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§0. Introduction

§0. Introduction

At the QED Academy 2023 in Sonthofen, I gave a lecture course about ∞-categories in topology.
The goal of this course was ambitious, but we managed to have the Adams spectral sequence
on the board in the end. After the academy was over, I decided, for future use, to translate my
handwritten German notes into English and into LATEX. The result is this document. What
began as a simple transscription quickly led to many additions and presented me with the
opportunity to provide many missing details. While I fell for these temptations many times,
I hope that at their heart, this notes still display a faithful (albeit not essentially surjective)
representation of my original course.

0.1. ∞-Categories in topology. — When I first learned ∞-category theory, I felt like I’d
just been given a cheat code for homotopy theory. Before, I’d felt lost in all the technicalities
and struggled to develop intuition. With ∞-categories, everything suddenly made sense and I
finally started to see the elegance and the clarity that I’d been looking for so long.

So what are ∞-categories and what makes them so useful? Very roughly, an ∞-category
not only contains 0-morphisms (objects) and 1-morphism, as an ordinary category, but also
higher n-morphisms for all n ⩾ 2. It turns out that all the usual results and constructions from
category theory can be carried over to ∞-categories—however, getting ∞-category theory off
the ground is much more difficult than ordinary category theory: More than 30 years lie between
the first definition of ∞-categories rBV73s and the first proof of the Yoneda lemma rL-HTTs!
But it’s worth the effort! Among many other applications, which we’ll not attempt to survey
here, ∞-categories provide an incredibly powerful framework to do homotopy theory in. Already
the vague idea explained above has a topological flavour: n-morphisms in an ∞-category, which
run between morphisms of lower order, are reminiscent of n-cells in a CW-complexes, whose
boundary is made up of cells of lower dimension. And indeed, every CW-complex (and then
by CW-approximation every topological space) is an example of an ∞-category. This is a key
advantage of ∞-category theory over ordinary category theory:

Ordinary category theory can be used to do homotopy theory—but homotopy theory is
∞-category theory.

In particular, many formal ∞-categorical constructions, like presheaves or colimits, have a
concrete topological meaning. It’s surprising how many classical topological results can be
reproved in a completely formal way just from abstract ∞-category theory! That number
only increases through the introduction of the ∞-category of spectra. Spectra combine the
topological flavour of, well, topological spaces with the algebraic flavour of abelian groups; in
particular, they admit a tensor product and so it makes sense to talk about rings and modules
in spectra. This allows us to bring algebra into the game—and again, algebra will not just be a
tool (like homology or homotopy groups) to prove classical theorems, but instead we’ll be able
to reinterpret classical theorems as algebraic statements in the ∞-category of spectra.

For someone like me, how came from an algebra background originally, it’s amazing to
be able to do topology with just the tools I feel confident with: category theory and algebra.
But ∞-category theory does wonderful things in algebra. For example, the theory of derived
categories—another notoriously technical subject—becomes so much clearer once you know
spectra and the associated notion of a stable ∞-category. In general, the future of algebra and
algebraic geometry is derived, and all things derived become much clearer if you approach them
using ∞-category theory.
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§0. Introduction

All of this is to say: You should learn ∞-category theory! It will be painful at first, but
once you’re there, you’ll see mathematics with fresh eyes.

0.2. Aim and scope of these notes. — The goal of these notes is to introduce ∞-
categories and to explain many of their applications to topology. As prerequisites, you should
feel comfortable with ordinary category theory; in addition, it would be beneficial to have a
solid background in commutative algebra and topology (at least, you should have heard of
simplicial sets, homology, and homotopy groups). None of this is strictly necessary—we’ll recall
the necessary ordinary category theory in §1 and we’ll reintroduce many classical topological
constructions in a way that’s convenient for us—but it would certainly help you not to get
overwhelmed by the material.

These notes roughly consist of four parts: In §§2–5 we’ll introduce ∞-categories as well as
the technical ingredients that go into Lurie’s proof of Yoneda’s lemma. Unfortunately, this
part contains several minor black boxes and a major one: I won’t be able to prove Lurie’s
straightening/unstraightening equivalence. The second part is §6, in which we’ll redevelop
classical category theory in the setting of ∞-categories. In the third part, spanning §§7–8, we’ll
introduce spectra and their tensor product. Finally, the last part is §9, in which we’ll apply our
theory to topology (altough many more applications are scattered throughout the text up to
this point). One highlight will be the construction of the Adams spectral sequence.

0.3. Model independence and notation. — The model for ∞-categories we use in these
notes will be quasi-categories. But there are many other approaches to ∞-categories, like
topologically or Kan-enriched categories, complete Segal spaces, 1-complicial sets, . . . Of course,
all these approaches should be equivalent, but it’s usually a non-trivial task to tranfer a result
proven in one model into another model. A general theory of model independence that allows
for such non-trivial transfers has been developed by Emily Riehl and Dominic Verity rRV22s.

In these notes, we take a somewhat different approach towards a model-independent theory.
We will, or at least we would, in an ideal version of these notes, proceed in the following steps:
paq First, we’ll set up the framework of quasi-categories, by any means necessary.
pbq After that, we’ll prove (or black box) a few key statements in the model of quasi-categories.

The statements themselves are model-independent, even though their proofs are not.
pcq Finally, all further proofs will be done in a model-independent fashion.
If you prefer a different model of quasi-categories, you’ll probably know how to do steps (a)
and (b) in your model, and then, at least in an ideal world, everything from step (c) will work
in your model too.

In reality, these notes don’t quite live up to that ideal, but I dare say we come somewhat
close. In §§2–5, we’ll sketch how to get the theory of quasi-categories off the ground. This
corresponds to steps (a) and (b) above, with most of (b) happening in §4 and §5. Everything
from §6 onward mostly falls within step (c). I write “mostly” because, unfortunately, there are
still a few non-model-independent arguments scattered throughout the text, the worst offender
probably being our treatment of cardinality bounds and filteredness in §6.8. I could, of course,
tautologically claim that every non-model-independent proof still belongs to step (b), but that
would be a poor excuse for my inability to come up with better arguments.

The transition to (mostly) model-independent arguments will be reflected in a change of
terminology: Throughout §§2–5, we’ll use the term quasi-category, we’ll write FpC,Dq for the
mapping object in simplicial sets and we’ll always write NpEq for the quasi-category obtained
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§0. Introduction

as the nerve of an ordinary category E . Starting from §6, we’ll simply say ∞-category, write
FunpC,Dq, and consider every ordinary category E implicitly as an ∞-category, suppressing N
everywhere. Only when we’re using non-model-independent arguments, we’ll switch back to
the old terminology, to emphasise that what we’re doing is morally questionable.

Also, since I’m doing my PhD in Bonn, I’m legally required to use the term anima for
what other people would call space or ∞-groupoid or (in non-model-independent language) Kan
complex.

0.4. Acknowledgments. — First I’d like to thank Fabian Hebestreit for his amazing cycle of
lectures on ∞-categories and K-theory rF-HCIs, rF-HCIIs, rF-KThs. I learnt all of this stuff in
Fabian’s lectures and these notes loosely follow his course. I’d also like to thank the participants
of my QED academy course, Andrea Lachmann, Peter Langer, Malena Wasmeier, and Melvin
Weiß, for their interest and for creating a thoroughly enjoyable teaching experience. Last but
not least, I’d like to thank Dave Bowman and Yordan Toshev for their valuable comments on
earlier versions of these notes.
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§1. Category theory

§1. Category theory
We assume you are familiar with categories, functors, natural transformations and the Yoneda
lemma. In fact, you will probably be familiar with most of the stuff in this section, so we’ll
leave out many proofs (but give them later in the ∞-categorical context).

§1.1. Adjunctions

1.1. Definition. — Let L : C ! D be a functor.
paq Let y ∈ D. An object x ∈ C is a right adjoint object to y under L if there exists an

equivalence
HomCp−, xq » HomD

`

Lp−q, y
˘

in the functor category FunpCop,Setq.
pbq A functor R : D ! C is a right adjoint of L if there exists an equivalence

HomC
`

−, Rp−q
˘

» HomD
`

Lp−q,−
˘

in the functor category FunpCop × D, Setq. In this case we write L ⊣ R.

1.2. Lemma (“Adjoints can be constructed pointwise”). — A functor L : C ! D has a right
adjoint if and only if every y ∈ D has a right adjoint object x ∈ C.

Proof. One implication is trivial: If R : D ! C is a right adjoint of L, then Rpyq is a right
adjoint object of y for every y ∈ D. The other implication is left as an exercise. We’ll prove an
∞-categorical variant in Lemma 6.2.

1.3. Construction. — Let L : C  ! D :R be an adjunction. For every x ∈ C, the identity
idLpxq : Lpxq ! Lpxq is adjoint to a morphism ux : x ! RLpxq. One can show that these
morphisms assemble into a natural transformation u : idC ⇒ RL, called the unit of the
adjunction. Dually, there is a counit c : LR ⇒ idD.

1.4. Lemma (Triangle identities). — Let L : C  ! D :R be an adjunction. Then the diagrams

L LRL

L

Lu

idL

cL
/// and

R RLR

R

uR

idR

Rc
///

commute. Conversely, if L, R are functors and u : idC ⇒ RL, c : LR ⇒ idD are natural
transformations such that the diagrams above commute, then L and R determine an adjunction.

Proof. Exercise. We’ll prove an ∞-categorical variant in Lemma 6.5.

1.5. Corollary. — Let L : C  ! D :R be an adjunction and let I be another category. Then
the pre- and postcomposition functors determine adjunctions

L ◦ − : FunpI, Cq −−! FunpI,Dq :R ◦ − ,

− ◦R : FunpC, Iq −−! FunpD, Iq :− ◦ L .

Proof. By Lemma 1.4, we only need to construct unit and a counit transformations satisfying
the triangle identities. These are immediately inherited from the adjunction L ⊣ R.
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§1.2. Limits and colimits

§1.2. Limits and colimits

1.6. Definition. — Let F : I ! C be a functor. A limit of F , denoted limF (or sometimes
limi∈I F piq), is a right adjoint object of F under the functor const : C ! FunpI, Cq that sends
i ∈ I to the constant functor with value i. Dually, a colimit of F , denoted colimF (or sometimes
colimi∈I F piq), is a left adjoint object of F under const.

Concretely, Definition 1.6 means that we have the following natural bijections for all x, y ∈ C:

HomCpx, limF q „= HomFunpI,Cqpconstx, F q ,

HomCpcolimF, yq „= HomFunpI,CqpF, const yq .

1.7. Lemma. — Left adjoint functors preserve colimits and right adjoint functors preserve
limits.

Proof. Let L : C  ! D :R be an adjunction and let I be another category. By Corollary 1.5,
the postcomposition functors L˚ := L ◦ − and R˚ := R ◦ − determine an adjunction

L˚ : FunpI, Cq −−! FunpI,Dq :R˚

Now let F : I ! C be a functor admitting a colimit colimF . Since left adjoint functors
clearly preserve left adjoint objects, we see that LpcolimF q is a left adjoint object of F under
constRp−q. But constRp−q » R˚ const : D ! FunpI, Cq. A left adjoint object of F under
R˚ const is also a left adjoint object of L˚F under const : D ! FunpI,Dq by the adjunction
above. In summary, this proves that LpcolimF q is a left adjoint object of L˚F under const,
which is precisely what we want. The case of limits is analogous.

1.8. Lemma (“Colimits in functor categories are computed pointwise.”). — Let C, D, and I
be categories such that D has all I-shaped colimits; that is, all functors I ! D admit colimits.
Then FunpC,Dq has again all I-shaped colimits and the evaluation functor

evx : FunpC,Dq −! Fun
`

txu,D
˘

» D

preserves I-shaped colimits for all x ∈ C. A dual assertion holds for limits.

Proof. By Lemma 1.2, the condition that D has all I-shaped colimits implies that the func-
tor const : D ! FunpI,Dq has a left adjoint colim: FunpI,Dq ! D. Under the “currying”
equivalence

Fun
`

I,FunpC,Dq
˘

» Fun
`

C,FunpI,Dq
˘

,

the functor const : FunpC,Dq! FunpI,FunpC,Dqq corresponds to the postcomposition functor
const˚ : FunpC,Dq! FunpC,FunpI,Dqq. By Corollary 1.5, we have an adjunction

colim˚ : Fun
`

C,FunpI,Dq
˘

 −−! FunpC,Dq : const˚ .

Hence const : FunpC,Dq! FunpI,FunpC,Dqq has a left adjoint too, which proves that FunpC,Dq

has I-shaped colimits. The additional assertion that evx preserves I-shaped colimits follows by
unravelling how colim is constructed from colim˚.
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§1. Category theory

§1.3. Kan extensions

1.9. Setup — Suppose we are given functors f and F as follows:

C D

C′

F

f

Often one would like to extend F to a functor F ′ : C′ ! D. Of course, in general there’s no
such functor making the diagram above commute, and if there is, it might not be unique.

1.10. Definition. — In the situation of Setup 1.9, a left Kan extension of F along f , denoted
Lanf F : C′ ! D, is a left adjoint object of F under f˚ = − ◦ f : FunpC′,Dq ! FunpC,Dq.
Dually, a right Kan extension of F along f , denoted Ranf F : C′ ! D, is a right adjoint object
of F under f˚.

1.11. Warning. — In general, even if the respective Kan extensions exist, the diagrams

C D

C′

f

F

⇐
=

Lanf F
and

C D

C′

f

F

=⇒ Ranf F

only commute up to the indicated natural transformations. Indeed, the defining property from
Definition 1.10 says that there are natural bijections

HomFunpC′,DqpLanf F, F ′q „= HomFunpC,DqpF, F
′ ◦ fq ,

HomFunpC′,DqpF
′,Ranf F q „= HomFunpC,DqpF

′ ◦ f, F q ,

for all F ′ : C′ ! D. Plugging in F ′ = Lanf F , then taking the image of idLanf F produces the
indicated natural transformation; and likewise for Ranf F (so in other words, we’re considering
the unit of the adjunction Lanf ⊣ f˚ and the counit of f˚ ⊣ Ranf , respectively).

1.12. Example. — Let C′ = ˚, then FunpC′,Dq » D and we see immediately that Lanf F
corresponds to colimF (if either exists). Likewise, Ranf F corresponds to limF .

Next we set out to answer the question when Kan extensions exist. To this end, we need to
introduce two constructions that will feature prominently throughout the text.

1.13. Construction. — Let C be a category and let r1s := t• •u be the category with
two objects and one non-identity morphism. The arrow category of C is the category

ArpCq := Fun
`

r1s, C
˘

.

Concretely, objects in ArpCq are morphisms α : x ! y in C, and morphisms in ArpCq are
commutative diagrams

x x′

y y′

α /// α′

in C. There are functors s, t : ArpCq! C (“source” and “target” projection) sending an arrow
pα : x! yq to x and y, respectively.
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§1.3. Kan extensions

1.14. Construction. — Let f : C ! C′ be a functor and x′ ∈ C′. The slice category of C over
x′ is the pullback(1.1)

C/x′ ArpC′q

C × tx′u C′ × C′

≒ ps,tq

f×x′

Concretely, objects in the slice category C/x′ are pairs px, fpxq! x′q, where x ∈ C and fpxq! x′

is a morphism in C′. Morphisms in C/x′ are given by morphisms α : x! y such that

fpxq fpyq

x′ x′

fpαq

///

commutes. Dually, there’s also Cx′/, the slice category of C under x′.

1.15. Lemma (Kan extension formula). — In the situation of Setup 1.9, assume that for all
x′ ∈ C′ the following colimits exist in D:

colim
px,fpxq!x′q∈C/x′

F pxq := colim
´

C/x′ −! C F
−! D

¯

.

Then Lanf F exists and Lanf F px′q is given by that colimit.

Proof. Exercise. We’ll prove an ∞-categorical variant in Lemma 6.27.

1.16. Corollary. — In the situation of Setup 1.9, assume that f : C ! C′ is fully faithful and
that the colimits from Lemma 1.15 exist. Then the natural transformation uF : F ⇒ Lanf F ◦ f
from Warning 1.11 is an equivalence.

Proof. If x′ = fpyq for some y ∈ C, then f being fully faithful implies that the slice category
C/fpyq is equivalent to C/y (that is, the slice category formed with respect to idC : C ! C). The
latter has a terminal object, namely tidyu. Hence

Lanf
`

Ffpyq
˘

„= colim
px,fpxq!yq∈C/fpyq

F pxq „= colim
px!yq∈C/y

F pxq „= F pyq.

To finish this subsection, we prove a result about the category PShpCq := FunpCop, Setq of
presheaves on C. This will seem rather technical at first, but, together with its ∞-categorical
version, it will be invaluable throughout the text.

1.17. Theorem (“PShpCq arises by freely adding colimits to C.”). — Let C and D be categories,
where D has all colimits. LetよC : C ! PShpCq denote the Yoneda embedding, sending x ∈ C to
HomCp−, xq : Cop ! Set. Then restriction alongよC induces an equivalence

よ˚
C : Funcolim`PShpCq,D

˘ »
−! FunpC,Dq .

Here FuncolimpPShpCq,Dq ⊆ FunpPShpCq,Dq is the full subcategory spanned by the colimit-
preserving functors. Furthermore, every colimit-preserving functor PShpCq! D admits a right
adjoint.

(1.1)The pullback ist taken in the category of small categories, that is, those categories whose class of objects is
a set. But the explicit description works with the weaker assumption that C and C′ are locally small, meaning
that HomCpx, yq and HomC′ px′, y′

q are sets for all x, y ∈ C, x′, y′ ∈ C′.
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§1. Category theory

To prove Theorem 1.17, we send two lemmas in advance.

1.18. Lemma (“Every presheaf is a colimit of representables.”). — Let C be a category. For
every E ∈ PShpCq, the natural morphism

colim
py,HomCp−,yq!Eq∈C/E

HomCp−, yq
„=−! E

is an isomorphism.

Proof. Exercise (use Yoneda’s lemma). We’ll prove an ∞-categorical version in Lemma 6.31.

1.19. Lemma. — Let C and D be categories, where D has all colimits. For every F : C ! D,
the left Kan extension LanよC

F : PShpCq! D (which exists due to Lemma 1.15) admits a right
adjoint. The right adjoint sends y ∈ D to HomDpF p−q, yq : Cop ! Set.

Proof. Exercise. We’ll prove an ∞-categorical version in Lemma 6.32.

Furthermore, we need the following general lemma (which will occasionally be useful in the
future too).

1.20. Lemma. — Let C and D be categories and let L : C  ! D :R be an adjunction.
paq The left adjoint L is fully faithful if and only if the unit transformation u : idC ⇒ RL is

an equivalence.
pbq Suppose L ist fully faithful and R is conservative (that is, if α : x! y is a morphism in

D such that Rpαq is an isomorphism, then α is an isomorphism too). Then L and R are
inverse equivalences of categories.

