)op ! An.
So conservativity of Singi follows immediately from the fact that D has a set of tiny generators.

The exact same thing holds for inductive completions and compact objects.

IV.33c. Lemma. — Let D be an ∞-category with finite colimits. Then D is of the form
D ≃ Ind(C) for some small ∞-category C iff D admits filtered colimits and has a set of
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compact generators. In this case automatically D ≃ Ind(Dω), where Dω ⊆ D is the full
sub-∞-category of compact objects.

Proof *. The proof is completely analogous to Criterion (⊠) in the proof of Lemma II.38,
except for two things that should perhaps be explained. First, Dω ⊆ D is closed under finite
colimits, since filtered colimits commute with finite limits in An. So in particular, Dω has
finite colimits, whence we can define Ind(Dω) as above and the inclusion iDω ⊆ D extends
to a functor Ind(Dω)! D by Lemma IV.33a.

Second, we have to explain why this functor has a left adjoint. Choose a colimit-preserving
embedding D ⊆ D′ into a cocomplete ∞-category. Then i : Dω ! D′ induces a colimit-
preserving functor | |i : P(Dω) ! D′ with right adjoint Singi : D′ ! P(Dω). On objects
d ∈ D′, Singi is given by Singi(d) ≃ HomD′(i(−), d) : (Dω)op ! An. For d ∈ D, this presheaf
coincides with HomD(−, d) : (Dω)op ! An, which preserves finite limits. Hence Singi restricts
to a right adjoint D ! Ind(Dω) of Ind(Dω)! D.

An ∞-category D as in Lemma IV.33c is called compactly generated. For example, we’ve
checked in the proof of Theorem II.57 that ModR is compactly generated for any E∞-ring
spectrum R.

IV.34. Theorem (Thomason–Neeman localisation theorem). — A nullcomposite sequence
A! B ! C in Catst

∞ is a Karoubi sequence iff

Ind(A) −! Ind(B) −! Ind(C)

is a Verdier sequence.

Proof *. Throughout the proof, we’ll use that Ind(D) ≃ Funex(Dop,Sp) holds for all stable
∞-categories D. Under this identification, the functor Ind(D)! Ind(E) induced by an exact
functor i : D ! E corresponds to Lani : Funex(Dop,Sp) ! Funex(Eop,Sp), as follows from
the proof of Lemma IV.33a. We proceed in three steps.
(1) We show that a map D ! E in Catst

∞ is a Karoubi equivalence iff Ind(D) ∼−! Ind(E) is
an equivalence.

Let’s first assume that i : D ! E is a Karoubi equivalence. As seen above, we have to
show that Lani : Funex(Dop,Sp)! Funex(Eop,Sp) is an equivalence. For this, it suffices that
its right adjoint

i∗ : Funex(Eop,Sp) ∼−! Fun(Dop,Sp)
is an equivalence. Equivalences of ∞-categories can be detected on core(−) and core Ar(−).
To check that i∗ : core Funex(Eop,Sp) ∼−! core Funex(Dop,Sp) is an equivalence, we use
Lemma IV.32a to get

HomCatst
∞,♮

(Dop,Sp) ≃ HomCatst
∞

(Dop,Sp♮) ≃ HomCatst
∞

(Dop,Sp) .

Here we also used Sp♮ ≃ Sp, since Sp is already idempotent complete (it is even cocomplete).
Similarly,

HomCatst
∞,♮

(Eop,Sp) ≃ HomCatst
∞

(Eop,Sp) .

But now the left-hand sides agree since D ⊆ E is a Karoubi equivalence, hence also the
right-hand sides agree. Thus

HomCatst
∞

(Dop,Sp) ≃ HomCatst
∞

(Eop,Sp) ,
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as desired. To show that i∗ : core Ar(Funex(Eop,Sp)) ∼−! core Ar(Funex(Dop,Sp)) is an
equivalence, simply repeat the argument with Ar(Sp) instead of Sp.