Proof. To prove (a), first observe that for all elements x, y ∈ C, the postcomposition map
puyq˚ : HomCpx, yq! HomCpx,RLpyqq is given by

puyq˚ : HomCpx, yq
L
−! HomD

`

Lpxq, Lpyq
˘ „=−! HomC

`

x,RLpyq
˘

,

where the second map is the adjunction bijection. By Yoneda’s lemma, uy : y ! RLpyq is an
equivalence if and only if puyq˚ : HomCpx, yq! HomCpx,RLpyqq is a bijection for all x. By the
above, this happens if and only if L : HomCpx, yq ! HomDpLpxq, Lpyqq is a bijection for all
x ∈ C. This proves (a).

For (b), the second of the triangle identities from Lemma 1.4 shows that Rc : RLR ⇒ R is
a natural equivalence. Since R is conservative, c : LR ⇒ idD must be an equivalence too. Since
u : idC ⇒ RL is an equivalence by assumption, we are done.

Proof of Theorem 1.17. By Lemma 1.19 and Lemma 1.7, the adjunction LanよC
⊣よ˚

C restricts
to an adjunction

LanよC
: FunpC,Dq −−! Funcolim`PShpCq,D

˘

:よ˚
C .

SinceよC is fully faithful, Corollary 1.16 implies that the unit u : idFunpC,Dq ⇒よ˚
C ◦ LanよC

is
an equivalence. Furthermore, it’s clear thatよ˚

C is conservative: If a natural transformation
η : F ⇒ G between colimit-preserving functors F,G : PShpCq ! D is an equivalence when
restricted to representable presheaves, then it is an equivalence everywhere, because every
presheaf can be written as a colimit of representables (Lemma 1.18). Then Lemma 1.20(b)
finishes the proof.
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§2. The simplicial model

§2. The simplicial model
In this section, we’ll introduce our model for ∞-categories and the main object of interest in
§2, §4, and §5: quasi-categories! We’ll see some first signs that quasi-categories behave a lot
like ordinary categories and we’ll define the quasi-category of quasi-categories Cat∞.

§2.1. Recollections on simplicial sets

2.1. Definition. — paq The simplex category ∆∆ is the category whose objects are finite non-
empty totally ordered sets rns = t0 < 1 < · · · < nu for all n ⩾ 0 and whose morphisms are
order-preserving maps, that is, maps α : rms! rns such that αp0q ⩽ αp1q ⩽ · · · ⩽ αpmq.

pbq A simplicial set is a presheaf on ∆∆, that is, a functor X : ∆∆op ! Set. The category of
simplicial sets is the category sSet := PShp∆∆q » Funp∆∆op, Setq of presheaves on ∆∆.

2.2. Construction. — For all i = 0, . . . , n and all j = 0, . . . , n− 1 let di : rn− 1s! rns be
the unique injective morphism in ∆∆ that doesn’t hit i and let sj : rns! rn− 1s be the unique
surjective morphism in ∆∆ that hits j twice. It’s straightforward to see that every morphism
α : rms ! rns in ∆∆ can be written as a composition of some sj and some di. Therefore, a
simplicial set can be described by the following data:
paq Sets Xn := Xprnsq for all n ⩾ 0.
pbq Face maps d˚

i : Xn ! Xn−1 for all i = 0, . . . , n.
pcq Degeneracy maps s˚

j : Xn−1 ! Xn for all j = 0, . . . , n− 1.
The face and degeneracy maps satisfy d˚

j ◦ d˚
i = d˚

i−1 ◦ d˚
j and s˚

j ◦ s˚
i = s˚

i−1 ◦ s˚
j for all i > j as

well as

d˚
j ◦ s˚

i =

#

s˚
i ◦ d˚

j−1 if i < j − 1
idXn−1 if i = j − 1 or i = j

s˚
i−1 ◦ d˚

j if i > j

.

It’s customary to call elements of Xn n-simplices of X. An n-simplex is called degenerate if it
is in the image of sj : Xn−1 ! Xn for some j.

Let’s give some first examples of simplicial sets and explain some basic constructions.

2.3. Boundaries and horns. — For all n ⩾ 0, the functor ∆n := Hom∆∆p−, rnsq : ∆∆op ! Set
is a simplicial set, called the n-simplex. Yoneda’s lemma implies that HomsSetp∆n, Xq „= Xn for
all simplicial sets X. The maps di : rn− 1s! rns and sj : rns! rn− 1s from Construction 2.2
induce maps di : ∆n−1 ! ∆n and sj : ∆n ! ∆n−1 in sSet.(2.1) Using these maps, we can define
the following sub-simplicial sets of ∆n:

∂∆n :=
n⋃
i=0

im
`

di : ∆n−1 ! ∆n
˘

⊆ ∆n , the boundary of ∆n,

Λnj :=
n⋃
i=0
i ̸=j

im
`

di : ∆n−1 ! ∆n
˘

⊆ ∆n , the j-horn in ∆n.

(2.1)This may be confusing at first but the maps di : ∆n−1 ! ∆n and sj : ∆n ! ∆n−1 really run in the
indicated directions. The point is that while Hom∆∆p−, rnsq : ∆∆op ! Set is contravariant, the functor that assigns
rns 7! Hom∆∆p−, rnsq, that is, the Yoneda embeddingよ∆∆ : ∆∆! PShp∆∆q » sSet, is covariant.

11



§2. The simplicial model

Here the unions are taken degree-wise.(2.2) It’s customary to call horns Λn
j inner horns if

0 < j < n and outer horns if j = 0 or j = n. Concretely, for all m ⩾ 0, the m-simplices of the
boundary ∂∆n and the j-horn Λnj are given by the following formulae:

p∂∆nqm =
␣

α : rms! rns
∣∣ rns ̸= impαq

(

,

pΛnj qm =
␣

α : rms! rns
∣∣ rns ̸= impαq ∪ tju

(

.

Here are some pictures in the case n = 2 (in the bottom line, the dotted lines mark the faces
that are missing in the respective horns):

∆2 =

0 1

2

///

, ∂∆2 =

0 1

2

Λ2
0 =

0 1

2
, Λ2

1 =

0 1

2
, Λ2

2 =

0 1

2

2.4. Geometric Realisation. — These pictures suggest a geometric way to think about
simplices, boundaries of simplices, and horns. In fact, we can associate to every simplicial set
X a topological space (in fact, a CW-complex) |X|, called the geometric realisation of X. To
describe this construction, we first define |∆n| to be the topological n-simplex, that is, the space
tpt0, . . . , tnq ∈ Rn | 0 ⩽ ti ⩽ 1,

∑n
i=1 ti = 1u ⊆ Rn. For all i = 0, . . . , n and all j = 0, . . . , n− 1

we define maps |di| :
∣∣∆n−1∣∣! |∆n| and |sj | : |∆n|!

∣∣∆n−1∣∣ via

|di|pt0, . . . , tn−1q := pt0, . . . , ti−1, 0, ti, . . . , tnq

|sj |pt0, . . . , tnq := pt0, . . . , ti−1, ti + ti+1, ti+2, . . . , tnq

For general simplicial sets X, we can now construct |X| by taking a topological n-simplex |∆n|
for every σ ∈ Xn and gluing them together according to the face and degeneracy maps above.
More precisely, we take

|X| := colim
pn,∆n!Xq

|∆n| ∈ Top .

This agrees with the Kan extension formula from Lemma 1.15! So | · | : sSet! Top must be
the unique colimit-preserving extension, guaranteed by Theorem 1.17, of the functor ∆∆! Top
that sends rns 7! |∆n|.

Furthermore, Theorem 1.17 guarantees that | · | : sSet! Top admits a right adjoint, which
we denote Sing : Top! sSet. By Lemma 1.19, it is given by pSing Y qn

„= HomTopp|∆n|, Y q. So
Sing Y is indeed the construction you know from the definition of singular homology.

2.5. Nerve and homotopy category. — Every partially ordered set defines a category. In
particular, we can regard the totally ordered sets rns as categories. Accordingly, we obtain a
functor U : ∆∆! Cat into the category of small categories; U simply sends rns 7! rns. For every
small category C, this allows us to define a simplicial set NpCq, called the nerve of C, as the
composition

NpCq : ∆∆op Uop
−−! Catop HomCatp−, Cq

−−−−−−−−! Set .
(2.2)Therefore, they’re colimits in sSet, as limits and colimits in functor categories are computed pointwise by

Lemma 1.8.

12



§2.2. Quasi-categories and Kan complexes

Concretely, NpCqn = HomCatprns, Cq „= tx0 ! · · · ! xn in Cu is the set of all chains of n
morphisms in C. The face maps d˚

i : NpCqn ! NpCqn−1 compose the pi− 1qst and ith morphism
in the chain (in the cases i = 0 or i = n, the face map d˚

0 just discards x0 and d˚
n just discards

xn). The degeneracy maps s˚
j : NpCqn−1 ! NpCqn insert an identity at the jth position.

Observe that the formula NpCqn
„= HomCatprns, Cq is exactly of the form of a right-adjoint

as in Lemma 1.19! So what’s the corresponding left adjoint? According to Theorem 1.17, it
has to be the unique colimit-preserving extension of the functor U : ∆∆! Cat above.(2.3) We’ll
denote this extension by ho: sSet! Cat and for a simplicial set X, we call hopXq the homotopy
category of X. The objects of hopXq are the set of 0-simplices X0. However, the morphisms of
hopXq are a little more difficult to describe. For example, hopΛ2

1q contains a morphism α : 0! 1
and a morphism β : 1 ! 2; α and β are induced by the functors r1s „= hop∆t0,1uq ! hopΛ2

1q

and r1s „= hop∆t1,2uq ! hopΛ2
1q. Hence hopΛ2

1q must also contain a morphism β ◦ α : 0 ! 2,
even though there’s no 1-simplex from 0 to 2 in Λ2

1. So in general, not all morphisms in hopXq

come from 1-simplices of X. Instead, we have to take chains of 1-simplices and quotient out a
suitable equivalence relation. This is not too hard to make precise, but quite technical and we
won’t pursue it here. We’ll see an explicit description in the case of quasi-categories in 2.13
below; the general description can be found in rF-HCI, Construction/Proposition II.24s.

2.6. Mapping objects in simplicial sets. — For every simplicial set X the functor
− × X : sSet ! sSet commutes with colimits.(2.4) Hence, by Theorem 1.17, it must be the
unique colimit-preserving extension of the functor ∆∆! sSet sending rns 7! ∆n ×X. But more
importantly, − ×X must have a right adjoint, which we denote FpX,−q : sSet! sSet. By the
formula in Lemma 1.19, the right adjoint is given by FpX,Y qn

„= Fp∆n ×X,Y q.

At this point, let’s take a moment to appreciate the power of Theorem 1.17: It gave us
adjunctions

| · | : sSet −−! Top :Sing , ho: sSet −−! Cat :N , and − ×X : sSet −−! sSet :FpX,−q

essentially for free!

§2.2. Quasi-categories and Kan complexes

In this subsection, we’ll introduce quasi-categories, a class of simplicial sets that behaves very
similarly to ordinary categories. To motivate the definition, we start with a lemma.

2.7. Lemma. — paq Let Y be a topological space and let Sing Y be the singular simplicial
set of Y as in 2.4. For all n ⩾ 1 and all 0 ⩽ i ⩽ n, every horn filling problem

Λni Sing Y

∆n

has a solution.
(2.3)Here we use implicitly that Cat has all colimits (which is easy to check, but not completely trivial, due to

the same composition issues as in the description of hopΛ2
1q).

(2.4)Using that limits and colimits in sSet are computed degree-wise by Lemma 1.8, this can be reduced to the
fact that products in Set commute with colimits, which is straightforward to check.

13



§2. The simplicial model

pbq Let C be a small category and let NpCq be the nerve of C as in 2.5. For all n ⩾ 2 and all
0 < i < n, every inner horn filling problem

Λni NpCq

∆n

has a unique solution. Furthermore, if X is a simplicial set with this horn filling property,
then X „= NpCq for some category C (which is necessarily the homotopy category hopXq).

Proof sketch. By the adjunction | · | : sSet ! Top :Sing from 2.4, a horn filling problem as in
(a) is equivalent to

|Λni | Y

|∆n|

This one always has a solution since the topological space |Λni | is a retract of |∆n|. This proves
(a). For (b), recall from 2.5 that a morphism ∆n ! NpCq corresponds to a chain x0 ! · · ·! xn
in C. But the morphisms xj ! xj+1 are already given by Λni ! NpCq. This shows the unique
horn filling assertion from (b). The additional assertion is more or less straightforward if you use
the description of the homotopy category from 2.13 below. For a complete proof, see rF-HCI,
Theorem II.25s.

Recall that by Grothendieck’s homotopy hypothesis, topological spaces should be the same
as ∞-groupoids, so in particular, they should provide examples of ∞-categories. Furthermore,
every ordinary category should give rise to an ∞-category too. So if we try to model ∞-
categories by a specific class of simplicial sets, that class should contain Sing Y for every
topological space Y and NpCq for every small category C. It then feels reasonable to look for
a common generalisation of the horn filling conditions from Lemma 2.7(a) and (b), which is
precisely what the definition of quasi-categories does:

2.8. Definition (Boardman–Vogt, rBV73s). — A quasi-category (or ∞-category) is a simpli-
cial set C such that for all n ⩾ 2 and all 0 < i < n, every inner horn filling problem

Λni C

∆n

has a solution. If, moreover, all horn filling problems for n ⩾ 1 and 0 ⩽ i ⩽ n have solutions,
then C is called a Kan complex. We let Kan ⊆ QCat ⊆ sSet denote the full subcategories
spanned by Kan complexes and quasi-categories.

The rest of §2 as well as the entirety of §4 and §5 will be spent convincing you that
Definition 2.8 is a sensible definition and that quasi-categories really behave like ordinary
categories. Let’s begin by giving a dictionary of the most basic categorical notions and their
counterparts in the world of quasi-categories.

14
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2.9. Objects and Morphisms. — Let C be a quasi-category. We’ll use the following
suggestive terminology. If x is a 0-simplex in C, we’ll say that x is an object in C and write
x ∈ C instead of x ∈ C0. We also write txu! C for the map ∆0 ! C induced by x. If α is a
1-simplex in C and x = d˚

1pαq, y = d˚
0pαq, we’ll say that α : x! y is a morphism in C. For an

object x ∈ C, we’ll call the degenerate 1-simplex s˚
0pxq ∈ C1 the identity on x and we’ll write

idx : x! x.

2.10. Functors and natural transformations. — A functor of quasi-categories is simply a
map of simplicial sets. If C and D are quasi-categories, then the construction FpC,Dq from 2.6
plays the role of the category of functors from C to D. We’ll show in Corollary 3.11 that FpC,Dq

is indeed a quasi-category again. Furthermore, if F,G : C ! D are functors of quasi-categories,
then a natural transformation η : F ⇒ G is a functor η : ∆1 × C ! D such that the following
diagram commutes:

t0u × C

∆1 × C D

t1u × C

///

F

η

///

G

By 2.6, we may equivalently view η as a 1-simplex ∆1 ! FpC,Dq from F to G. That is, natural
transformations are morphisms in the functor quasi-category, as they should be (except that
we don’t know yet that FpC,Dq is a quasi-category again). Further evidence that FpC,Dq is the
right construction will be given in Lemma 2.14 below.

2.11. Arrows, slices, and Hom. — We let ArpCq := Fp∆1, Cq denote the arrow quasi-
category of C. The inclusions t0u! ∆1 and t1u! ∆1 induce a source and a target projection
s, t : ArpCq! C. Furthermore, for x, y ∈ C, we define the Hom anima HomCpx, yq and the slice
quasi-category Cx/ via the pullbacks

HomCpx, yq Cx/ ArpCq

txu × tyu txu × C C × C

≒ ≒ ps,tq

We’ll prove in Corollary 4.4 that HomCpx, yq is always an anima in the sense of Definition 2.18
below, and we’ll prove in Corollary 3.11 that ArpCq and Cx/ are quasi-categories. So these
constructions live up to their names. Furthermore, it follows from Lemma 2.14 below and
∆1 „= Npr1sq that we have an isomorphism of simplicial sets ArpNpDqq „= NpArpDqq for every
ordinary category D, so it makes sense to use the same notation as in Construction 1.13.
Furthermore, since N: Cat! sSet preserves pullbacks (being a right adjoint), it follows that
NpDqy/

„= NpDy/q for all y ∈ D. Finally, it follows that HomNpDqpx, yq is a discrete simplicial
set, that is, a disjoint union of copies of ∆0, with the indexing set being HomDpx, yq. So our
construction of Hom recovers the usual notion for ordinary categories.

Be aware that Cx/ is not the slice construction from rL-HTT, Proposition 1.2.9.2s or rLan21,
Definition 1.4.13s; instead, it corresponds to their fat slice Cx/. I like our definition better
because it is in line with Construction 1.14 and we’ll avoid using the other slice construction
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§2. The simplicial model

(or rather hide its unavoidable usages in black boxes). It can be shown that while the two
slice constructions are not isomorphic, they are equivalent as quasi-categories (see rL-HTT,
Proposition 4.2.1.5s or rLan21, Proposition 2.5.27s), so once we’re out of the simplicial swamp
(that is, starting from §6), the distinction won’t matter.

2.12. Compositions. — Morphisms in a quasi-category can be composed, albeit not
uniquely. To explain how this works, let’s first describe an equivalence relation on morphisms.
For morphisms α, α′ : x! y we say α and α′ are equivalent, α » α′, if the map σ : ∂∆2 ! C
represented by the hollow triangle

σ =
x y

y

α

idzα′

can be extended to a map σ : ∆2 ! C satisfying σ|∂∆2 = σ (thus “filling” the triangle above).
Even though the definition is asymmetric in α and α′, it turns out that “»” is an equivalence
relation on C1. For reflexivity, we can fill the triangle by taking σref := s˚

1pαq to be a degenerate
simplex. For symmetry and transitivity, consider the maps ϑsym : Λ3

1 ! C and ϑtrans : Λ3
2 ! C

represented as the following hollow tetrahedra (each tetrahedron is missing its interior as well
as one face; the missing faces have been highlighted):

ϑsym =
x y

yy

α

idy

α′α

idy

id
y and ϑtrans =

x y

yy

α

idy

α′α′′

idy

id
y

More precisely, the face ϑsym|∆t0,1,2u is a 2-simplex witnessing α » α′, whereas the faces
ϑsym|∆t0,1,3u = s˚

1pαq and ϑsym|∆t1,2,3u = s˚
1pidyq = s˚

1s
˚
0pyq are degenerate simplices. Likewise,

the faces ϑtrans|∆t0,1,2u and ϑtrans|∆t0,2,3u are 2-simplices witnessing α » α′ and α′ » α′′, respec-
tively, whereas the face ϑtrans|∆t1,2,3u = s˚

1pidyq = s˚
1s

˚
0pyq is a degenerate simplex. By Defini-

tion 2.8, the horns ϑsym and ϑtrans can be extended to 3-simplices ϑsym, ϑtrans : ∆3 ! C satisfying
ϑsym|Λ3

1
= ϑsym and ϑtrans|Λ3

2
= ϑtrans (in other words, the hollow tetrahedra can be “filled”).