Conversely, assume that Ind(D) ∼−! Ind(E) is an equivalence. Since D ⊆ Ind(D) and
E ⊆ Ind(E) are fully faithful, it follows that D ! E is fully faithful as well. It remains
to show that all objects of E are retracts. But every e ∈ E can be written as a filtered
colimit e ≃ colimi∈I di over elements from D. Since e is compact in Ind(E), the isomorphism
e ∼−! colimi∈I di already factors over some dj ! colimi∈I di. But then

e −! dj −! colim
i∈I

di
∼−! e

witnesses e as a retract of dj , as required. This finishes Step (1).
(2) We show that if A! B ! C is a Karoubi sequence, then Ind(A)! Ind(B)! Ind(C) is

a Verdier sequence.
As seen above, both arrows in Ind(A)! Ind(B)! Ind(C) have right adjoints, given by

the usual restriction functors

Funex(Cop,Sp) −! Funex(Bop,Sp) −! Funex(Aop,Sp) .

By Theorem IV.15, it suffices to show that this is a Verdier sequence. Note that A! B is
fully faithful (for example by Lemma IV.32c(b)), hence so is the left Kan extension functor
Funex(Aop,Sp)! Funex(Bop,Sp). Therefore, Funex(Bop,Sp)! Funex(Aop,Sp) is a left split
Verdier projection by Theorem IV.15(b), and thus all that’s left to do is to identify its fibre
with Funex(Cop,Sp).

By Lemma IV.32c(b) and Step (1), we have Funex(Cop,Sp) ≃ Funex((B/A)op,Sp), so we
may show instead that

Funex((B/A)op,Sp) −! Funex(Bop,Sp) −! Funex(Aop,Sp)

is a fibre sequence in Catst
∞ (or equivalently in Cat∞; see IV.14(e)). But this is obvious:

Funex((B/A)op,Sp) ! Funex(Bop,Sp) is fully faithful with essential image those exact
functors that invert mod-Aop equivalences. And an exact functor Bop ! Sp inverts mod-Aop

equivalences iff the composition Aop ! Bop ! Sp vanishes.
(3) We show that if Ind(A)! Ind(B)! Ind(C) is a Verdier sequence, then A! B ! C is

a Karoubi sequence.
Let A′ := fib(B ! C) and C′ := B/A′. Then clearly A′ ! B is fully faithful and closed

under retracts, hence Theorem IV.15 shows that A′ ! B ! C′ is a Verdier sequence. In
particular, Step (2) implies that Ind(A′) ! Ind(B) ! Ind(C′) is a Verdier sequence too.
We’re done if we can show that A! A′ and C′ ! C are Karoubi equivalences. Indeed, the
former implies that B/A ≃ B/A′, thus also B/A! C is a Karoubi equivalence, whence both
conditions from Lemma IV.32c(b) are satisfied.

By construction, we get fully faithful inclusions Ind(A) ⊆ Ind(A′) ⊆ Ind(B). But Ind(A)
is also the fibre of Ind(B)! Ind(C), so A′ ⊆ Ind(A). Since Ind(A) is already closed under
filtered colimits, this shows that Ind(A) ∼−! Ind(A′) must be an equivalence. Hence A! A′

is a Karoubi equivalence by Step (1). Now both

Ind(A) −! Ind(B) −! Ind(C) and Ind(A′) −! Ind(B) −! Ind(C′)

are Verdier sequences and we already know Ind(A) ≃ Ind(A′), so Ind(C′) ≃ Ind(C) holds as
well. By Step (1) again, this implies that C′ ! C is a Karoubi equivalence. We’re done.
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IV.35. Quillen’s Localisation Sequence. — If R is an E∞-ring spectrum, we put

k(R) := k(ModωR) and K(R) := K(ModωR)

for short. In the case where R is an ordinary ring, this is compatible with our previous
definitions, since one easily checks that Dperf(R) consists of precisely the compact objects in
D(R) ≃ ModHR.

Let R ! S be a localisation of E∞-ring spectra (see IV.16). We say that R ! S has
perfectly generated fibre if I := fib(R ! S) lies in the smallest stable sub-∞-category of
ModS-tors

R generated by ModS-tors,ω
R := ModS-tors

R ∩ ModωR under colimits. This is always true
if S ≃ R[s−1] is a localisation at some element s ∈ π0(R), since then

I ≃ (R/s∞)[−1] ≃ colim
n∈N

(R/sn)[−1] ,

and every R/sn ≃ cofib(sn : R ! R) is an element of ModS-tors,ω
R Essentially the same

argument shows that localisations R! R[S−1] at arbitrary subsets S ⊆ π0(R) have perfectly
generated fibre. Moreover, it is a theorem of Thomason–Trobaugh that R! S has perfectly
generated fibre whenever R and S are ordinary rings such that SpecS ! SpecR is an open
embedding of affine schemes (which is always a derived localisation, see Example I.63a(c)).

The following lemma explains why having perfectly generated fibre is a very natural
technical condition to impose.

IV.35a. Lemma. — The smallest stable sub-∞-category of ModS-tors
R generated by

ModS-tors,ω
R is equivalent to Ind(ModS-tors,ω

R ). Moreover, the following are equivalent.
(a) R! S has perfectly generated fibre.
(b) The canonical functor Ind(ModS-tors,ω

R ) ∼−! ModS-tors
R is an equivalence.

(c) ModS-tors,ω
R ! ModωR ! ModωS is a Karoubi sequence.

Proof *. We know that ModR ≃ Ind(ModωR) from Lemma IV.33c. Hence the canonical
functor

Ind(ModS-tors,ω
R ) −! Ind(ModωR) ≃ ModR

induced by Lemma IV.33a is fully faithful, and its essential image is contained in ModS-tors
R

since being S-torsion is preserved under arbitrary colimits. Moreover, the essential image
is closed under filtered colimits by construction, and closed under finite colimits since it is
a stable sub-∞-category. But every colimit can be built from coproducts (which can be
rewritten as filtered colimits) and coequalisers (which are finite), hence the essential image is
closed under all colimits. Finally, Ind(ModS-tors,ω

R ) is generated by ModS-tors,ω
R under colimits

(even under filtered ones), hence it is indeed the smallest sub-∞-category we’re looking for.
The implication (b) ⇒ (a) is clear since the fibre I ≃ fib(R! S) is contained in ModS-tors

R .
Conversely, assume I can be written as a colimit I ≃ colimi∈I Ci with Ci ∈ ModS-tors,ω

R .
By the above, we may even assume that I is filtered. Let M be any S-torsion R-module
spectrum. Since ModR is compactly generated, M can be written as a filtered colimit
M ≃ colimj∈J Dj with Dj ∈ ModωR. But then M ≃ M ⊗R I since M is S-torsion, which
implies

M ≃ colim
j∈J

Dj ⊗R I ≃ colim
(i,j)∈I×J

Ci ⊗R Dj ,

using that − ⊗R I commutes with colimits along with Proposition I.42. It’s straightforward
to check that the Ci ⊗R Dj are compact again and S-torsion, whence M ∈ Ind(ModS-tors,ω

R ).
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This shows (a) ⇒ (b). Finally, (b) ⇔ (c) follows from Theorem IV.34, Lemma IV.16a and
the fact that ModR ≃ Ind(ModωR).

Combining everything we did on the last few pages, we finally obtain Quillen’s fibre
sequence!

IV.35b. Corollary. — If R ! S is a localisation of E∞-ring spectra with perfectly
generated fibre, then there’s a fibre sequence

k(ModS-tors,ω
R ) −! k(R) −! k(S)

in An (or in CGrp(An)). In particular, if R! S is a derived localisation of ordinary rings
with perfectly generated fibre, then there’s a fibre sequence

k
(
Dperf(R)S-tors) −! k(R) −! k(S) .

Fabian also mentioned that the perfectly generated fibre condition was recently removed
by Alexander Efimov, but his result would leave the scope of this lecture.

Proof of Corollary IV.35b. We know from Lemma IV.35a(c) that ModS-tors,ω
R ! ModωR !

ModωS is a Karoubi sequence. It’s straightforward to check that ModS-tors,ω
R ! ModωR is fully

faithful and closed under retracts, hence a Verdier inclusion by Theorem IV.15(c). Thus, if C
denotes the Verier quotient ModωR/ModS-tors,ω

R , then Corollary IV.29 implies that

k(ModS-tors,ω
R ) −! k(ModωR) −! k(C)

is a fibre sequence in An. Moreover, C ! ModωS is a Karoubi equivalence by Lemma IV.32c(b),
whence k(C)! k(ModωS) is an inclusion of path components by Corollary IV.30 and Theo-
rem IV.4. This shows that

k(ModS-tors,ω
R ) −! k(ModωR) −! k(ModωS)

is a fibre sequence in An as well, as required.