Now the face σsym := ϑsym|∆t0,2,3u is a 2-simplex witnessing α′ » α and σtrans := ϑtrans|∆t0,1,3u

is a 2-simplex witnessing α » α′′, which proves symmetry and transitivity.
Now let’s define compositions. For morphisms α : x! y and β : y ! z in C, consider the

map σ : Λ2
1 ! C represented by

σ =
x y

z

α

β

By Definition 2.8, this horn admits a filler, that is, a morphism σ : ∆2 ! C such that σ|Λ2
1

= σ.
If γ : x ! z is the morphism in C represented by σ|∆t0,2u : ∆t0,2u ! C, then γ is called a
composition of α and β and we write γ » β ◦ α. In particular, composition of morphisms is
not unique in a general quasi-category, as filling inner horns is not unique.(2.5) However, if
γ, γ′ : x! z are any two compositions, then γ and γ′ are equivalent in the sense of 2.12 above.

(2.5)Conversely, uniqueness of composition in ordinary categories accounts for uniqueness of filling inner horns
in nerves of an ordinary categories, see Lemma 2.7(b).
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Indeed, then we can consider the morphism ϑ : Λ3
1 ! C represented as follows (the missing face

has been highlighted again):

ϑ =
x y

zz

α

β
γγ′

idz

β

Concretely, ϑ|∆t0,1,2u and ϑ|∆t0,1,3u are 2-simplices that witness γ and γ′ being compositions of
α and β, whereas ϑ|∆t1,2,3u = s˚

1pβq : ∆t1,2,3u ! C is a degenerate simplex. By Definition 2.8,
we can extend ϑ to a map ϑ : ∆3 ! C and then the face σ := ϑ|∆t0,2,3u is a 2-simplex witnessing
an equivalence γ » γ′.

2.13. The homotopy category. — We can now describe the homotopy category hopCq from
2.5 in more explicit terms. As already explained there, the objects of hopCq are the 0-simplices
C0, that is, the objects of C. We’ve seen in 2.5 that the morphism may cause some problems
since we might need to add compositions. However, by 2.12 above, compositions already exist
in C, they just might not be unique. So we find that the set of morphisms of hopCq is given by
C1/», the set of 1-simplices modulo the equivalence condition from 2.12.

To make this argument precise, one would have to check that hopCq as described above
satisfies the universal property of the colimit colimpn,∆n!Cqrns in Cat. This is technical, but
straightforward, and we leave the details to you.

As a consequence, we can prove that the construction Fp−,−q from 2.6 is compatible with
the functor category construction for ordinary categories.

2.14. Lemma. — If C is a quasi-category and D is an ordinary category, then there is an
isomorphism of simplicial sets

F
`

C,NpDq
˘

„= N
`

FunphopCq,Dq
˘

In particular, if C „= NpC′q is the nerve of an ordinary category C′, we get an isomorphism
FpNpC′q,NpDqq „= NpFunpC′,Dqq.

Proof sketch. For all n ⩾ 0, we obtain the following chain of bijections, all of which are
compatible with the simplicial structure maps:

F
`

C,NpDq
˘

n
„= HomsSet

`

∆n × C,NpDq
˘

„= HomCat
`

hop∆n × Cq,D
˘

„= HomCat
`

hopCq × rns,D
˘

„= HomCat
`

rns,FunphopCq,Dq
˘

„= N
`

FunphopCq,Dq
˘

n
.

In the first step, we use the definition of Fp−,−q from 2.6. In the second step, we use the
adjunction ho: sSet  ! Cat : N from 2.5. In the third step, we use that ho commutes with
products of quasi-categories, which follows from the description in 2.13. In the fourth step, we
use “currying” for ordinary categories. Finally, in the fifth step we plug in the definition of
NpFunphopCq,Dqq.

To prove the “in particular”, it suffices to see that the unit uC′ : C′ ! ho NpC′q of the
adjunction ho ⊣ N from 2.5 is an isomorphism of categories (and we really need an isomorphism,
not just an equivalence of categories). This is easy to check using Lemma 2.7(b) and the explicit
description of ho NpCq from 2.13.
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2.15. Equivalences in quasi-categories. — We say that a morphism α : x! y in C is an
equivalence if it becomes an isomorphism in the homotopy category hopCq. Equivalently, α is
an equivalence if and only if the horns σleft : Λ2

0 ! C and σright : Λ2
2 ! C represented by

σleft =

x y

x

α

idy and σright =

y x

y

αidy

can be filled, that is, if and only if there are 2-simplices σleft, σright : ∆2 ! C such that
σleft|Λ2

0
= σleft and σright|Λ2

2
= σright. Indeed, by 2.12 above, σleft corresponds to a left inverse

of α and σright corresponds to a right inverse. We say x and y are equivalent and write x » y if
there exists an equivalence α : x! y.

2.16. Sub-quasi-categories. — If C is a quasi-category and S0 ⊆ C0 is a set of 0-simplices,
we can define a sub-simplicial set CrS0s ⊆ C by declaring that a simplex ∆n ! C belongs to
CrS0s if and only if all its vertices tiu! ∆n ! C for 0 ⩽ i ⩽ n belong to S0. It’s straightforward
to check that CrS0s is a quasi-category again: If Λni ! CrS0s is an inner horn, any filler ∆n ! C
will automatically belong to CrS0s, because Λni ! ∆n is a bijection on vertices whenever n ⩾ 2.
We call CrS0s the full sub-quasi-category spanned by S0.

Similarly, assume S1 ⊆ C1 is a set of 1-simplices which contains all identities and is closed
under the equivalence relation from 2.12 as well as under compositions. We can define a
sub-simplicial set CrS1s ⊆ C by declaring that a simplex ∆n ! C belongs to CrS1s if and only if
all its edges ∆ti,ju ! ∆n ! C for 0 ⩽ i, j ⩽ n belong to S1. Once again, if Λn

i ! CrS1s is an
inner horn, any filler ∆n ! C will automatically belong to CrS1s, because any “missing” edge
in ∆n ∖ Λni is a composition of edges in Λni . Hence CrS1s is a quasi-category again, and we call
it the sub-quasi-category spanned by S1 (and usually we’ll emphasise that CrS1s is not full).

2.17. The opposite quasi-category. — Every quasi-category C admits an opposite quasi-
category Cop. In fact, this construction works for arbitrary simplicial sets. Let p−qop : Cat! Cat
be the functor that sends a category to its opposite. Consider the composition

∇ : ∆∆ U
−! Cat p−qop

−−−! Cat N
−! sSet ,

where U and N are the functors from 2.5. This composition sends rns 7! Nprnsopq „= ∆n, since
there is an isomorphism of categories rnsop „= rns given by sending i 7! n − i. Nevertheless,
∇ does not coincide with the Yoneda embeddingよ∆∆ : ∆∆! sSet, which also sends rns 7! ∆n,
since the effect on morphisms is different (∇ “reverses the order” of face and degeneracy maps).
According to Theorem 1.17, ∇ admits a unique colimit-preserving extension, which we denote
p−qop : sSet ! sSet. Intuitively, if X is a simplicial set, then Xop is given by inverting the
direction of every 1-simplex and by reversing the order of all face and degeneracy maps. It’s
straightforward to check that p−qop ◦ p−qop » idsSet (so the right adjoint from Theorem 1.17 is
just p−qop again) and that NpDqop „= NpDopq holds for every ordinary category D. Furthermore,
if C is a quasi-category, then so is Cop, because p−qop transforms an inner horn inclusion
Λni ! ∆n, where n ⩾ 2 and 0 < i < n, into Λnn−i ! ∆n, which is again an inner horn inclusion.

This finishes our preliminary ordinary-to-quasi-categories dictionary. Next, we’ll introduce
another notion that will play a central role in these notes.
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2.18. Definition. — A quasi-category C is called an anima (plural animae) if all its morphisms
are equivalences in the sense of 2.15. For an arbitrary quasi-category, we let corepCq ⊆ C be
the (non-full) sub-quasi-category spanned by the equivalences, as defined in 2.16.

It follows immediately that corepCq is the largest anima contained in C.

2.19. Theorem (Joyal, rJoy02, Corollary 1.4s). — A quasi-category C is a Kan complex if
and only if it is an anima.

Proof. If C is a Kan complex, then the horns from 2.15 can be filled, so C is an anima. The
converse is much harder to prove and we’ll postpone it to Corollary 4.2.

So on one hand, by Definition 2.18, animae are the analogues of groupoids in quasi-category
theory. In fact, people used (and continue to use) the term ∞-groupoid, before Beilinson,
Clausen, and Scholze decided to invent a new term. On the other hand, Theorem 2.19 says that
animae are the same as Kan complexes. We’ll see in §3 that for the purposes of homotopy theory,
Kan complexes and topological spaces can be used interchangeably. This fits perfectly with
Grothendieck’s homotopy hypothesis, which predicts that the theory of ∞-groupoids/animae
should essentially be the homotopy theory of topological spaces.

We’ll keep the terms anima and Kan complex distinct until we’ve finished the proof that
they coincide (Corollary 4.2). After that, we’ll use the terms interchangeably. Starting from §6,
we try to keep our arguments as model-independent as possible. Accordingly, we’ll settle on
anima, only using Kan complex to emphasise that a certain (non-model-independent) argument
takes place in thequasi-categorical model.

§2.3. Simplicially enriched categories

Until now, we know a good supply of Kan complexes, given by Sing Y for every topological
space Y (see Lemma 2.7(a)). We’ll see in Theorem 3.26 that these exhaust essentially all Kan
complexes. Besides that, our only other examples of quasi-categories are nerves of ordinary
categories (see Lemma 2.7(b)). These can’t possibly be all! The goal of this subsection is to
provide a rich source of non-trivial examples of quasi-categories, using a fancier version of the
nerve construction.

2.20. “Definition”. — A simplicially enriched category C is the same as a category, except
that the morphisms sets HomCpx, yq for x, y ∈ C are replaced by simplicial sets FCpx, yq.
Composition of morphisms is now a map of simplicial sets ◦ : FCpx, yq×FCpy, zq! FCpx, zq and
the identity on any object x ∈ C is a 0-simplex idx ∈ FCpx, xq0. Composition and identities are
supposed to satisfy some straightforward compatibilities that we won’t spell out. Furthermore,
if C and D are simplicially enriched categories, there is an obvious notion of a simplicially
enriched functor F : C ! D. We let Cat∆ denote the category of (small) simplicially enriched
categories and simplicially enriched functors between them.

If you would like to see a formal definition of these notions, have a look at rLan21, Defini-
tions 1.2.34 and 1.2.35s.

2.21. Construction. — We’ll construct a “simplicially thickened” versions of the ordinary
categories rns and use them to define a simplicial nerve functor N∆ : Cat∆ ! sSet. This is
originally due to Cordier and Porter rCP86s.
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To start with, the simplicially enriched category Cr∆ns is given as follows: It’s objects are
0, 1, . . . , n and it’s morphisms are given by

FCr∆nspi, jq :=

#

∅ if i > j

∆0 if i = j

□j−i−1 if i < j

.

Here □n := p∆1qn is the n-cube. Note the shift by −1 in the definition! In particular,
FCr∆nspi, iq = ∆0 (and that 0-simplex is necessarily idi), but also FCr∆nspi, i+ 1q = □0 „= ∆0.
The composition map ◦ : FCr∆nspi, jq × FCr∆nspj, kq! FCr∆nspi, kq is given by

□j−i−1 × □k−j−1 „=−! □j−i−1 × t1u × □k−j−1 ⊆ □k−i−1

if i < j < k; in the other cases, there’s only one possible composition map. The simplicially
enriched categories Cr∆ns can be assembled into a functor Cr−s : ∆∆ ! Cat∆. A conceptual
construction of this functor is given in rL-HTT, Definition 1.1.5.3s or rLan21, Lemma 1.2.62s.
Since it’s quite annoying to unravel said conceptual construction, let us describe the simplicially
enriched functors Crdis : Cr∆n−1s! Cr∆ns and Crsjs : Cr∆ns! Cr∆n−1s explicitly: On objects,
Crdis and Crsjs are just given by di and sj , repectively. For the effect on morphisms, let’s first
describe Crdis : FCr∆n−1spk, ℓq ! FCr∆nspdipkq, dipℓqq in the case k < i ⩽ ℓ (in all other cases,
we simply get the identity). Then dipkq = k and dipℓq = ℓ+ 1 and the desired morphism is

□ℓ−k−1 „=−! □i−k−1 × t0u × □pℓ+1q−i−1 ⊆ □pℓ+1q−k−1 .

Similarly, Crsjs : FCr∆nspk, ℓq! FCr∆n−1spsjpkq, sjpℓqq is only interesting for k ⩽ j < ℓ. If k = j

or j + 1 = ℓ, then the desired morphism □ℓ−k−1 „= p∆1qℓ−k−1 ! p∆1qℓ−k−2 „= □ℓ−k−2 is given
by forgetting the first or the last factor, respectively. If k < j and j + 1 < ℓ, then the desired
morphism is

□ℓ−k−1 „= □j−k−1 × □2 × □ℓ−pj+1q−1 −! □j−k−1 × ∆1 × □ℓ−pj+1q−1 „= □ℓ−k−2 ,

induced by the map □2 ! ∆1 that sends p0, 0q ∈ □2 to 0 ∈ ∆1 and the other three 0-simplices
of □2 to 1 ∈ ∆1.

It can be shown that the category Cat∆ has all colimits (see rLan21, Corollary 1.2.45s).
Consequently, by Theorem 1.17, the functor above admits a unique colimit-preserving extension
Cr−s : sSet! Cat∆, which in turn has a right-adjoint N∆ : Cat∆ ! sSet, called the simplicial
nerve or coherent nerve. By the formula from Lemma 1.19, the simplicial nerve is given by

N∆pCqn
„= HomCat∆

`

Cr∆ns, C
˘

.

2.22. Lemma (Cordier–Porter, rCP86, Theorem 2.1s). — Let C be a small simplicially
enriched category. If C is even Kan-enriched, that is, if FCpx, yq is a Kan complex for all
x, y ∈ C, then N∆pCq is a quasi-category.

Proof sketch. By the adjunction Cr−s : sSet  ! Cat∆ : N∆ from Construction 2.21, an inner
horn filling problem for N∆pCq as in Definition 2.8 is equivalent to an extension problem

CrΛni s C

Cr∆ns

f
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§2.3. Simplicially enriched categories

of simplicially enriched categories. The functor CrΛn
i s! Cr∆ns is a bijection on objects and

an isomorphism on all but one simplicial sets of morphisms. The only difference between
these two simplicially enriched categories is that FCrΛn

i sp0, nq! FCr∆nsp0, nq „= □n−1 is not an
isomorphism. Instead, FCrΛn

i sp0, nq is given by deleting the interior and the bottom i-face of the
pn − 1q-cube □n−1. More precisely, if ∂□n−1 :=

⋃n−1
j=1 p□j−1 × pt0u ⊔ t1uq × □n−j−1q denotes

the boundary of the pn− 1q-cube, then FCrΛn
i sp0, nq! FCr∆nsp0, nq can be identified with the

inclusion of simplicial sets

∂□n−1 ∖
`

□i−1 × t0u × □n−i−1˘ ⊆ □n−1 .

To make this precise, one has to show that the description of CrΛn
i s given above satisfies the

universal property of colimpm,∆m!Λn
i q Cr∆ms in Cat∆. This is not hard, but technical. A full

argument is in rLan21, Lemma 1.2.69s.
So to solve the extension problem of simplicially enriched categories above, it’s enough to

solve the extension problem

∂□n−1 ∖
`

□i−1 × t0u × □n−i−1˘ FC
`

fp0q, fpnq
˘

□n−1

f

of simplicial sets. This can be done by successive horn filling (or by applying the upcoming
Lemma 3.9, which is also proved by successive horn filling), using the fact that FCpfp0q, fpnqq

is a Kan complex, as C is supposed to be Kan-enriched. A complete argument is in rLan21,
Lemma 1.2.70s.

2.23. Example. — The category of simplicial sets can be turned into a simplicially enriched
category sSet∆ by putting FsSet∆pX,Y q := FpX,Y q. This can be used to construct some
interesting quasi-categories as follows:
paq Restricting to the full subcategory Kan ⊆ sSet yields a simplicial enrichment Kan∆. Note

that Kan∆ is actually a Kan-enriched category, since FpX,Y q is a Kan complex whenever
Y is a Kan complex, as we’ll see in Corollary 3.11. Up to set-theoretic difficulties that
we’ll not address here, Lemma 2.22 shows that

An := N∆pKan∆q

is a quasi-category; we call it the quasi-category of animae.
pbq For quasi-categories C and D, the simplicial set FpC,Dq is a quasi-category; once again,

this will be shown in Corollary 3.11. Then core FpC,Dq from Definition 2.18 is an anima,
hence a Kan complex by Theorem 2.19. So we can turn the category of quasi-categories
QCat into a Kan-enriched category QCat∆ by putting FQCat∆pC,Dq := core FpC,Dq. By
Lemma 2.22 (and up to set-theoretic difficulties),

Cat∞ := N∆pQCat∆q

is a quasi-category; we call it the quasi-category of (small) quasi-categories.
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Let’s unravel how the notions from 2.12, 2.13, and 2.15 look like in the cases of An and Cat∞.
A 1-simplex α : ∆1 ! Cat∞ is equivalently a simplicially enriched functor α : Cr∆1s! QCat∆.
Let C := αp0q and D := αp1q. As we’ve seen in Construction 2.21, FCr∆1sp0, 1q „= ∆0. Hence α
is given by a morphism ∆0 ! core FpC,Dq of simplicial sets. In other words, a morphism in
Cat∞ is given by a functor C ! D of quasi-categories, as we would expect.

Next, let’s consider a 2-simplex σ : ∆2 ! Cat∞, or equivalently, a simplicially enriched
functor σ : Cr∆2s ! QCat∆. Let C := σp0q, D := σp1q, and E := σp2q. Furthermore, let
F : C ! D and G : D ! E be the functors of quasi-categories corresponding to the 1-simplices
σ|∆t0,1u = d˚

2pσq and σ|∆t1,2u = d˚
0pσq. Now FCr∆2sp0, 2q „= ∆1 by Construction 2.21, so σ

induces a map ∆1 ! core FpC, Eq. By definition of the composition in Cr∆2s, we find that
t0u! ∆1 ! core FpC, Eq is G ◦F : C ! E , whereas t1u! ∆1 ! core FpC, Eq is another functor
H : C ! E . The morphism ∆1 ! core FpC, Eq is an equivalence G ◦ F » H in FpC, Eq.

Therefore, if F : C ! D and G : D ! E are functors of quasi-categories, hence morphisms
in Cat∞, then a composition of F and G in the quasi-category Cat∞, as defined in 2.12, is a
functor H : C ! E of quasi-categories together with an equivalence G ◦ F » H in FpC, Eq. The
same analysis can be done for An. So if f : X ! Y and g : Y ! Z are maps of Kan complexes,
corresponding to morphisms in the quasi-category An, then a composition of f and g in the
quasi-category An is a morphism h : X ! Z together with a 1-simplex ∆1 ! FpX,Zq from
g ◦ f to h. By 2.6, such a 1-simplex ∆1 ! FpX,Zq is equivalently a map η : ∆1 ×X ! Z such
that

t0u ×X

∆1 ×X Z

t1u ×X

///

g◦f

η

///

h

commutes. In other words, η is a homotopy from g◦f to h. In summary, we obtain the following
slogans:

“Compositions in Cat∞ are compositions in sSet up to equivalence of functors.”
“Compositions in An are compositions in sSet up to homotopy.”

Furthermore, this analysis shows that two functors of quasi-categories F,G : C ! D are
equivalent as morphisms in Cat∞ in the sense of 2.12 if and only if they are equivalent
as objects in FpC,Dq. Similarly, two morphisms of animae f, g : X ! Y are equivalent as
morphisms in An in the sense of 2.12 if and only they are homotopic. This somewhat explains
the term homotopy category.

Finally, we see that an equivalence C » D in the quasi-category Cat∞, as defined in 2.15,
is given by functors of quasi-categories F : C ! D and G : D ! C together with equivalences
G ◦ F » idC and F ◦G » idD, exactly as an equivalence of ordinary categories. Analogously,
an equivalence X » Y in An is given by maps of Kan complexes f : X ! Y and g : Y ! X,
together with homotopies g ◦ f » idX and f ◦ g » idY . In other words, equivalences in An are
simply homotopy equivalences. We’ll explore this in much more detail in §3.

If X, Y are Kan complexes, then FpX,Y q is a Kan complex too, as we’ll see in Corollary 3.11.
Hence FpX,Y q = core FpX,Y q and therefore the Kan-enriched category Kan∆ is a full sub-
simplicially enriched category of QCat∆. Using the explicit formula for the simplicial nerve
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from Construction 2.21, it’s straightforward to see that N∆p−q sends full sub-simplicially
enriched categories to full sub-quasi-categories in the sense of 2.16. Thus An ⊆ Cat∞ is a full
sub-quasi-category of Cat∞. In particular, if X and Y are Kan complexes, then

HomAnpX,Y q
„=−! HomCat∞pX,Y q

is an isomorphism of simplicial sets. In general, Theorem 2.24 below describes the Hom anima
from 2.11 in a simplicial nerve. A relatively short proof of that theorem was given by Achim
Krause and Fabian in rFK20s.

2.24. Theorem. — Let C be a Kan-enriched category. Then there is a homotopy equivalence
of Kan complexes

HomN∆pCq
px, yq » FCpx, yq .

In particular, HomAnpX,Y q » FpX,Y q for all X,Y ∈ An and HomCat∞pC,Dq » core FpC,Dq

for all C,D ∈ Cat∞. ■

2.25. Example. — We can also turn the category of ordinary categories Cat into a Kan
enriched category(2.6) Cat∆ via FCat∆pC,Dq := core NpFunpC,Dqq. We let

Catp2q := N∆pCat∆q

denote its simplicial nerve. According to Theorem 2.24, HomCatp2qpC,Dq » core NpFunpC,Dqq.
In particular, we see that Catp2q is different from NpCatq, the nerve of the ordinary category
of categories. Indeed, we’ve seen in 2.11 that HomNpCatqpC,Dq would be a discrete: a disjoint
union of copies of ∆0, where the indexing set is precisely the set of functors from C to D. In
contrast to that, core NpFunpC,Dqq » Npcore FunpC,Dqq, where core FunpC,Dq ⊆ FunpC,Dq

denotes the maximal groupoid contained in FunpC,Dq. So HomCatp2qpC,Dq is the nerve of a
groupoid and usually not a discrete simplicial set.(2.7)

(2.6)Don’t confuse Cat∆, the simplicially enriched category of categories, with Cat∆, the category of simplicially
enriched categories.

(2.7)One says that Catp2q is the 2-category of categories, and we’ve just seen why: Catp2q not only knows about
categories and functors, but through HomCatp2q pC,Dq » Npcore FunpC,Dqq it also contains information about
natural equivalences between functors. In general, a quasi-category E is said to be an n-category if for all objects
x, y ∈ E and all morphisms f ∈ HomE px, yq one has πipHomE px, yq, fq „= 0 whenever i ⩾ n. Here πi refers to the
homotopy groups introduced in Construction 3.15 and we’ve used implicitly that HomE px, yq is a Kan complex,
as will be shown in Corollaries 4.2 and 4.4. It is not hard to check that Catp2q is indeed a 2-category. Indeed,
we’ve seen that HomCatp2q pC,Dq » Npcore FunpC,Dqq. By the observation in the proof of Lemma 4.8, we get

πi

`

Npcore FunpC,Dqq, F
˘

„= πi−1
`

HomNpcore FunpC,DqqpF, F q, idF

˘

for all F ∈ Npcore FunpC,Dqq. But now HomNpcore FunpC,DqqpF, F q is a discrete simplicial set, because it is the
Hom anima in the nerve of an ordinary category. So the right-hand side vanishes for i− 1 ⩾ 1, as desired.

You might have expected the 2-category of categories to encompass all natural transformations, not only
the natural equivalences. The reason for this confusion is an unfortunate oversimplification of language on
our part: What we call ∞-categories (or n-categories) should more accurately be called p∞, 1q-categories (or
pn, 1q-categories). The first entry of the pair “p∞, 1q” signifies that such an object contains “d-morphisms” for
every dimension 0 ⩽ d < ∞, whereas the second entry refers to the fact that all d-morphisms for d > 1 are
invertible. This is evidenced by the fact that HomE px, yq is a Kan complex for any quasi-category E and all
x, y ∈ E . Thanks to the effort of many mathematicians, we now have well-studied notions of p∞, kq-categories
(with p∞, 0q-categories corresponding to animae and p∞, 1q-categories corresponding to what we call ∞-categories
in these notes), in which only d-morphisms for d > k need to be invertible. These have become important tools
in modern mathematics—for example, it’s sometimes necessary to use the fact that Cat∞ can be enhanced to an
p∞, 2q-category—but this goes beyond the scope of these notes.
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Thanks to Lemma 2.14, the nerve functor N: Cat! QCat defines a fully faithful functor of
simplicially enriched categories N: Cat∆ ! QCat∆. Accordingly, we can regard Catp2q as the
full sub-quasi-category of Cat∞ spanned by those quasi-categories that are nerves of ordinary
categories.

In a similar way, one can define equip the category of groupoids Grpd with a Kan enrichment
Grpd∆ (simply given by restriction from Cat∆) and we let

Grpdp2q := N∆pGrpd∆q

denotes its simplicial nerve. As above, Grpdp2q is the full sub-quasi-category of Cat∞ spanned
by the nerves of groupoids. Since every nerve of a groupoid is a Kan complex (which follows
from Corollary 4.2, but can also be checked by hand), we see that Grpdp2q is also a full
sub-quasi-category of An.
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§3. Simplicial homotopy theory

The goal of this section is to describe how to do homotopy theory with simplicial sets instead
of topological spaces. This doesn’t quite work on the nose, since simplicial sets are much more
rigid than topological spaces. For example, consider the naive definition of homotopies: Two
maps f, g : X ! Y are said to be homotopic, f » g, if there exists a map η : ∆1 ×X ! Y such
that the diagram

t0u ×X

∆1 ×X Z

t1u ×X

///

f

η

///

g

commutes. This relation is not an equivalence relation! For example, if d1 : ∆0 » t0u! ∆1 and
d0 : ∆0 » t1u! ∆1 are the two maps from the 0-simplex to the 1-simplex, then d1 » d0, but
d0 ̸» d1. So the relation is not symmetric (nor transitive). However, as we will see, everything
works fine as long as we work with Kan complexes!

So the upshot of this section will be that instead of replacing topological spaces by arbitrary
simplicial sets as a habitat for homotopy theory, we should replace them with Kan complexes.
In view of Theorem 2.19, this fits perfectly with Grothendieck’s homotopy hypothesis that
∞-groupoids should essentially be topological spaces.

§3.1. Fibrations and lifting properties

We start with several definitions that generalise the horn filling properties from Definition 2.8.

3.1. Definition. — We say that a map f : X ! Y of simplicial sets has lifting against
i : A! B if every lifting problem

A X

B Y

i f

has a solution.

3.2. Definition. — Let f : X ! Y be a map of simplicial sets.
paq We call f a Kan fibration if it has lifting agains all horn inclusions Λn

i ! ∆n for n ⩾ 1
and 0 ⩽ i ⩽ n. We call f a left, right, or inner fibration, if it has lifting against all horn
inclusions for 0 ⩽ i < n, all 0 < i ⩽ n, or 0 < i < n, respectively.

pbq We call f a trivial fibration if it has lifting against all boundary inclusions ∂∆n ! ∆n for
all n ⩾ 0.

3.3. Example. — A simplicial set X is a Kan complex if and only if X ! ˚ is a Kan
fibration, and a quasi-category if and only if X ! ˚ is an inner fibration. Here and in the
following we put ˚ := ∆0 for convenience. Furthermore, if f : X ! Y is a Kan fibration and Y
is a Kan complex, then X is a Kan complex too. Similarly, if f is an inner fibration and Y is a
quasi-category, then X is a quasi-category too.
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To analyse lifting properties, we need to introduce yet another technical notion.

3.4. Definition. — A class Σ of morphisms of simplicial sets is called saturated if the
following conditions are satisfied:
paq Σ is closed under pushouts: If pA! Bq ∈ Σ and A! C is an arbitrary map of simplicial

sets, then pC ! B ⊔A Cq ∈ Σ.
pbq Σ is closed under retracts: If we’re given a commutative diagram

A′ A A′

B′ B B′

i′ ///

idA′

///

i /// i′

idB′

///

such that pi : A! Bq ∈ Σ, then also pi′ : A′ ! B′q ∈ Σ.
pcq Σ is closed under coproducts: If pAi ! Biq ∈ Σ, then also p

∐
Ai !

∐
Biq ∈ Σ.

pdq Σ is closed under (countable) infinite compositions: If A0 ! A1 ! A2 ! · · · are all in Σ,
then also pA0 ! colimn⩾0Anq ∈ Σ.

For an arbitrary class Σ of morphisms in sSet, the saturation of Σ, satpΣq, is the smallest
saturated class containing Σ.

3.5. Lemma. — A morphism f : X ! Y of simplicial sets has lifting against all pA! Bq ∈ Σ
if and only f has lifting against all pA! Bq ∈ satpΣq.

Proof sketch. It’s straightforward to check that the class of morphisms that f has lifting against
is saturated as in Definition 3.4.

3.6. Definition. — paq A morphism of simplicial sets is called anodyne if it is contained
in sattΛni ! ∆n | n ⩾ 1, 0 ⩽ i ⩽ nu, the saturation of all horn inclusions. Similarly, a
morphism is called left, right, or inner anodyne if it is contained in the saturation of those
horn inclusions where 0 ⩽ i < n, 0 < i ⩽ n, or 0 < i < n, respectively.

pbq A morphism of simplicial set is a cofibration if it is contained in satt∂∆n ! ∆n | n ⩾ 0u,
the saturation of all boundary inclusions.

3.7. Example. — Using Lemma 3.5, we see that Kan fibrations have lifting against all
anodyne morphisms and left/right/inner fibrations have lifting against all left/right/inner
anodyne morphisms. Furthermore, trivial fibrations have lifting against all cofibrations.

3.8. Lemma. — A map i : A! B is simplicial sets is a cofibration if and only if i is injective
in every degree.

Proof sketch. It’s straightforward to check that degree-wise injectivity is closed under pushouts,
retracts, coproducts, and infinite compositions, whence all cofibrations are degree-wise injective.
Conversely, a degree-wise injective map can be built from boundary inclusions by successively
adding simplices. This successive procedures needs pushouts (to add new simplices), coproducts
(to add arbitrarily many simplices at once), and infinite compositions.
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3.9. Lemma. — If A! B is anodyne and A′ ! B′ is a cofibration, then

A×B′ ⊔A×A′ B ×A′ −! B ×B′

is anodyne again. Analogous assertions are true for left/right/inner anodyne maps.

Proof sketch. Fix A′ ! B′ and consider the class Σ of all morphisms A ! B for which
A×B′ ⊔A×A′ B ×A′ ! B ×B′ is anodyne. Then Σ is easily checked to be saturated. Hence it
suffices to consider the case where A! B is a horn inclusion Λni ! ∆n. By the same argument,
we can reduce to the case where A′ ! B′ is a boundary inclusion ∂∆m ! ∆m. So it suffices to
check that Λni × ∆m ⊔Λn

i ×∂∆m ∆n × ∂∆m ! ∆n × ∆m is anodyne. This can be done by hand,
explicitly writing said map as a sequence of horn inclusions. For a complete proof in all its
gory details, see rLan21, Lemma 1.3.31s.

3.10. Corollary. — If i : A! B is a cofibration and f : X ! Y is a Kan fibration, then

FpB,Xq −! FpB, Y q ×FpA,Y q FpA,Xq

is a Kan fibration. If i : A ! B is anodyne, then the map above is even a trivial fibration.
Analogous conclusions are true for left/right/inner fibrations and left/right/inner anodyne
cofibrations.

Proof sketch. By playing around with the universal properties of pushouts and pullbacks as
well as the adjunction from 2.6, we find that the following lifting problems are equivalent:

Λni FpB,Xq

∆n FpB, Y q ×FpA,Y q FpA,Xq

and
Λni ×B ⊔Λn

i ×A ∆n ×A X

∆n ×B Y

f

Since Λn
i ×B ⊔Λn

i ×A ∆n ×A! ∆n ×B is anodyne by Lemma 3.9 and f : X ! Y has lifting
against all anodyne maps by Lemma 3.5, the lifting problem on the right can be solved, proving
that FpB,Xq ! FpB, Y q ×FpA,Y q FpA,Xq indeed has lifting against all horn inclusions. If
A! B is anodyne, then the same argument shows that we even get lifting against all boundary
inclusions. The other assertions are entirely analogous.

3.11. Corollary. — Let X be a Kan complex, C a quasi-category, and B an arbitrary
simplicial set. Then FpB,Xq is a Kan complex and FpB, Cq is a quasi-category. In particular,
ArpCq is a quasi-category again, and if x ∈ C is an object, then the slice Cx/ from 2.11 is a
quasi-category too.

Proof. For the first two assertions, apply Corollary 3.10 to the cofibration ∅! B and the Kan
fibration X ! ˚ or the inner fibration C ! ˚, respectively. The assertion about ArpCq is just
the case B = ∆1. Finally, for Cx/ we use that ps, tq : ArpCq ! C × C is an inner fibration by
Corollary 3.10 applied to the cofibration ∂∆1 ! ∆1. Hence its pullback Cx/ ! txu × C must
be an inner fibration too and so Cx/ is a quasi-category by Example 3.3.

We conclude this subsection with an immensely useful lemma.
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3.12. Lemma (“Quillen’s small object argument”). — Every morphism of simplicial sets
f : X ! Y can be factored as

f : X i
−! X

f
−! Y ,

where i is anodyne and f is a Kan fibration. Similarly, every morphism of simplicial sets can
be factored into a left/right/inner anodyne map followed by a left/right/inner fibration, and
also into a cofibration followed by a trivial fibration.

Proof. We only prove the first assertion; the others are completely analogous. Let

Σpfq :=

#

σ =
Λni X

∆n Y

/// f

∣∣∣∣∣∣∣∣∣ n ⩾ 1, 0 ⩽ i ⩽ n

+

and consider the simplicial set Spfq defined as the pushout∐
σ∈Σpfq

Λni X

∐
σ∈Σpfq

∆n Spfq

≓

Then X ! Spfq is anodyne, because it is a pushout of a coproduct of horn inclusions, and f
factors as f : X ! Spfq! Y . Let X0 := X and f0 := f . Inductively putting Xn+1 := Spfnq,
we get factorisations

f : X −! Xn
fn−! Y

for all n ⩾ 0, where X ! Xn is anodyne. Now let X := colimn⩾0Xn and let f : X ! Y
be the induced map. Since anodyne maps are closed under infinite compositions, X ! X is
anodyne. So it suffices to show that f is a Kan fibration. Note that Λn

i is built from finitely
many simplices, which are in turn glued along finitely many subsimplices. Hence, for every
map σ : Λni ! X, each of these finitely many simplices must occur at some finite stage of the
colimit X := colimn⩾0Xn, and each gluing condition must be satisfied at some finite stage.
Consequently, every σ : Λn

i ! X must factor through Xm ! X for m ≫ 0. Consequently, by
construction of Xm+1, every lifting problem involving σ can be solved as

Λni Xm Xm+1 X

∆n Y

f

which proves that f : X ! Y is a Kan fibration, as desired.

§3.2. Homotopy groups

The goal of this subsection is to introduce homotopy groups of Kan complexes (Construction 3.15)
and to prove an analogue of Whitehead’s theorem (Theorem 3.18). We start noting that the
naive definition of homotopies from the beginning of §3 works fine if X is Kan.
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3.13. Definition. — Let X be a Kan complex.
paq We say that x, y ∈ X belong to the same connected component and write x » y if there is

a 1-simplex ∆1 ! X from x to y. By Theorem 2.19, this is an equivalence relation and
the notation is compatible with 2.15. We let π0pXq := X0/» denote the set of connected
components of X.

pbq Let A be an arbitrary simplicial set. We say that f, g : A! X are homotopic and write
f » g if and only if they belong to the same connected component of FpA,Xq, which is a
Kan complex by Corollary 3.11. A homotopy η : f ⇒ g is a 1-simplex ∆1 ! FpA,Xq from
f to g.

3.14. Construction. — Let A ⊆ B be an inclusion of arbitrary simplicial sets and X ⊆ Y
be an inclusion of Kan complexes. Consider the following pullback (taken in sSet):

F
`

pB,Aq, pY,Xq
˘

FpB, Y q

FpA,Xq FpA, Y q

≒

Note that FpB, Y q ! FpA, Y q is a Kan fibration by Corollary 3.10 and FpA,Xq is a Kan
complex by Corollary 3.11. Therefore FppB,Aq, pY,Xqq is a Kan complex too.

3.15. Construction. — Let X be a Kan complex, x ∈ X a point, and n ⩾ 1. Furthermore,
recall from Construction 2.21 that we use □n and ∂□n to denote the n-cube p∆1qn and its
boundary

⋃n
i=1 □

i−1 ×pt0u⊔t1uq×□n−i. We define the nth homotopy group of X with basepoint
x as

πnpX,xq := π0 F
`

p□n, ∂□nq, pX,xq
˘

.

As the name suggests, πnpX,xq should be a group, so let’s construct a group operation! Given
elements rαs, rβs ∈ πnpX,xq, represented by maps of pairs α, β : p□n, ∂□nq ! pX,xq, we can
define a map pα, βq : Λ2

1 × □n−1 ! X by pα, βq|∆t0,1u×□n−1 := α and pα, βq|∆t1,2u×□n−1 := β;
this is possible since α and β agree on the “overlap” t1u × □n−1, as they’re both equal to
constx there. Now consider the extension problem

Λ2
1 × □n−1 ⊔Λ2

1×∂□n−1 ∆2 × ∂□n−1 X

∆2 × □n−1

pα, βq ∪ constx

ϑ

Since the vertical arrow is anodyne by Lemma 3.9, this extension problem has a solution ϑ. By
construction, ϑ|∂p∆t0,2u×□n−1q = constx. We then define rαs · rβs := rϑ|∆t0,2u×□n−1s.