Despite Corollary IV.35b, it’s not necessarily true that the K-theory spectra arrange into
a fibre sequence

K(ModS-tors,ω
R ) −! K(R) −! K(S)

if R! S is a localisation with perfectly generated fibre. However, the only thing that can
fail is that K0(R)! K0(S) isn’t surjective. In the case R = Z, S = Q, and more generally
whenever R is an integral domain and S = FracR its fraction field, K0(R)! K0(S) is clearly
surjective. Hence we do get a fibre sequence

K
(
Dperf(Z)Q-tors) −! K

(
Dperf(Z)

)
−! K

(
Dperf(Q)

)
in Sp. We’ve thus completed thing (a) of the two final things from IV.31, and only thing (b)
is left to do. Again, this will lead us on two detours. First, we have to introduce the classical
definition of K-theory of abelian/exact categories. It’s a bit unsatisfying that we can’t stay
on the stable ∞-categorical high road, especially after we have been avoiding to leave it for so
long, but as far as Fabian knows, a formulation of Quillen’s dévissage in stable ∞-framework
has yet to be found.
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IV.36. Algebraic K-Theory of Abelian/Exact Categories*. — Let A be an abelian
category. We define a category Span(A) as follows: Its objects the objects of A. Its morphism
sets HomSpan(A)(a, a′) are equivalence classes of span diagrams

a↞− a′′ ↪−! a′

in A, where two such diagrams are equivalent iff there is an isomorphism between them
which restricts to the identity on a and a′. Composition is given by taking pullbacks, as we
would expect from a span category. The same definition can be given if A is only an exact
category: In a nutshell, these are additive categories together with a given supply of exact
sequences, subject to a bunch of axioms which I’m not going to recall. In the exact case, the
arrows in a↞ a′′ ↪! a′ have to be admissible epi- and monomorphisms, respectively. Here
we call an epi- or monomorphism admissible means if it is part of one of the specified exact
sequences.

Two caveats are in order. First, Span(A) is not the ∞-category obtained by applying
Proposition/Definition I.71 to A, since we only allow specific spans here. One should probably
signify that by adding a suitable decoration, but I couldn’t come up with a good one. I hope
that doesn’t cause confusion. Second, what we call Span(A) here, is usually denoted Q(A)
in the literature, since that’s how Quillen’s Q-construction was originally defined. However,
calling it Span(A) is more consistent with the notation in the rest of these notes.

In any case, we define the algebraic K-theory anima of A and its spectrum variant as

k(A) := Ω |Span(A)| and K(A) := B∞k(A) ,

where |Span(A)| denotes the ∞-categorical localisation of the 1-category Span(A) at all its
morphisms.

IV.37. t-Structures. — Let C be a stable ∞-category. A t-structure on C consists of two
full sub-∞-categories C⩾0, C⩽0 ⊆ C subject to the following conditions:
(a) C⩾0 is closed under pushouts, C⩽0 is closed under pullbacks, and both under retracts.
(b) If x ∈ C⩾0 and y ∈ C⩽0, the spectrum homC(x, y) is coconnective, i.e., its homotopy

groups vanish in positive degrees.
(c) Every y ∈ C admits a fibre sequence x ! y ! z with x ∈ C⩾1 and z ∈ C⩽0. Here we

write C⩾a := C⩾0[a] and similarly C⩽b := C⩽0[b].
As for weight structures (see IV.10), we put C[a,b] := C⩾a ∩ C⩽b and C♡ := C[0,0] ≃ C⩾0 ∩ C⩽0.
A t-structure on C is called exhaustive (which is nonstandard terminology; Lurie uses bounded
instead) if

C =
⋃
n∈N

C[−n,n] .

As already mentioned in IV.10, t-structures behave a lot differently than weight structures.
The inclusions C⩾n ⊆ C have right adjoints τ⩾n : C⩾n ! C and the inclusions C⩽n ⊆ C have
left adjoints τ⩽n : C⩽n ! C. With this terminology, it turns out that the fibre sequence from
(c) is necessarily of the form τ⩾1y ! y ! τ⩽0y, hence it is unique and functorial! Finally,
and most importantly for our purposes, the heart C♡ is always an abelian 1-category. Proofs
of all of this can be found in [HA, Subsection 1.2.1].

The standard example of a stable ∞-category with a t-structure is D(R) for some ring R
together with the full sub-∞-categories D⩾0(R) and D⩽0(R) of complexes whose homology

244



K-Theory as the Universal Additive Invariant

vanishes in negative or positive degrees, respectively. Note, however, that this usually doesn’t
restrict to a t-structure on Dperf(R), since truncations of a perfect complex need not be
perfect anymore. We’ll see in IV.39 below how this can be fixed. But first let’s see how
K-theory of abelian categories relates to t-structures.