3.16. Remark. — Let us explain how Construction 3.15 is related to the usual construction
of the group structure on πnpX,xq from topology, as this nicely illustrates the “rigidity” of
simplicial sets and how said rigidity is overcome by the Kan condition. First, observe that
Λ2

1 × □n−1 „= ∆t0,1u × □n−1 ⊔t1u×□n−1 ∆t1,2u × □n−1 is simply given by “stacking one cube on
top of another”. In topological spaces, we can identify two stacked cubes with another cube,
which immediately yields the group operation. In simplicial sets, this identification no longer
works; in fact, there isn’t even a suitable map ∆1 × □n−1 ! Λ2

1 × □n−1. But instead we can
use the zigzag ∆t0,2u × □n−1 ! ∆2 × □n−1  Λ2

1 × □n−1, thanks to the Kan condition.
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3.17. Lemma. — Let X be a Kan complex, let x ∈ X be a point, and let n ⩾ 1.
paq The operation · from Construction 3.15 is well-defined (that is, independent of the choices

of α, β, and ϑ) and defines a group structure on πnpX,xq.
pbq Let n ⩾ 2. By “permuting the coordinates of the cube □n” we obtain operations ·1, ·2, . . . , ·n,

where ·1 = ·. Then these operations all coincide and are commutative.

Proof sketch. All assertions in (a) can be proved by solving extension problems of the form

(˚)
A× □n−1 ⊔A×∂□n−1 B × ∂□n−1 X

B × □n−1

where A! B is anodyne (so that a solution always exists by Lemma 3.9).(3.1)

Let’s start with independence of the choice of ϑ. So let ϑ′ be another choice. Using the same
idea as in 2.12, we can pose an extension problem (˚), with pA! Bq = pΛ3

1 ! ∆3q. Restricting
any solution to ∆t0,2,3u × □n−1 yields a homotopy of pairs ϑ|∆t0,2u×□n−1 » ϑ′|∆t0,2u×□n−1 . To
show that the choices of α and β don’t matter, suppose we’re given homotopies of pairs α » α′

and β » β′ and let rα′s · rβ′s = rϑ′|∆t0,2u×□n−1s. Using the given homotopies, we can write
down an extension problem (˚), with pA ! Bq = p∆1 × Λ2

1 ! ∆1 × ∆2q. Restricting to
∆1 × ∆t0,2u × □n−1 yields a homotopy of pairs ϑ|∆t0,2u×□n−1 » ϑ′|∆t0,2u×□n−1 . This shows
well-definedness. To show associativity, choose pA! Bq = p∆t0,1u ∪ ∆t1,2u ∪ ∆t2,3u ! ∆3q. A
neutral element is constx : p□n, ∂□nq ! pX,xq; to show rαs · rconstxs = rαs = rconstxs · rαs

for all α, simply solve the corresponding lifting problem via degenerate simplices. Finally, to
construct inverses, we take inspiration from 2.15 and write down extension problems (˚) with
pA! Bq = pΛ2

0 ! ∆2q and pA! Bq = pΛ2
2 ! ∆2q to construct a left and a right inverse. This

finishes the proof sketch of (a).
For (b), we use the Eckmann–Hilton trick: We can show simultaneously that ·1 = ·2 and

that both operations are commutative by verifying the single identity
`

rαs ·1 rβs
˘

·2
`

rα′s ·1 rβ′s
˘

=
`

rαs ·2 rα′s
˘

·1
`

rβs ·2 rβ′s
˘

for all α, α′, β, and β′!(3.2) To show the Eckmann–Hilton identity, consider the extension
problem

Λ2
1 × Λ2

1 × □n−2 ⊔Λ2
1×Λ2

1×∂□n−2 ∆2 × ∆2 × ∂□n−2 X

∆2 × ∆2 × □n−1

ppα, βq, pα′, β′qq ∪ constx

ρ

which has a solution by Lemma 3.9. Then observe that for any solution ρ, both sides of the
Eckmann–Hilton identity are given by rρ|∆t0,2u×∆t0,2u×□n−2s.

3.18. Theorem (“Whitehead’s theorem for Kan complexes”). — Let f : X ! Y be a
morphism of Kan complexes. Then f is a homotopy equivalence if and only if it induces a
bijection π0pXq „= π0pY q and isomorphisms πnpX,xq „= πnpY, fpxqq for all x ∈ X and all n ⩾ 1.

(3.1)Also note that the diagram from Construction 3.15 is of this form too, with pA! Bq = pΛ2
1 ! ∆2

q
(3.2)If you haven’t seen this trick before, it will probably blow your mind.
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The proof of Theorem 3.18 will occupy the rest of this subsection. The first step is an
analogue of the long exact sequence of a Serre fibration.

3.19. Lemma (“Long exact sequence of a fibration”). — Let f : X ! Y be a Kan fibration
between Kan complexes. Let x ∈ X, let y := fpxq be its image, and let F := f−1tyu = tyu ×Y X
be the fibre over y. Then there exists a long exact sequence of groups/pointed sets

· · · −! πnpF, xq −! πnpX,xq −! πnpY, yq
∂
−! πn−1pF, xq −! · · ·

· · · −! π1pX,xq −! π1pY, yq
∂
−! π0pF q −! π0pXq −! π0pY q .

In low degrees, exactness means the following:
paq There is an action π1pY, yq × π0pF q ! π0pF q in such a way that the boundary map

∂ : π1pY, yq ! π0pF q is given by acting on rxs ∈ π0pF q, the stabiliser of rxs is precisely
the image of π1pX,xq! π1pY, yq, and two elements of π0pF q map to the same element in
π0pXq if and only if they lie in the same orbit of the π1pY, yq-action.

pbq An element in π0pXq maps to the class rys ∈ π0pY q if and only if it lies in the image of
π0pF q! π0pXq.

Proof sketch. You can take any proof of the long exact sequence of a Serre fibration, like rHat02,
Theorem 4.41s and adapt the arguments to the simplicial setting. To illustrate how this can
be done, we’ll explain how to construct the boundary map ∂. So let rαs ∈ πn+1pY, yq, where
α : p□n+1, ∂□n+1q! pY, yq is a map of pairs as usual. Consider the lifting problem

t0u × □n ⊔t0u×□n ∆1 × ∂□n X

∆1 × □n Y

constx

f

α

ϑ

which has a solution ϑ by Lemma 3.9. Then ϑ|t1u×□n : t1u × □n ! X factors through F ! X
and it maps t1u × ∂□n to x. Thus we can define ∂rαs := rϑ|t1u×□ns ∈ πnpF, xq.

3.20. Remark. — We will often use Lemma 3.19 in conjunction with the five lemma to
deduce that a map of Kan complexes induces a bijection on π0 and isomorphisms on πn for all
basepoints and all n ⩾ 1 (and is thus a homotopy equivalence by Theorem 3.18). But the five
lemma only applies for exact sequences of groups, not pointed sets. However, these arguments
can be saved using the group action from Lemma 3.19(a). We will usually skip the verification
in low degrees and just cite the five lemma.

We also need an alternative description of homotopy groups. This is how Goerss and
Jardine define them in rGJ99, §I.7s; we chose the cubical approach since it makes the group
multiplication easier to visualise.

3.21. Lemma. — Let X be a Kan complex, let x ∈ X, and let n ⩾ 0. Then there is a
bijection

πnpX,xq „= π0 F
`

p∆n, ∂∆nq, pX,xq
˘

.

Proof sketch. By cutting out a single n-simplex from □n, we can obtain a sub-simplicial set
Cn ⊆ □n such that ∂□n ⊆ Cn is anodyne (in fact, it can be obtained by successively filling
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horns) and □n/Cn „= ∆n/∂∆n. For example, in the case n = 2, we can choose Cn as in the
following picture:

• •

••

∂□2

⊆

• •

••

C2

///

⊆

• •

••

□2

///

///

In general, the n-simplex ∆n ! □n that we cut out to obtain Cn sends the vertex tiu to the
vertex t1ui × t0un−i.

Now observe that since x is just a point, we have FppB,Aq, pX,xqq „= FppB/A, ˚q, pX,xqq

for every inclusion A ⊆ B of simplicial sets. Since □n/Cn „= ∆n/∂∆n, we only need to prove
π0 Fpp□n, ∂□nq, pX,xqq „= π0 Fpp□n, Cnq, pX,xqq. This follows from a more general claim:
p⊠q Let A′ ⊆ A be anodyne and let A ⊆ B be any inclusion of simplicial sets. Then we have a

bijection π0 FppB,Aq, pX,xqq „= π0 FppB,A′q, pX,xqq.
To prove (⊠), put F := FppB,Aq, pX,xqq and F ′ := FppB,A′q, pX,xqq for short. Consider the
pullback P := FpA′, txuq ×FpA′,Xq FpA,Xq. Then F ′ ! P is a Kan fibration, since it is a
pullback of FpB,Xq ! FpA,Xq, which is Kan by Corollary 3.10. Manipulating pullbacks,
we find F „= FpA, txuq ×P F

′. Now FpA, txuq „= ˚ is just a point, so F is a fibre of the Kan
fibration F ′ ! P . Furthermore, P ! FpA′, txuq „= ˚ is a trivial fibration, since it is a pullback
of FpA,Xq! FpA′, Xq, which is a trivial fibration by Corollary 3.10. By Lemma 3.22 below,
this means that P ! ˚ is a homotopy equivalence and so all homotopy groups of P vanish.
Using the long exact sequence from Lemma 3.19 (for every basepoint in F ′; a single basepoint
won’t suffice), we can conclude π0pF q „= π0pF ′q, as claimed. Note that this works even though
we only have an exact sequence of pointed sets on π0. This finishes the proof. Another proof of
(a more general version of) (⊠) is in rF-HCI, Lemma V.3.13s.

3.22. Lemma. — If f : X ! Y is a trivial fibration between Kan complexes(3.3), then f is a
homotopy equivalence. Similarly, if F : C ! D is a trivial fibration between quasi-categories,
then F is an equivalence as in Example 2.23.

Proof. Since trivial fibrations have lifting against all cofibrations, we can use the lifting problems

∅ X

Y Y

f
g

and
t0u ×X ⊔ t1u ×X X

∆1 ×X X Y

pg◦f, idX q

fη

f

to first construct a map g : Y ! X such that f ◦ g = idY and then to construct a homotopy
η : g ◦ f ⇒ idX . Similarly, if F : C ! D is a trivial fibration between quasi-categories, we get
a functor G : D ! C such that F ◦ G = idD and a natural transformation η : G ◦ F ⇒ idC.
To show that η is an equivalence in FpC, Cq (and thus prove that F and G are mutually
inverse equivalences of quasi-categories), we lift furthermore against ∆1 × C ! NpJq × C, where
J :=

␣

• •
(

is the “free-living isomorphism”, the category with two objects and a pair of
mutually inverse isomorphisms between them.

(3.3)The only reason why we restrict ourselves to Kan complexes (or quasi-categories) is that we haven’t defined
what a homotopy equivalence of arbitrary simplicial sets would be. The lifting problems in the proof can be
solved for arbitrary trivial fibrations f : X ! Y , with no assumptions on X or Y .
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The crucial step in the proof of Theorem 3.18 is to show a “compression lemma”, as in the
proof of Whitehead’s theorem in topology (compare to rHat02, Lemma 4.6s).

3.23. Lemma (“Compression lemma”). — Let X be a connected(3.4) Kan complex such that
πnpX,xq „= 0 for all x ∈ X and all n ⩾ 1. Let A ⊆ B be an inclusion of simplicial sets,
f : B ! X a map and η : ∆1 ×A! X a homotopy from f |A to constx. Then η can be extended
to a homotopy η : ∆1 ×B ! X from f to constx.

Proof. We can construct η simplex by simplex, so it suffices to treat the case A = ∂∆n and
B = ∆n for some n ⩾ 0. Consider the extension problem

t0u × ∆n ⊔t0u×∂∆n ∆1 × ∂∆n X

∆1 × ∆n

pf, ηq

ϑ

which has a solution ϑ by Lemma 3.9. Then ϑ|t1u×∂∆n = constx, hence ϑ|t1u×∆n defines an
element in π0 Fpp∆n, ∂∆nq, pX,xqq „= πnpX,xq „= 0 using Lemma 3.21 and our assumption
on X. Hence there is a homotopy ϑ′ : ∆1 × ∆n ! X such that ϑ′|∆1×∂∆n = constx as
well as ϑ′|t0u×∆n = ϑ|t1u×∆n and ϑ′|t1u×∆n = constx (in other words, ϑ′ is a homotopy
ϑ|t1u×∆n ⇒ constx relative to the boundary ∂∆n). To construct η, we can now simply compose
the homotopies ϑ and ϑ′ (which we do similarly to Construction 3.15 and Remark 3.16, by
solving an extension problem along the anodyne map Λ2

1 × ∆n ! ∆2 × ∆n and then restricting
to ∆t0,2u × ∆n).

3.24. Lemma. — If X is a Kan complex as in Lemma 3.23, then X ! ˚ is a trivial fibration.

Proof. We have to show that every extension problem of the following form is solvable:

∂∆n X

∆n

σ

Using Lemma 3.23 (applied to A = ∅ and B = ∂∆n), there is a homotopy η : ∆1 × ∂∆n ! X
from σ to constx. Now consider the extension problem

∆1 × ∂∆n ⊔t1u×∂∆n t1u × ∆n X

∆1 × ∆n

pη, constxq

ϑ

which has a solution ϑ by Lemma 3.9 as usual. Then ϑ|t0u×∆n provides a solution of the original
extension problem.

3.25. Lemma. — Let f : X ! Y be a Kan fibration between Kan complexes and assume f
satisfies the condition from Theorem 3.18. Then f is a trivial fibration.

(3.4)That is, π0pXq = ˚.
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Proof. We have to show that every extension problem of the following form is solvable:

∂∆n X

∆n Y

σ

f

σ

Let η : ∆1 × ∆n ! ∆n be a homotopy from id∆n to the constant map constn (such a homotopy
can easily be constructed by hand). Then σ ◦ η : ∆1 × ∆n ! Y is a homotopy from σ to const y,
where y = σpnq. Now let F := f−1tyu = tyu ×Y X be the fibre over y and consider the lifting
problem

t0u × ∂∆n X

∆1 × ∂∆n Y

σ

fϑ
σ◦η|∆1×∂∆n

which can be solved by Lemma 3.9. Then ϑ|t1u×∂∆n : t1u × ∂∆n ! X factors through F ! X.
Using the long exact sequence from Lemma 3.19 and the assumption on f , we see πnpF, xq „= 0
for all x ∈ F and all n ⩾ 0. Hence F ! ˚ is a trivial fibration by Lemma 3.24 and so
ϑ|t1u×∂∆n : t1u × ∂∆n ! F can be extended to a map ϑ : t1u × ∆n ! F . Finally, consider the
lifting problem

∆1 × ∂∆n ⊔t1u×∂∆n t1u × ∆n X

∆1 × ∆n Y

pϑ, ϑq

fρ

which can be solved by Lemma 3.9. Then ρ|t0u×∆n provides a solution for the original lifting
problem and we’re done.

Proof of Theorem 3.18. Let’s first assume that f : X ! Y is a homotopy equivalence. Then f
clearly induces a bijection π0pXq „= π0pY q. But to get isomorphisms πnpX,xq „= πnpY, yq for
all x ∈ X, y = fpxq, and all n ⩾ 1, we have to show that f : pX,xq! pY, yq is also a pointed
homotopy equivalence, which is not entirely trivial.

It suffices to show that π0 FppY, yq, pZ, zqq ! π0 FppX,xq, pZ, zqq is surjective for every
pointed Kan complex pZ, zq. Indeed, if this is true, then plugging in pZ, zq = pX,xq yields a
pointed map g : pY, yq! pX,xq together with a pointed homotopy g ◦ f » idpX,xq. In particular,
g is a homotopy equivalence too. Repeating the argument with g, we obtain h : pX,xq! pY, yq

together with h ◦ g » idpY,yq. Then g is a pointed homotopy equivalence and thus f must be a
pointed homotopy equivalence too. To show that π0 FppY, yq, pZ, zqq! π0 FppX,xq, pZ, zqq is
surjective, first note that we have Kan fibrations

evx : FpX,Zq −! F
`

txu, Z
˘

„= Z and evy : FpY,Zq −! F
`

tyu, Z
˘

„= Z

by Corollary 3.10. Using Construction 3.14, we see that the fibres of these fibrations are given
by ev−1

x tzu „= FppX,xq, pZ, zqq and ev−1
y tzu „= FppY, yq, pZ, zqq. Using Lemma 3.19, we obtain

a diagram of exact sequences

· · · π1pZ, zq π0 F
`

pY, yq, pZ, zq
˘

π0 FpY, Zq π0pZq · · ·

· · · π1pZ, zq π0 F
`

pX,xq, pZ, zq
˘

π0 FpX,Zq π0pZq · · ·

„=
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Since we assume f : X ! Y to be an unpointed homotopy equivalence, it induces a bijection
π0 FpY,Zq „= π0 FpX,Zq, as indicated above. Then a diagram chase involving Lemma 3.19(a)
shows that π0 FppY, yq, pZ, zqq! π0 FppX,xq, pZ, zqq is surjective. As argued above, this is what
we need.

Conversely, assume that f : X ! Y induces a bijection π0pXq „= π0pY q and isomorphisms
πnpX,xq „= πnpY, yq for all x ∈ X, y = fpxq, and all n ⩾ 1. Lemma 3.12 allows us to choose a
factorisation

f : X i
−! X

f
−! Y

where i is anodyne and f is a Kan fibration. Then i and f are homotopy equivalences. Indeed,
Corollary 3.10 shows that FpX,Zq ! FpX,Zq is a trivial fibration for every Kan complex
Z, hence a bijection on π0 by Lemma 3.22. Plugging in Z = X and Z = X shows that i is
a homotopy equivalence, as claimed. The Kan fibration f : X ! Y is a trivial fibration by
Lemma 3.25, hence a homotopy equivalence by Lemma 3.22. We are done!

§3.3. Simplicial approximation and model categories

3.26. Theorem (Simplicial approximation). — For every Kan complex X we have a bijection
π0pXq „= π0p|X|q and isomorphisms πnpX,xq „= πnp|X|, xq for all x ∈ X and all n ⩾ 1. Simi-
larly, for every topological space Y we have a bijection π0pY q „= π0pSing Y q and isomorphisms
πnpY, yq „= πnpSing Y, yq for all y ∈ Y and all n ⩾ 1. In particular, the adjunction

| · | : Kan −−! Top :Sing

from 2.4 induces homotopy equivalences uX : X »
−! Sing |X| for all Kan complexes X and weak

equivalences cY : |Sing Y |! Y for every topological space Y . ■

The proof of Theorem 3.26 is a technical headache. For a full proof, have a look at Fabian’s
and Christoph Winges’ lecture notes rF-HCI, §V.5s; several versions of this theorem can also
be found in rHat02, §2.Cs.

Theorem 3.26 is an incarnation of Grothendieck’s homotopy hypothesis. It tells us, essentially,
that as long as we’re only interested in topological spaces up to weak equivalence, or CW-
complexes up to homotopy equivalence, we can safely pass to the category of Kan complexes,
or better yet, to the quasi-category An from Example 2.23(a). In particular, everything we
would ever like to know about homotopy groups (or homology groups etc.) will be captured
by An! We’ll see through many examples how this point of view leads to clean, abstract, and
conceptually satisfying proofs of many classical topological results and ultimately to a deeper
understanding of homotopy theory.