IV.38. Theorem. — Let C be a stable ∞-category equipped with an exhaustive t-structure.
(a) There is a canonical equivalence k(C♡) ∼−! k(C), where the left-hand side is defined as

in IV.36, using that C♡ is abelian.
(b) Suppose D is another stable ∞-category with an exhaustive t-structure, and let F : C ! D

be an exact and t-exact functor (i.e. F (C⩾0) ⊆ D⩾0 and F (C⩽0) ⊆ D⩽0). Suppose
furthermore that the induced functor F : C♡ ! D♡ is fully faithful, its essential image
is closed under subobjects and quotients, and that every object in the abelian category
b ∈ D♡ has a finite filtration

0 = b0 ⊆ b1 ⊆ · · · ⊆ bn = b

whose subquotients bi+1/bi are in the essential image of F . Then F induces an equiva-
lence

F : k(C) ∼−! k(D) .

Proof sketch of Theorem IV.38*. Part (a) is Clark Barwick’s theorem of the heart and we
refer to his original proof in [Bar15]. Assuming (a), we can give a surprisingly simple proof
of (b), which is taken from Charles Weibel’s K-book, [Wei13, Chapter V §4]. Using (a), it
suffices to show k(C♡) ≃ k(D♡), and for this, it suffices to show that the nerves of Span(A)
and Span(B) are weakly equivalent as simplicial sets, where we write A := C♡ and B := D♡

since the hearts are getting on my nerves.
We’ll show something stronger: i : Span(A) ! Span(B) is final! By the dual of Theo-

rem I.43,2 we must show that the slice categories i/b := Span(A) ×Span(B) Span(B)/b are
weakly contractible for all b ∈ B. Since A ! B is fully faithful by assumption, the same
is true for Span(A) ! Span(B) by construction and the fact that A ⊆ B is closed under
subobjects. Hence the slice categories i/a for a ∈ A are weakly contractible, since they have
a terminal object. Now a general object b ∈ B has a finite filtration with subquotients in A,
hence it suffices to show that i/b′ ! i/b is a weak equivalence for all subobjects b′ ⊆ b whose
quotient b/b′ lies in A.

By definition, the objects of i/b are given by pairs (a, φ : a! b), where a ∈ A and φ is a
morphism in Q(B), given by a span a↞ c ↪! b in B. Letting c′ = ker(c! a), such a span
may be equivalently described as a chain of monomorphisms c′ ↪! c ↪! b such that a = c/c′

is contained in A. Now let J ⊆ i/b be the full subcategory of objects (c′ ↪! c ↪! b) where
c′ ⊆ b′ holds as subobjects of b. Then i/b′ ! i/b can be factored into a solid sequence

i/b′ J i/b .
r

s

If we can show that the dashed adjoints exist, then we’re done, since adjoint functors induce
inverse homotopy equivalences. Define r and s explicitly as

r(c′ ↪! c ↪! b) = (c′ ↪! c ∩ b′ ↪! b′) and s(c′ ↪! c ↪! b) = (c′ ∩ b′ ↪! c ↪! b) .
2I somewhat suspect that this was in fact the original purpose of Quillen’s theorem A.
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Note that (c ∩ b)/c′ is contained in A since it is a subobject of c/c′ = a. Similarly, c/(c′ ∩ b′)
is a subobject of b/b′ and thus also contained in A. So r and s are well-defined. One easily
checks that they indeed provide the desired adjoints.

IV.39. Almost Perfect Complexes and G-Theory. — As explained above, the stan-
dard t-structure on D(R) doesn’t restrict to a t-structure on Dperf(R), at least not without
some extra conditions on R. Instead, we say a complex D ∈ D(R) is almost perfect (or
pseudocoherent in Stacks Project language) if it satisfies the following equivalent conditions.
(a) For all n ∈ Z the truncation τ⩽nD coincides with τ⩽nCn for some perfect complex

Cn ∈ Dperf(R).
(b) D is quasi-isomorphic to a (not necessarily bounded above) complex of degreewise finite

projective R-modules.
Equivalence is proved in [Stacks, Tag 064U] (beware that The Stacks Project uses cohomolog-
ical indexing). Upon replacing “perfect” by “compact”, condition (a) can also be generalised
in a straightforward way to modules over an E∞-ring spectrum.