At this point it seems natural to leave a few words about model categories. Historically,
these have played a dominating role in the development of ∞-category theory and to this day
they are an indispensible tool in the foundations of the topic (especially in the proof of Lurie’s
straightening/unstraightening equivalence, Theorem 5.4) as well as in many other areas of
topology. So dismissing them as a tool of the past would be blatantly ignorant and outright
disrespectful. Still, model categories run contrary to the modern point of view that I’m trying
to get across in these notes, and so I’ll try to avoid them entirely—which is, of course, only
achievable by conveniently hiding their unavoidable uses in black boxes. But at the very least,
I should tell you the definition.
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3.27. Definition. — Let A be a category with finite limits and colimits. A model structure
on A consists of 3 classes of morphisms C, F , and W (cofibrations, fibrations, and weak
equivalences) satisfying the following properties:
paq All isomorphisms of A are contained in each of the classes C, F , W , and these classes are

all closed under retracts.
pbq W is closed under 2-out-of-3. That is, if two of f , g, and g ◦ f are weak equivalences, then

so is the third.
pcq A lifting problem

a x

b y

i f

with i ∈ C a cofibration and f ∈ F a fibration always has a solution provided that i is a
trivial cofibration (a cofibration that is also a weak equivalence) or f is a trivial fibration
(a fibration that is also a weak equivalence).

pdq Every morphism in A can be factored into a cofibration followed by a trivial fibration and
into a trivial cofibration followed by a fibration. That is, if a ! y is a morphism in A,
then there exist factorisations

a −! x −! y and a −! b −! y ,

where pa! xq ∈ C and px! yq ∈ F ∩W as well as pa! bq ∈ C ∩W and pb! yq ∈ F .
Sometimes these factorisations are required to be functorial (which is satisfied in virtually
all examples).

A category A equipped with a model structure is called a model category. If A is a model
category, then x ∈ A is called cofibrant if the map from the initial object to x is a cofibration,
and fibrant if the map from x to the terminal object is a fibration. We call x bifibrant if it is
both fibrant and cofibrant.

3.28. Example. — Basically, the entirety of §3.1 can be summarised by saying that sSet
carries a model structure in which cofibrations are exactly that, fibrations are Kan fibrations,
and weak equivalences are morphisms that can be factored into an anodyne map followed by a
trivial fibration. This model structure is called the Kan–Quillen model structure.

3.29. Example. — As the Kan–Quillen model structure “models” the quasi-category An
from Example 2.23, it seems natural to ask whether there is another model structure on sSet
that “models” Cat∞. The naive attempt would be to ask that fibrations be inner fibrations and
that trivial cofibrations be inner anodyne maps. But there are examples of cofibrations between
quasi-categories that are equivalences in Cat∞, but not inner anodyne; for example, the functor
t0u! NpJq, where J =

␣

• •
(

is the “free-living isomorphism”. It was an insight of Joyal
how this can be fixed: There is a model structure on sSet, called the Joyal model structure
such that cofibrations are just that and weak equivalences are those maps A! B such that
π0 core FpB, Cq ! π0 core FpA, Cq is bijective for every quasi-category C. Here π0 core means
the set of equivalence classes of objects; once we’ve proved the hard part of Theorem 2.19,
this notation will be consistent with Definition 3.13(a). Weak equivalences in the Joyal model
structure are called Joyal equivalences. We’ll give another characterisation in Lemma 3.30
below.
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Fibrant objects in the Joyal model structure are precisely quasi-categories. General fibrations
in the Joyal model structure are harder to pin down. However, fibrations between quasi-
categories are characterised by a lifting property: They are those inner fibrations that also have
lifing against t0u! NpJq. We’ll call these isofibrations and we’ll meet them again in model
category fact 5.12(b). For proofs see rJoy08, Theorem 6.12s or rF-HCII, Theorem VIII.23s.

3.30. Lemma. — A map A ! B of simplicial sets is a Joyal equivalence if and only if
FpB, Cq! FpA, Cq is an equivalence in Cat∞ for every quasi-category C.

Proof. The “if” part is trivial, so assume A ! B is a Joyal equivalence as in Example 3.29.
By Lemma 3.12, we may choose an inner anodyne map B ! B into a quasi-category and a
factorisation A! A! B into an inner anodyne map followed by an inner fibration. Then A is
a quasi-category too. Note that FpA, Cq! FpA, Cq is a trivial fibration by Corollary 3.10 and
thus an equivalence of quasi-categories by Lemma 3.22; the same is true for FpB, Cq! FpB, Cq.
So it’s enough to show that FpB, Cq ! FpA, Cq is an equivalence of quasi-categories, and for
this, it’s enough to show that our functor F : A! B is an equivalence of quasi-categories.

We know that F ˚ : π0 core FpB, Cq ! π0 core FpA, Cq is bijective for every quasi-category
C. Plugging in C = A and choosing a preimage of idA yields a functor G : B ! A together
with an equivalence G ◦ F » idA. Since F ˚ and pG ◦ F q˚ are bijective, it follows that
G˚ : π0 core FpA, Cq! π0 core FpB, Cq must too be bijective for every quasi-category C. By the
same argument, we obtain H : A! B together with an equivalence H ◦G » idB. Then G must
be an isomorphism in hopCat∞q and so F must be too. This shows that F is an equivalence in
Cat∞, as desired.

3.31. Example. — There are also several model structures on Top. For example, there is
the Serre–Quillen model structure, in which cofibrations are retracts of relative CW-inclusions,
weak equivalences are just that, and fibrations are Serre fibrations.

An adjunction L : A ! B :R between model categories is called a Quillen adjunction if the
left adjoint L preserves cofibrations and trivial cofibrations, or equivalently, if the right adjoint
R preserves fibrations and trivial fibrations. It is called a Quillen equivalence if, additionally,
the following conditions hold:
paq For every cofibrant object x ∈ A and every trivial cofibration i : Lpxq! y into a fibrant

object in B, the composition Rpiq ◦ ux : x! RLpxq! Rpyq is a weak equivalence in A.
pbq For every fibrant object y ∈ B and every trivial fibration f : x! Rpyq from a cofibrant

object in A, the composition cy ◦ Lpfq : Lpxq! LRpyq! y is a weak equivalence in B.
Then one way to understand Theorem 3.26 is that the adjunction | · | : sSet ! Top : Sing from
2.4 is a Quillen equivalence.
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§4. Joyal’s lifting theorem
Let’s begin by stating the theorem that this section owes its name to. We won’t give a proof;
the proof is not too difficult, at least compared to our later black box Theorem 5.4, but it
uses some constructions (joins and thin slices) that we’ve avoided so far and will continue to
avoid. If you’re interested, Joyal’s original proof rJoy02, Theorem 2.2s as well as the accounts
in rLan21, Theorem 2.1.8s or rL-Ker, Tag 01H0s are all very readable.

4.1. Theorem (Joyal’s lifting theorem). — Let p : C ! D be an inner fibration of quasi-
categories. Then for all n ⩾ 2, every lifting problem of the form

Λn0 C

∆n D

p or
Λnn C

∆n D

p

in which the 1-simplex ∆t0,1u ⊆ Λn0 ! C or ∆tn−1,nu ⊆ Λnn ! C is sent to an equivalence in C,
admits a solution. ■

§4.1. Consequences of Joyal’s lifting theorem

This subsection is devoted to convincing you what a ridiculously strong result Theorem 4.1
actually is. We begin with some simple corollaries and work our way up to two highly non-trivial
theorems.

4.2. Corollary (“Animae and Kan complexes are the same”). — A quasi-category C is a Kan
complex if and only if it is an anima, that is, if and only if all its morphisms are equivalences.

Proof. We’ve seen in Theorem 2.19 that Kan complexes are animae. So let’s assume C is an
anima. Since C is a quasi-category, it suffices to show that all outer horns Λn0 ! C and Λnn ! C
have fillers. For n = 1, this is clear, since we can extend t0u! C or t1u! C to a degenerate
simplex ∆1 ! C. For n ⩾ 2, we can apply Theorem 4.1 to the inner fibration p : C ! ˚.

4.3. Corollary (“Left fibrations over animae are Kan fibrations”). — Let Y be a Kan complex
and let f : X ! Y be a left fibration. Then f is a Kan fibration and thus X is a Kan complex.
A dual assertion holds for right fibrations.

Proof sketch. We must show that for all n ⩾ 1 every lifting problem

Λnn X

∆n Y

f

has a solution. Let’s first consider the case n = 1. Since every morphism of Y is an equivalence
by Corollary 4.2, the map ∆1 ! Y extends to a map NpJq ! Y , where J := t• •u is
the “free-living isomorphism”, the category with two objects and a pair of mutually inverse
isomorphisms between them. It can be shown via explicit horn filling that t1u ! NpJq is
both left and right anodyne. Since f is a left fibration, we get a lift NpJq! X, which upon
restriction along ∆1 ! NpJq yields a solution of our original lifting problem.
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Now let n ⩾ 2. It suffices to show that every morphism in X is an equivalence, because
then Theorem 4.1 will solve our lifting problem. So let α : x ! y be a morphism in X and
consider the map σ : Λ2

0 ! X represented by

σ =

x y

x

α

idx

Since Y is an anima, fpαq is an equivalence and so ϑ := f ◦ σ : Λ2
0 ! Y can be extended to a

map ϑ : ∆2 ! Y . Since f : X ! Y is a left fibration, we can lift ϑ to a map σ : ∆2 ! X such
that σ|Λ2

0
= σ and f ◦ σ = ϑ. The 2-simplex σ shows that α has a left inverse β. Repeating the

argument with β, we see that β itself has a left inverse. Then β must be an equivalence. Hence
its right inverse α must be an equivalence too.

4.4. Corollary (“HomC takes values in animae”). — Let C be a quasi-category. Then for all
x, y ∈ C, the slice category projection t : Cx/ ! C from 2.11 is a left fibration and HomCpx, yq is
an anima.

Proof sketch. By 2.11, t : Cx/ ! C is a pullback of ps, tq : ArpCq ! C × C, which is an inner
fibration by Corollary 3.10. Hence t : Cx/ ! C is an inner fibration too and we only need to
solve outer horn lifting problems

Λn0 Cx/

∆n C

t

for all n ⩾ 1. Write Cx/ „= txu ×C,s ArpCq as in 2.11. By the usual adjunction tricks, a horn
lifting problem as above is equivalent to an extension problem

Λn0 × ∆1 ⊔Λn
0 ×t1u ∆n × t1u C

∆n × ∆1

f

f

with the additional condition that f satisfies f |Λn
0 ×t0u = constx and the extension must satisfy

f |∆n×t0u = constx. Such an extension problem can be written as a sequence of horn filling
problems. Each horn is either an inner horn, which can be filled by Definition 2.8, or a horn
whose first edge is sent to constx, which can be filled by Theorem 4.1, or a horn that can be
filled with a degenerate simplex. Up to the horn filling combinatorics, which we skip as usual,
this proves that t : Cx/ ! C is a left fibration.

To prove that HomCpx, yq is an anima, recall the pullback diagram

HomCpx, yq Cx/

tyu C

≒ t

from 2.11. It follows that HomCpx, yq ! tyu is a left fibration. Hence HomCpx, yq is a Kan
complex by Corollary 4.3.
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4.5. Theorem (“Equivalences of functors can be checked pointwise”). — Let F,G : C ! D
be functors of quasi-categories and let η : F ⇒ G be a natural transformation (that is, a 1-
simplex ∆1 ! FpC,Dq from F to G). Then η is an equivalence of functors if and only if
ηx : F pxq! Gpxq is an equivalence in D for all x ∈ C.

If all ηx : F pxq ! Gpxq are equivalences, we can choose inverses ϑx : Gpxq ! F pxq, but
already that step is non-canonical, since inverses are no longer unique in quasi-categories. To
assemble the ϑx into a natural transformation ϑ : G ⇒ F involves infinitely more non-canonical
choices, and we have to make them all in a coherent way. This is an impossible task to do by
hand, but incredibly, Theorem 4.5 does it for us!

Proof sketch of Theorem 4.5. The “only if” part is clear. To prove the “if” part, we start with
some general observations. Let i : A! B be a cofibration of simplicial sets and consider lifting
problems of the form

p˚q

Λ2
0 FpB,Dq

∆2 FpA,Dq

or equivalently p˚˚q

Λ2
0 ×B ⊔Λ2

0×A ∆2 ×A D

∆2 ×B

Consider those (˚˚) for which the 1-simplex ∆t0,1u × tbu! Λ2
0 ×B ! D is an equivalence in D

for all b ∈ B0. We claim:
p⊠q Let Σ be the class of all cofibrations i : A! B such that every extension problem (˚˚), for

which ∆t0,1u × tbu ! Λ2
0 × B ! D is an equivalence in D for all b ∈ B0, can be solved.

Then Σ is saturated and contains ∂∆n ! ∆n for all n ⩾ 0.
Saturatedness of Σ is straightforward to check. To see that Σ contains ∂∆n ! ∆n, one uses
Theorem 4.1; as usual, we skip the horn filling combinatorics. A full argument is in Fabian’s
notes rF-HCI, Lemma VII.2s.

By (⊠) and Lemma 3.8, Σ contains all cofibrations of simplicial sets. In particular, Σ contains
i :

∐
x∈Ctxu! C. Now let η : F ⇒ G be a natural transformation such that ηx : F pxq! Gpxq is

an equivalence for all x ∈ C. To construct a left inverse of η, consider the map σ : Λ2
0 ! FpC,Dq

represented by

σ =

F G

F

η

idF

Our assumption on η means that its image under i˚ : FpC,Dq! Fp
∐
x∈Ctxu,Dq „=

∏
x∈C D is

an equivalence. Hence i˚ ◦ σ can be extended to a 2-simplex ∆2 ! Fp
∐
x∈Ctxu,Dq and we

obtain a lifting diagram
Λ2

0 FpC,Dq

∆2 F
˜∐
x∈C

txu,D

¸

which has a solution by what the above arguments. Hence η has a left inverse ϑ : G ⇒ F .
Again, ϑx : Gpxq! F pxq must be equivalences for all x ∈ C. Repeating the argument with ϑ
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shows that ϑ must have a left inverse too. Then ϑ must be an equivalence and so its right
inverse η must be an equivalence too.

A similar miracle as Theorem 4.5 is the following theorem.

4.6. Theorem (“Fully faithful & essentially surjective implies equivalence”). — A functor
F : C ! D of ∞-categories is an equivalence if and only if the following conditions are satisfied:
paq F is fully faithful. That is, F induces homotopy equivalences of animae

HomCpx, yq
»
−! HomD

`

F pxq, F pyq
˘

for all x, y ∈ C.
pbq F is essentially surjective. That is, F induces a surjection π0 corepCq! π0 corepDq.

4.7. Remark. — The “only if” part of Theorem 4.6 is easy. For later use, we remark that
F : C ! D being fully faithful implies that π0 corepCq ! π0 corepDq is injective. Indeed, this
is purely an assertion about the homotopy categories of C and D and it follows from the fact
that if F : C ! D is a fully faithful functor of quasi-categories, then hopF q : hopCq ! hopDq

is a fully faithful functor of ordinary categories. This in turn follows from the fact that
HomhopCqpx, yq „= π0 HomCpx, yq, which is straightforward to check from 2.13.

To prove the “if” part of Theorem 4.6, let’s first consider the case where C and D are animae.

4.8. Lemma. — Let F : C ! D be a fully faithful and essentially surjective functor of animae.
Then F is a homotopy equivalence.

Proof. Since C and D are animae, we have C = corepCq and D = corepDq. By Remark 4.7 and
the fact that F is essentially surjective, we see that C ! D is a bijection on path components.
Hence we may assume without loss of generality that C and D are connected. Now choose
x ∈ C and observe that

πn+1pC, xq „= πn
`

HomCpx, xq, idx
˘

for all n ⩾ 0. Indeed, by the pullback square from 2.11, a map p□n, ∂□nq! pHomCpx, xq, idxq

is equivalently a morphism □n × ∆1 ! C such that ∂□n × ∆1 ∪ □n × t0, 1u! C is constant on
x. But that’s just a map p□n+1, ∂□n+1q! pC, xq, as claimed.

Hence F being fully faithful implies that πn+1pC, xq „= πn+1pD, F pxqq is an isomorphism for
all n ⩾ 0. But then F is a homotopy equivalence by Theorem 3.18.

Furthermore we need:

4.9. Lemma. — Let C be a quasi-category and let CrS1s ⊆ C be a (not necessarily full)
sub-quasi-category spanned by a collection S1 ⊆ C1 of morphisms as in 2.16. Then for all
x, y ∈ C

HomCrS1spx, yq −! HomCpx, yq

is an equivalence onto the set of path components of morphisms from S1.

Proof sketch. By unravelling 2.11, an n-simplex ∆n ! HomCpx, yq is the same as a map
σ : ∆1 × ∆n ! C such that σ|t0u×∆n = σ|t1u×∆n = constx. Then σ defines an n-simplex
∆n ! HomCrS1spx, yq if and only if σ maps all morphisms in ∆1 × ∆n to S1. Note that all
morphisms in t0u × ∆n and t1u × ∆n are mapped to idx, which is contained S1 because we
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assume that S1 contains all identities. So it suffices to check that σ|∆1×tiu : ∆1 × tiu ! C is
contained in S1 for all i = 0, . . . , n, because all other morphisms in ∆1 × ∆n are generated
under compositions by these as well as the morphisms in t0u × ∆n and t1u × ∆n. This means
that an n-simplex ∆n ! HomCpx, yq belongs to HomCrS1spx, yq if and only if all its vertices
correspond to morphisms in S1. In other words, HomCrS1spx, yq ⊆ HomCpx, yq is the collection
of path components of morphisms from S1, as desired.

Proof sketch of Theorem 4.6. Assume F is fully faithful and essentially surjective. We’ll show
that core FpK, Cq! core FpK,Dq is a homotopy equivalence of animae for all simplicial sets K
(note that both FpK, Cq and FpK,Dq are indeed quasi-categories by Corollary 3.11). Once we
have this, plugging in K = D yields a functor G : D ! C with an equivalence G ◦ F » idC . It’s
straightforward to see that G is again fully faithful and essentially surjective, so repeating the
argument with G shows that G has a left inverse too. Then G must be an equivalence and so
its right inverse F must be an equivalence too.

Case K = ˚. Since core Fp˚, Cq „= corepCq, we must show that corepCq ! corepDq is
a homotopy equivalence of animae. By Lemma 4.9, HomcorepCqpx, yq ! HomCpx, yq is an
equivalence onto those path components that correspond to equivalences from x to y. The
same is true for D, whence corepCq! corepDq is fully faithful again. Clearly, it is essentially
surjective too, so Lemma 4.8 shows that corepCq! corepDq must be a homotopy equivalence.

Case K = ∆n, n ⩾ 1. Let In :=
⋃n−1
i=0 ∆ti−1,iu ⊆ ∆n. It’s straightforward to check that

In ! ∆n is inner anodyne, so Fp∆n, Cq! FpIn, Cq is a trivial fibration by Corollary 3.10. The
same is true for D. We may thus replace K = ∆n by K = In. Now we claim:
p⊠q If i : A! B is a cofibration of simplicial sets, then i˚ : core FpB, Cq! core FpA, Cq is a

Kan fibration. Furthermore, for all x0, x1, . . . , xn ∈ C, the following diagram is a pullback
diagram of Kan complexes and its vertical arrows are Kan fibrations:

HomCpx0, x1q × · · · × HomCpxn−1, xnq core FpIn, Cq

tx0u × · · · × txnu corepCq × · · · × corepCq

≒

We know that F induces a homotopy equivalence pcorepCqqn+1 » pcorepDqqn+1 by the case
K = ˚. Furthermore, since we assume F to be fully faithful, we know that F induces
homotopy equivalences

∏n
j=1 HomCpxj−1, xjq »

∏n
j=1 HomDpF pxj−1q, F pxjqq. So if we believe

(⊠) (and its analogue for D), then Lemma 3.19 plus the five lemma (plus Remark 3.20) show
that core FpIn, Cq ! core FpIn,Dq induces a bijection on π0 and isomorphisms on πn for all
basepoints and all n ⩾ 1. Hence core FpIn, Cq! core FpIn,Dq must be a homotopy equivalence
by Theorem 3.18.

To prove (⊠), first note that FpB, Cq ! FpA, Cq is an inner fibration by Corollary 3.10.
Furthermore, if m ⩾ 2 and σ : Λm

j ! core FpB, Cq is any m-dimensional horn (we allow j = 0
or j = m), then any m-simplex σ : ∆m ! FpB, Cq with σ|Λm

j
= σ is already contained in

core FpB, Cq. Indeed, equivalences in C are closed under 2-out-of-3, hence the edges of ∆m∖Λmj
will automatically be mapped to equivalences too. This observation immediately shows that
i˚ : core FpB, Cq! core FpA, Cq is an inner fibration again. Furthermore, Theorem 4.1 shows
that i˚ has lifting against Λm0 ! ∆m and Λmm ! ∆m for all m ⩾ 2. It remains to deal with the
case m = 1, that is, to show lifting agains t0u! ∆1 and t1u! ∆1. Let’s sketch how to prove
the former; the latter is analogous. Building B from A by successively attaching simplices, we
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can reduce to the case where i : ∂∆k ! ∆k is a simplex boundary inclusion. The case k = 0 is
trivial. For k ⩾ 1, the map ∂∆k ! ∆k is bijective on 0-simplices and so it suffices to show that
any extension problem

∂∆k × ∆1 ⊔∂∆k×t0u ∆k × t0u C

∆k × ∆1

σ

σ

in which σ|tju×∆1 : tju × ∆1 ! C is an equivalence in C for every 0-simplex j ∈ p∂∆kq0, admits
a solution. Indeed, it follows from Theorem 4.5 that any extension σ : ∆k × ∆1 ! C will
automatically define a map ∆1 ! core Fp∆k, Cq. To construct the desired extension, write it as
a sequence of horn filling problems; each inner horn can be filled by Definition 2.8 and each
outer horn by Theorem 4.1. As usual, we skip the horn filling combinatorics. This finishes the
proof that i˚ : core FpB, Cq! FpA, Cq is a Kan fibration.

Choosing i to be the cofibration t0u⊔· · ·⊔tnu! In, we see that core FpIn, Cq! pcorepCqqn+1

is indeed a Kan fibration. It remains to show that we get a pullback diagram. We can write
In as an iterated pushout In „= ∆t0,1u ⊔t1u · · · ⊔tn−1u ∆tn−1,nu and thus FpIn, Cq as an iterated
pullback FpIn, Cq „= ArpCq ×t,C,s · · · ×t,C,s ArpCq. Plugging in the definition of HomCpxi−1, xiq
from 2.11 yields the desired pullback diagram—except for one problem: The left vertical arrow
reads FpIn, Cq ! Cn+1 instead of core FpIn, Cq ! pcorepCqqn+1. To get core into the picture,
observe that as a consequence of Corollary 4.2, core : QCat ! Kan is a right adjoint to the
inclusion Kan ⊆ QCat. Hence core turns pullbacks in QCat into pullbacks in Kan. However,
the pullbacks at hand are supposed to be taken in sSet, and in general it’s not true that
pullbacks in QCat or Kan coincide with those in sSet.(4.1) But if a pullback of quasi-categories,
taken in sSet, happens to be a quasi-category again, then it’s automatically a pullback in
QCat too, and likewise for a pullback of Kan complexes that happens to be Kan again. Since
we’ve seen that FpIn, Cq ! Cn+1 is an inner fibration and core FpIn, Cq ! pcorepCqqn+1 is a
Kan fibration, this is is true in our situation. So core preserves the pullback at hand and we
conclude that

core
`

HomCpx0, x1q × · · · × HomCpxn−1, xnq
˘

core FpIn, Cq

core
`

tx0u × · · · × txnu
˘

corepCq × · · · × corepCq

≒

is a pullback of simplicial sets. But tx0u × · · · × txnu and HomCpx0, x1q × · · · × HomCpxn−1, xnq

are Kan complexes (the latter by Corollary 4.4), hence coincide with their cores. This shows
that we get a pullback as desired, thus finishing the proof of (⊠) and the case K = ∆n.

Case K is finite-dimensional. A simplicial set K is called finite-dimensional if it has
non-degenerate simplices in only finitely many degrees. We use induction on maximal dimension
d of a non-degenerate simplex. The case d = 0 follows from the case K = ∆0 above. For
the inductive step, we can write a pd+ 1q-dimensional simplicial set K as a pushout of some
d-dimensional simplicial set along a disjoint union

∐
∂∆d+1 !

∐
∆d+1 of simplex boundary

inclusions. Accordingly, FpK, Cq and FpK,Dq can be written as pullbacks. By arguments as in
(4.1)It’s not even true that pullbacks always exist in QCat and Kan.
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(⊠), we still get pullbacks after applying core and the legs core F
`∐

∆d+1, C
˘

! F
`∐

∂∆d+1, C
˘

and core F
`∐

∆d+1,D
˘

! F
`∐

∂∆d+1,D
˘

are Kan fibrations. Using the inductive hypothesis
and the case K = ∆d+1 together with Lemma 3.19 and the five lemma (plus Remark 3.20), we
see that core FpK, Cq! core FpK,Dq induces a bijection on π0 and isomorphisms on πn for all
basepoints and all n ⩾ 1. Hence core FpK, Cq! core FpK,Dq must be a homotopy equivalence
by Theorem 3.18.

General case. Write K „= colimd⩾0 skdK, where skdK is the d-skeleton of K. It is defined
as the left Kan extension

skdK := Lan∆∆op
⩽d

!∆∆op

´

K|∆∆op
⩽d

¯

,

where ∆∆op
⩽d ⊆ ∆∆op is the full subcategory spanned by r0s, . . . , rds. It’s straightforward to

see, using the Kan extension formula from Lemma 1.15, that skdK is d-dimensional and the
transition maps skdK ! skd+1K are cofibrations. By the finite-dimensional case, F induces
equivalences core FpskdK, Cq

»
−! core FpskdK,Dq for all d ⩾ 0.

By the colimit above, FpK, Cq „= limd⩾0 FpskdK, Cq. This limit is preserved by core. Indeed,
(⊠) shows that core Fpskd+1K, Cq! core FpskdK, Cq is a Kan fibration and we can apply an
argument as above. The same applies to D instead of C. So it remains to see that equivalences
of Kan complexes are preserved under limits along Kan fibrations. This can be shown using a
Milnor sequence for homotopy groups, for example, or by hand, using a straightforward, but
technical argument. See rF-HCI, Lemma VII.12s for example.

§4.2. Localisations of ∞-categories

4.10. Construction. — Let C be a quasi-category and W ⊆ C1 a subset of morphisms. We
wish to construct the localisation C ! CrW−1s, that is, the universal functor of quasi-categories
that sends the morphisms from W to equivalences. To do so, consider the the pushout

∐
W

∆1 C

∐
W

NpJq C

≓

in simplicial sets, where J := t• •u is the “free-living isomorphism”, the category with two
objects and a pair of mutually inverse isomorphisms between them. By Lemma 3.12, we can
choose an inner anodyne map C ! CrW−1s into a quasi-category. We call the composition
p : C ! CrW−1s the localisation of C at W . We’ll check in a moment that p is independent of
the choices (up to equivalence), so the definite article is justified.

4.11. Lemma. — For every quasi-category D, the functor p : C ! CrW−1s from Construc-
tion 4.10 above induces an equivalence

p˚ : HomCat∞

`

CrW−1s,D
˘ »
−! HomW

Cat∞pC,Dq ⊆ HomCat∞pC,Dq ,

where HomW
Cat∞pC,Dq ⊆ HomCat∞pC,Dq is the collection of path components of those functors

F : C ! D that send W to equivalences in D.
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Proof. Let FW pC,Dq ⊆ FpC,Dq be the full sub-quasi-category (as in 2.16) spanned by those
functors F : C ! D that send W to equivalences in D. We know from Theorem 2.24
that HomCat∞pCrW−1s,Dq » core FpCrW−1s,Dq and HomCat∞pC,Dq » core FpC,Dq; it’s then
straightforward to check that

HomW
Cat∞pC,Dq » core FW pC,Dq .

Since C ! CrW−1s is inner anodyne by Construction 4.10, FpCrW−1s,Dq! FpC,Dq is a trivial
fibration by Corollary 3.10.

We’ll show that core FpC,Dq! core FW pC,Dq is a trivial fibration too to finish the proof.
This is straightforward, but a little annoying thanks to technicalities. The pushout from
Construction 4.10 shows that

FpC,Dq FpC,Dq

∏
W

F
`

NpJq,D
˘

∏
W

F
`

∆1,D
˘

≒

is a pullback of simplicial sets. Note that FpC,Dq ! FpC,Dq factors through the full sub-
quasi-category FW pC,Dq ⊆ FpC,Dq and FpNpJq,Dq ! Fp∆1,Dq factors through the full
sub-quasi-category Ft0!1up∆1,Dq ⊆ Fp∆1,Dq. Since pullbacks behave well under passing to
sub-simplicial sets, the following diagram is a pullback too:

FpC,Dq FW pC,Dq

∏
W

F
`

NpJq,D
˘

∏
W

Ft0!1u
`

∆1,D
˘

≒

To finish the proof, it’s enough to show the following two claims:
p⊠1qThe pullback above stays a pullback after applying core everywhere.
p⊠2qThe map core FpNpJq,Dq! core Ft0!1up∆1,Dq is a trivial fibration.
To prove (⊠1), observe that FpNpJq,Dq! Fp∆1,Dq is an inner fibration by Corollary 3.10 and
core FpNpJq,Dq! core Fp∆1,Dq is a Kan fibration by claim (⊠) in the proof of Theorem 4.6.
By an argument similar to Lemma 4.9, the fact that Ft0!1up∆1,Dq ⊆ Fp∆1,Dq is a full
sub-quasi-category implies that core Ft0!1up∆1,Dq ⊆ core Fp∆1,Dq is a collection of path
components. By inspection, this means that FpNpJq,Dq ! Ft0!1up∆1,Dq must be an inner
fibration too and core FpNpJq,Dq! core Ft0!1up∆1,Dq must be a Kan fibration too. By the
same argument as in the proof of Theorem 4.6 it follows that core preserves the pullback, as
required.

To prove (⊠2), we claim core FpNpJq,Dq „= core FpNpJq, corepDqq. Indeed, an n-simplex
∆n ! core FpNpJq,Dq is the same as an n-simplex ∆n ! FpNpJq,Dq all of whose edges are
mapped to equivalences; by 2.6 and Theorem 4.5, that’s the same as a map σ : NpJq × ∆n ! D
such that σ|txu×∆ti,ju : txu × ∆ti,ju ! D maps to an equivalence for all x ∈ NpJq and all
edges ∆ti,ju ⊆ ∆n. But then all morphisms in NpJq × ∆n must be mapped to equivalences,
because every morphism in NpJq is already an equivalence. So σ necessarily factors through
corepDq ⊆ D, as desired.
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Since corepDq is a Kan complex by Corollary 4.2, FpNpJq, corepDqq is a Kan complex by
Corollary 3.11 and so core FpNpJq, corepDqq „= FpNpJq, corepDqq. By analogous arguments,
we get isomorphisms core Ft0!1up∆1,Dq „= core Ft0!1up∆1, corepDqq „= Fp∆1, corepDqq. Now
∆1 ! NpJq is anodyne (in fact, both left and right anodyne) by an explicit horn filling argument.
Hence FpNpJq, corepDqq! Fp∆1, corepDqq is a trivial fibration by Corollary 3.10. This finishes
the proof of (⊠2) and we are done.

4.12. Corollary/Warning. — If C is a (small) ordinary category and W a collection of
morphisms in C, then the localisation NpCqrW−1s from Construction 4.10 is not necessarily the
nerve of an ordinary category. But the homotopy category hopNpCqrW−1sq is equivalent to the
localisation of C at W in the world of ordinary categories.

Proof sketch. For counterexamples see Theorem 4.13 or the discussion in 6.34 below. The asser-
tion about hopNpCqrW−1sq follows easily from a combination of Lemma 4.11 and Lemma 2.14
as well as the universal property of localisations in ordinary category theory.

So localisations provide another way to construct non-trivial examples of quasi-categories.
In fact, both An and Cat∞ can be constructed in this way:

4.13. Theorem. — If Kan∆ and QCat∆ are the Kan-enriched categories from Example 2.23,
then there are canonical equivalences of quasi-categories

NpKanq
“

thomotopy equivalencesu−1‰ »
−! N∆pKan∆q = An ,

NpQCatq
“

tequivalences of quasi-categoriesu−1‰ »
−! N∆pQCat∆q = Cat∞ . ■

4.14. Remark. — It’s not hard to construct the functors in Theorem 4.13: By a direct
inspection of their constructions, we can build a map NpKanq! N∆pKan∆q of simplicial sets
(or rather simplicial classes, but we’ll ignore the set-theoretic difficulties). Using Lemma 4.11,
we only need to check that this map sends homotopy equivalences in Kan to equivalences in
N∆pKan∆q, which is clear from the unravelling in Example 2.23. An analogous argument works
of course for N∆pQCat∆q.

However, proving that these functors are equivalences is not easy. There is a general notion
of simplicial model categories: These are model categories A (Definition 3.27) together with a
simplicial enrichment A∆ that interacts with the model structure in a certain way. One can
show that the model structures on sSet from Examples 3.28 and 3.29 can be made into simplicial
model structures. In general, if A is a simplicial model category and Acf ⊆ A, pA∆qcf ⊆ A∆

is the full subcategory respectively the full sub-simplicially enriched category spanned by the
bifibrant objects, there is an equivalence of quasi-categories

NpAcfq
“

tweak equivalencesu−1‰ »
−! N∆`pA∆qcf˘ .

A proof can be found in rL-HA, Theorem 1.3.4.20s.

4.15. Remark. — For a general model category A, it’s customary to call

A∞ := NpAcfq
“

tweak equivalencesu−1‰

the underlying quasi-category of A. Its homotopy category hopA∞q is called the homotopy
category of A. By Corollary/Warning 4.12, this agrees with the ordinary localisation of Acf at
the weak equivalences. Furthermore, if the factorisations from Definition 3.27(d) can be chosen
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§4.2. Localisations of ∞-categories

functorially (which is always the case in practice), then A∞ could be obtained equally well by
inverting the weak equivalences in either of Ac, Af , or A itself, where Ac,Af ⊆ A denote the
full subcategories spanned by the cofibrant or fibrant objects, respectively. So in practice, all
possible alternative definitions of A∞ agree.

We’ll sketch the argument why NpAcq! NpAq becomes an equivalences after localisation
at all weak equivalences; the other cases are entirely analogous. Let’s assume that A has
functorial cofibrant replacements. That is, for x ∈ A the map from the initial object to x factors
functorially through a trivial fibration ηx : cpxq ! x, where cpxq is cofibrant. Then we get a
natural transformation η : cp−q ⇒ idNpAq of endofunctors of NpAq. Using Lemma 4.11, we can
show that this natural transformation passes to the localisation at all weak equivalences.(4.2)

After the localisation, η becomes an equivalence of endofunctors by Theorem 4.5. Then
NpAcq! NpAq and c : NpAq! NpAcq become equivalences of quasi-categories after localisation
at all weak equivalences, as desired.

In general, it’s hard to describe morphisms in any localisation. However, if A is a simplicial
model category, then Remark 4.14 and Theorem 2.24 provide convenient access to the Hom
animae in A∞.

(4.2)Here’s the full argument: Put W := tweak equivalencesu for short; we wish to construct a natural transfor-
mation NpAqrW−1

s × ∆1 ! NpAqrW−1
s. It’s clear from the construction that NpAqrW−1

s × ∆1 can also be
described as the localisation of NpAq × ∆1 at W × tid0u ∪ W × tid1u. Thus, by Lemma 4.11, it’s enough to
provide a natural transformation NpAq × ∆1 ! NpAqrW−1

s that sends these morphisms to equivalences. Now
the composition of η : NpAq × ∆1 ! NpAq with the localisation functor NpAq! NpAqrW−1

s does just that.
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§5. Lurie’s straightening equivalence
We’ve seen in 2.11 how to construct the Hom animae HomCpx, yq in a quasi-category C. But we
never explained how to assemble these values into a functor HomC : Cop × C ! An (where Cop

is as in 2.17). In this section, we give such a construction and prove the Yoneda lemma. To do
this, we’ll use Lurie’s straightening/unstraightening equivalence, which deals with the problem of
constructing functors F : C ! An and F : C ! Cat∞. In the end, straightening/unstraightening
will not only allow us to prove Yoneda’s lemma, but the statement itself will be indispensible
for developing quasi-category theory as a higher analogue of ordinary category theory.

§5.1. Cocartesian fibrations and the straightening equivalence

5.1. Some informal motivation. — Let’s think about what a functor F : C ! Cat∞ looks
like. Suppose x, y ∈ C are objects and α : x ! y is a morphism. Then F pxq, F pyq will be
quasi-categories and F pαq : F pxq! F pyq will be a functor between them. So for every u ∈ F pxq,
there will be an associated object v » F pαqpuq ∈ F pyq. In a picture, this could look as follows:

u v

w
F pαq

F pxq F pyq

Cat∞

C
x y

α

Now let’s turn this picture upside down! Take F pxq and F pyq and place them above x and y,
respectively. We would like to think of them as the fibres over x and y in some kind of fibration
p : U ! C:

u v

w

φ

F pxq F pyq

x y

α

U

C

///

But, of course, U shouldn’t just be a disjoint union of some fibres. Instead, we need to capture
somehow that the values F pxq of the functor F “vary functorially in x”. To do this, we connect
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every u ∈ F pxq to its image v » F pαqpuq by a new 1-simplex φ : u! v. Then we keep adding
further simplices to make sure that the object we end up with is a quasi-category. For example,
in our picture we have a morphism v ! w in F pyq, so we have to add a 2-simplex σ : ∆2 ! U
in such a way that σ|∆t0,2u : u! w is a composition of φ and v ! w.