It’s clear from condition (a) that the full sub-∞-category of almost perfect complexes
is stable again and inherits a t-structure. Moreover, if we further restrict to the full sub-
∞-category Daperf(R) ⊆ D(R) of bounded almost perfect complexes, then that t-structure
becomes exhaustive. We define the G-theory spectrum of R to be

G(R) := K
(
Daperf(R)

)
.

If R is noetherian, then a complex D ∈ D(R) is almost perfect iff its homology H∗(D) is a
finitely generated R-module in each degree; see [Stacks, Tag 066E]. In particular, the heart
of the t-structure on Daperf(R) is the abelian category of finite R-modules. If R is moreover
regular and of finite Krull dimension, then it has finite global dimension, which means that
every finite R-module has a “finite finite” projective resolution (i.e. a resolution of finite
length consisting of finite projective R-modules). This easily implies that every bounded
almost perfect complex is in fact perfect, so

G(R) ≃ K(R)

holds for all regular noetherian rings of finite Krull dimension. With this out of the way, we
can finally prove Quillen’s fibre sequence from IV.1.

IV.40. Corollary. — Let R be a Dedekind domain. Then
⊕

m Dperf(R/m)! Dperf(R)tors,
where m runs over all maximal/nonzero prime ideals of R, induces an equivalence⊕

m

K(R/m) ∼−! K
(
Dperf(R)tors) .

In particular, there is a fibre sequence⊕
m

K(R/m) −! K(R) −! K(FracR) .

Proof *. Since R is regular noetherian, there’s a natural t-structure on Dperf(R), which
persists to Dperf(R)tors. The functors Dperf(R/m) ! Dperf(R)tors are clearly t-exact and
induce fully faithful functors on hearts, namely the inclusion

Modfg,m-tors
R ⊆ Modfg,tors

R
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of finitely generated m-torsion R-modules into all finitely generated torsion R-modules. Let
me remark, however, that Dperf(R/m)! Dperf(R)tors itself isn’t fully faithful, since Ext1

R/m

vanishes (as R/m is a field), but Ext1
R doesn’t. This is the reason why we had to introduce

all this stuff about t-structures and K-theory of abelian categories.
Now

⊕
m Dperf(R/m) inherits a t-structure, and by the Chinese remainder theorem, its

heart can be described as the full subcategory A ⊆ Modfg,tors
R of finitely generated torsion

modules whose annihilator AnnR(M) ⊆ R is a squarefree ideal, i.e., the factors mi in the
prime ideal decomposition AnnR(M) = m1 · · ·mn are distinct. Note that every finitely
generated torsion R-module has a finite filtration with subquotients in A. In fact, every
finitely generated module over an arbitrary noetherian ring has a finite filtration with
subquotients of the form R/pi for some pi ∈ SpecR; see [Stacks, Tag 00L0]. Thus, the
functor

⊕
m Dperf(R/m) ! Dperf(R)tors satisfies the assumptions from Theorem IV.38(b),

whence we get an equivalence

K

(⊕
m

Dperf(R/m)
)

∼−! K
(
Dperf(R)tors) .

It remains to identify the left-hand side with
⊕

mK(Dperf(R/m)) ≃
⊕

mK(R/m), which is a
straightforward check. The additional assertion about the fibre sequence follows immediately
from Corollary IV.35b.

IV.41. Nonconnective K-Theory. — As introduced in Definition IV.13, let FunKar

denote ∞-categories of Karoubi-localising functors. It turns out that

Ω∞ : FunKar(Catst
∞,Sp) ∼−! FunKar(Catst

∞,An)

is an equivalence. Now C 7! k(C♮) is a Karoubi-localising functor, hence an element on
the right. We let K : Catst

∞ ! Sp denote a preimage and call this non-connective K-theory.
Fabian warns you that in general the preimage of a Karoubi-localising functor F : Catst

∞ ! An
may not be given by B∞F : Catst

∞ ! Sp, as this guy might not be Karoubi-localising at all
(but of course this only fails on π0). In particular, if C is a stable ∞-category, then K(C)
usually doesn’t coincide with B∞k(C♮), and it is usually not a connective spectrum—hence
the name.

This is where Fabian’s final lecture ends. But needless to say that Fabian has at least a
dozen pages worth of additional cool stuff to say in his official notes.
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