To summarise, we’ve given some vague motivation why functors F : C ! Cat∞ should
correspond to certain fibrations p : U ! C, in such a way that the values F pxq correspond
to the fibres p−1txu. Furthermore, we’ve motivated that for every α : x ! y in C and every
u ∈ p−1txu » F pxq, there should be a special 1-simplex φ : u! v that connects u to its image
under F pαq. Every other 1-simplex from u to an object in p−1tyu should arise as a composition
with some morphism v ! w in p−1tyu » F pyq. These vague ideas are captured in a precise
sense by the following definition:

5.2. Definition. — Let p : U ! C be an inner fibration of quasi-categories.
paq A morphism φ : u! v in U is called p-cocartesian if, for every n ⩾ 2, every lifting problem

Λn0 U

∆n C

p

in which ∆t0,1u ⊆ Λn0 is sent to φ, has a solution.
pbq We call p a cocartesian fibration if every lifting problem

t0u U

∆1 C

p

has a solution in which ∆1 is sent to a p-cocartesian morphism.
There are dual notions of p-cartesian morphisms and cartesian fibrations, in which we use
∆tn−1,nu ⊆ Λnn ! ∆n and t1u! ∆1 instead.

It’s easy to identify those cocartesian fibrations that correspond to functors F : C ! An.

5.3. Lemma (“Left fibrations are cocartesian fibrations whose fibres are animae”). — For a
cocartesian fibration p : U ! C, the following conditions are equivalent:
paq Every morphism in U is p-cocartesian.
pbq p : U ! C is a left fibration.
pcq All fibres p−1txu for x ∈ C are animae.

Proof sketch. The equivalence (a) ⇔ (b) is clear and the implication (b) ⇒ (c) follows from
Corollary 4.3. To prove (c) ⇒ (a), let φ : u! v be a morphism in U . We wish to show that φ is
p-cocartesian. Suppose we’re given a lifting problem of the sort we’re interested in: a diagram

Λn0 U

∆n C

σ

p
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such that σ|∆t0,1u is φ : u! v. We will construct a new lifting problem

Λn0 Λn+1
1 U

∆n ∆n+1 C

///

d1 σ

p

d1

such that σ = σ ◦ d1 (note that d1 maps ∆t0,1u to ∆t0,2u, so φ is now the image of ∆t0,2u under
σ). Since p is an inner fibration, we’ll be able to solve the new lifting problem and get a solution
for our original one.

Let’s construct σ! By Definition 5.2(b), applied to ppφq : ∆1 ! C, we can choose a p-
cocartesian morphism φ′ : u ! v′ such that v′ ∈ p−1tppvqu. By Definition 5.2(a), applied to
a suitable Λ2

0 ! U , we can find a morphism ψ : v′ ! v such that φ » ψ ◦ φ′. Note that ψ
is an equivalence since p−1tppvqu is an anima by assumption. Now we construct σ piece by
piece. We put σ|d1pΛn

0 q := σ and we send t1u to v′ as well as ∆t0,1u to φ′. Furthermore, we send
∆t0,1,2u to the 2-simplex witnessing φ » ψ ◦ φ′. The rest of Λn+1

1 ∖ pd1pΛn0 q ∪ ∆t0,1,2uq can be
filled by a sequence of horn filling problems in which either the first edge is φ′, so a filler exists
by Definition 5.2(a), or the first edge is ψ : v ! v′, so a filler exists by Joyal’s lifting theorem
(Theorem 4.1) since ψ is an equivalence. As usual, we skip the horn filling combinatorics.

We can now state the straightening/unstraightening equivalence. As was, unfortunately, clear
from the beginning, we won’t give a proof here. The most readable proof available is probably
due to Gijs Heuts rFHR21s with contributions by Fabian Hebestreit and Jaco Ruit, building on
previous work by Cisinski and Nguyen. Lurie’s original proof can be found in rL-HTT, §3.2s.
There’s also another approach by Cisinski rCis19s in which straightening/unstraightening is
much easier to obtain, but much more work is needed to identify An ⊆ Cat∞ with the full
sub-quasi-category spanned by the Kan complexes.

5.4. Theorem (Straightening/unstraightening). — Let C be a quasi-category.
paq Let CocartpCq ⊆ Cat∞/C be the (non-full!) sub-quasi-category spanned by cocartesian

fibrations over C and those maps that preserve cocartesian morphisms (see 2.16). Then
there are inverse equivalences of quasi-categories

Stpcocartq : CocartpCq
»
−! −

»
FpC,Cat∞q : Unpcocartq

called “straightening” and “unstraightening”. For a cocartesian fibration p : U ! C, the
value of Stpcocartqppq : C ! Cat∞ at x ∈ C is given by the fibre p−1txu. Furthermore,
F : C ! D is a functor, then the unstraightening equivalence sends the precomposition
functor − ◦ F : FpD,Cat∞q! FpC,Cat∞q to the pullback F ˚ : CocartpDq! CocartpCq.

pbq Let LeftpCq ⊆ Cat∞/C be the full sub-quasi-category spanned by the left fibrations over C
(see 2.16). Then the equivalences from (a) restrict to equivalences

Stpleftq : LeftpCq
»
−! −

»
FpC,Anq : Unpleftq .

Dually, there are equivalences CartpCq » FpCop,Cat∞q and RightpCq » FpCop,Anq. Here Cop

is the opposite quasi-category from 2.17. ■
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§5.1. Cocartesian fibrations and the straightening equivalence

Most of the time, one can treat Theorem 5.4 as a black box and work purely with the
statement, without knowing how exactly and we don’t need to know how exactly the functors
Stpcocartq and Unpcocartq are constructed!

Still, we’ll spend the rest of §5.1 to give you some idea how the construction works. In 5.6,
we’ll explain the effect of straightening on morphisms. After that, we’ll discuss two (hopefully
enlightening) classical examples in the language of straightening/unstraightening in 5.7 and 5.8.
But let’s begin by giving some examples.

5.5. Example. — Let C be a quasi-category. The following are examples of cocartesian
fibrations and their unstraightenings.
paq For every quasi-category D, the unique functor D ! ˚ is a cocartesian fibrations, with

the cocartesian morphisms given by the equivalences in D. This is an easy application of
Joyal’s lifting theorem (Theorem 4.1). Furthermore, since cocartesian fibrations are clearly
preserved under pullbacks, we see that pr2 : D × C ! C is a cocartesian fibration for every
quasi-category C. The pr2-cocartesian morphisms in D × C are precisely those that are
equivalences in the D-component. The straightening of pr2 : D × C ! C is the constant
functor const D : C ! Cat∞; this follows from the pullback statement in Theorem 5.4(a),
but it’s probably also pretty clear intuitively.

pbq For every x ∈ C, we’ve seen in Corollary 4.4 that t : Cx/ ! C is even a left fibration.
The fibre of t over y ∈ C is HomCpx, yq by 2.11, so we can use the straightening of
t as our definition of the Hom functor HomCpx,−q : C ! An. Analogously, the dual
construction s : C/y ! C is a right fibration and its cartesian straightening is, by definition,
the contravariant Hom functor HomCp−, yq : Cop ! An. This still leaves the question how
to construct the two-variable Hom functor HomC : Cop × C ! An, which we’ll discuss in
Constructions 5.21 and 5.22 below.

pcq The target projection t : ArpCq ! C from 2.11 is a cocartesian fibration, and its is our
definition of the functor C/− : C ! Cat∞ that sends x ∈ C to the slice quasi-category C/x.
A morphism φ : pα : u! u′q! pβ : v ! v′q in ArpCq, that is, a commutative diagram

u v

u′ v′

α /// β

in C, is t-cocartesian if and only if u! v is an equivalence in C. Proving this is a somewhat
subtle and will lead us on a detour in §5.2. One way to see the “if”-part (which is the
difficult part) would be to reformulate a lifting problem for t against Λn

0 ! ∆n into a
lifting problem for C ! ˚ against Λn0 × ∆1 ⊔Λn

0 ×t1u ∆n × t1u! ∆n × ∆1, as in the proof
of Corollary 3.10. Then one proves, using Joyal’s lifting problem (Theorem 4.1), that a
lifting problem of the latter kind is always solvable if the original lifting problem maps
∆t0,1u ⊆ Λn0 to a morphism φ as above.

However, a much nicer proof of the “if”-part is provided by Lemma 5.13 and Lemma 5.16
below (except that there are some black boxes involved . . . ). For the “only if”-part, it’s
enough to write down the correct lifting diagrams; we leave this to you.

5.6. Straightening/unstraightening on morphisms — Suppose we’re given a cocartesian
fibration p : U ! C and let F : C ! Cat∞ be its straightening. We know what F does on objects:
It sends x ∈ C to the fibre p−1txu. We’ll now explain what F does on morphisms. To this end,
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let ArpcocartqpUq ⊆ ArpUq denote the full sub-quasi-category spanned by the p-cocartertesian
morphisms. Then

ArpcocartqpUq −! ArpCq ×s,C U

is a trivial fibration.(5.1) To see this, first consider the case where p is a left fibration. Then
ArpcocartqpUq = ArpUq by Lemma 5.3(a). Furthermore, t0u! ∆1 is left anodyne. Hence the map
above is a trivial fibration by Corollary 3.10. In general, we can adapt the proof of Corollary 3.10
to show that ArpcocartqpUq! ArpCq ×s,C U has lifting against ∂∆n ! ∆n: Rewrite such a lifting
problem as a lifting problem for p : U ! C against ∂∆n × ∆1 ⊔∂∆n×t0u ∆n × t0u! ∆n × ∆1.
The latter is a sequence of horn lifting problems, each of which can be solved either because p
is an inner fibration or by employing Definition 5.2(a).

Given a morphism α : x! y in C, we can now give the desired description of the functor
F pαq : p−1txu! p−1tyu as follows: Pull back ArpcocartqpUq! ArpCq ×s,C U along tαu! ArpCq

to obtain a trivial fibration tαu ×ArpCq ArpUq! tαu ×s,C U „= txu ×C U „= p−1txu. Every trivial
fibration admits a section. By choosing such a section and composing with the target projections
t : ArpUq! U and t : ArpCq! C, we obtain (up to natural equivalence) the desired functor

F pαq : p−1txu −! tαu ×ArpCq ArpUq
t
−! tyu ×C U „= p−1tyu .

With (a lot) more care, one can continue these considerations to give a complete description of
the functor F : C ! Cat∞. This was first done by Haugseng and is described in rLan21, §3.3s.
The proofs of straightening/unstraightening in rFHR21s or rL-HTT, §3.2s proceed instead by
constructing a simplicially enriched functor CrCs! sSet∆, as they deduce Theorem 5.4 from a
suitable Quillen equivalence of model categories.

5.7. Straightening/unstraightening and stacks — We’ll briefly explain the relation
between Theorem 5.4 and the language of stacks from algebraic geometry. If you already know
stacks, this will hopefully make Theorem 5.4 less mysterious. If you’d like to learn about stacks,
this remark will hopefully make the literature on stacks less mysterious. If you don’t care about
stacks at all, you can safely skip this remark.

In algebraic geometry, one is naturally lead to functors whose values should be groupoids.
For example, given a scheme S and a group scheme G acting on S, one would like to study
the functor rS/Gs : pSch/Sqop ! Grpd that sends any scheme X over S to the groupoid of
GX -torsors, where GX := G ×S X is the base change of G to X. A morphism f : X ! Y
in Sch/S should be sent to the pullback functor f˚ : tGY -torsorsu! tGX -torsorsu. Here one
quickly runs into a problem: If g : Y ! Z is another morphism in Sch/S , then the associated
pullback functors come with a natural equivalence f˚ ◦ g˚ » pg ◦ fq˚, but that equivalence is
not an equality. So rS/Gs can’t exist as a functor rS/Gs : pSch/Sqop ! Grpd into the category
of groupoids; instead, it’s a functor

rS/Gs : N
`

Sch/S
˘op
−! Grpdp2q

into the 2-category of groupoids as introduced in Example 2.25. The ancient algebraic geometers
didn’t have the language to deal with functors into a 2-category, but they made do with the
tools of their time: They instead constructed a functor p : U ! Sch/S in such a way that

(5.1)Intuitively, this says that given a morphism α : x! y in C and an object u ∈ p−1
txu, then lifting α to a

p-cocartesian morphism φ : u! v can not only be done, but even in a unique way (up to contractible ambiguity).
This fits perfectly into the picture from 5.1: Such a p-cocartesian lift φ connects u ∈ p−1

txu » F pxq to its image
under F pαq : F pxq! F pyq. So φ should be unique.
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Nppq : NpUq! NpSch/Sq is a right fibration whose straightening StprightqpNppqq » rS/Gs is the
functor above.(5.2) Explicitly, U is the category of pairs pX,Pq, where X ∈ Sch/S and P is a
GX -torsor. Morphisms pX,Pq! pY,Qq in U are pairs pf, αq where f : X ! Y is a morphism
in Sch/S and α : f˚Q »

−! P is an isomorphism of GX -torsors. See rOls16, Example 8.1.10s or
rStacks, Tag 036Zs.

More generally, a fibred category is a functor p : U ! C of ordinary categories such that
Nppq : NpUq! NpCq is a cartesian fibration.(5.3) The classical definition of cartesian morphisms,
see rOls16, Definition 3.1.1s or rStacks, Tag 02XKs, differs from Definition 5.2(a), but it’s still
equivalent, as we’ll see in Lemma 5.16. By Theorem 5.4, the data of a fibred category defines a
functor Stpcartq : NpCqop ! Cat∞, which necessarily factors through the full sub-quasi-category
Catp2q ⊆ Cat∞ from Example 2.25, because the fibres of Nppq : NpUq! NpCq must be nerves of
ordinary categories again, Conversely, we show in footnote (5.2) below that the unstraightening
of such a functor is necessarily the nerve of an ordinary category.

A category fibred in groupoids is a fibred category p : U ! C such that all fibres are groupoids;
equivalently, the associated functor Stpcartq : NpCqop ! Catp2q factors through Grpdp2q ⊆ Catp2q.
Finally, if C is equipped with a Grothendieck topology, we call p : U ! C a stack if the functor
StprightqpNppqq : Cop ! Grpdp2q is a sheaf. To formulate the sheaf condition, one needs an
appropriate notion of limits in Grpdp2q (or in An), which we’ll see in Definition 6.9. Fortunately,
these limits can be pinned down in explicit terms; for example, it’s not too hard to unravel
Lemma 6.14 to arrive at the description from rOls16, §4.2s or rStacks, Tag 026Bs. In particular,
the result is (the nerve of) a groupoid again.

Thus, by exclusively working on the fibration side of the cartesian straightening equivalence,
the theory of stacks can be and has been developed within the framework of ordinary category

(5.2)It’s not a coincidence that the unstraightening of rS/Gs is the nerve of an ordinary category. Let C be any
ordinary category, let F : NpCq

op ! Cat∞ be any functor that lands in the full sub-quasi-category Catp2q ⊆ Cat∞
from Example 2.25, and let p : U ! NpCq be the cartesian unstraightening of F . Then U is equivalent to the
nerve of an ordinary category. We’ll give a sketch of the proof, which uses the notion of homotopy pullbacks
from §5.2. First, it’s enough to show that HomU pu, vq is a discrete anima for all u, v ∈ U , because then the
essentialy surjective functor uU : U ! NphopUqq (given by the unit of the adjunction ho ⊣ N) is also fully faithful,
hence an equivalence by Theorem 4.6. To prove that HomU pu, vq is discrete, observe that we have a map
HomU pu, vq ! HomNpCqpppuq, ppvqq. Since the target is a discrete anima, the source HomU pu, vq is a disjoint
union of the fibres of this map. So it’s enough to show that each individual fibre is a discrete anima. Restricting
to the fibre over α ∈ HomNpCqpppuq, ppvqq amounts to base changing along the map α : ∆1 ! NpCq. So we may
assume NpCq „= ∆1.

Now t0u ! ∆1 is fully faithful. Hence, if U0 := t0u ×∆1 U denotes the fibre over 0, then U0 ! U is fully
faithful too. But U0 is also equivalent to the nerve of an ordinary category, because we assume our original
functor F takes values in Catp2q ⊆ Cat∞. So if u, v ∈ U0, then HomU pu, vq » HomU0 pu, vq is a discrete anima.
The same reasoning applies if u and v both belong to the fibre over 1. If ppuq = 1 and ppvq = 0, then the map
HomU pu, vq! Hom∆1 p1, 0q » ∅ forces HomU pu, vq » ∅, which is discrete too. It remains to deal with the case
ppuq = 0 and ppvq = 1. After choosing a p-cartesian lift φ : u′ ! v of 0 ! 1, the dual of Lemma 5.16 below
provides a homotopy pullback

HomU pu, u′
q HomU pu, vq

Hom∆1 p0, 0q Hom∆1 p0, 1q

φ˚

p ≒h
p

ppφq˚

The bottom horizontal arrow is clearly a homotopy equivalence, so the top arrow must be one as well, whence
HomU pu, u′

q » HomU pu, vq. As we already know HomU pu, u′
q to be discrete, we’re done.

(5.3)It follows from the uniqueness statement in Lemma 2.7(b) that any map between nerves of ordinary categories
is automatically an inner fibration. So to check whether such a map is a cartesian fibration, it’s enough to show
the existence of cartesian lifts.
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theory. But with today’s tools, its actually possible to talk about stacks in the intended way:
as functors into Grpdp2q. I find the latter much easier.

We’ve seen in 5.7 that Theorem 5.4 is already interesting for functors into Grpdp2q ⊆ An.
But there’s an even simpler case: functors into sets! As it turns out, even this simplest possible
special case is interesting and recovers classical theory.

5.8. Straightening/unstraightening and covering theory. — An anima is called discrete
if it is homotopy equivalent to a disjoint union of copies of the point ˚. Equivalently, all path
components are contractible. Considering sets as discrete animae, it’s easy to construct a functor
NpSetq! An; this functor is fully faithful and an equivalence onto the full sub-quasi-category
spanned by the discrete animae.(5.4)

Let X be an anima. A covering of X is a Kan fibration (or equivalently a left fibration,
see Corollary 4.3) p : X ′ ! X such that for all x ∈ X, the fibres p−1txu are discrete animae.
This recovers the usual notion of coverings from topology. More precisely, let’s call a covering
p : X ′ ! X strict if the fibres p−1txu are not only equivalent to but isomorphic to disjoint
unions of copies of ˚. Then every covering is equivalent to a strict covering and the adjunction
| · | : Kan  ! Top : Sing from 2.4 transform strict coverings of animae into usual coverings of
topological spaces and vice versa.(5.5)

We let CovpXq ⊆ LeftpXq denote the full sub-quasi-category spanned by the coverings of
X. Under the straightening equivalence from Theorem 5.4(b), coverings p : X ′ ! X correspond
to those functors F : X ! An that land in discrete animae. Thus, we get an equivalence of
quasi-categories

CovpXq
»
−! F

`

X,NpSetq
˘

.

Now recall FpX,NpSetqq „= NpFunphopXq,Setqq from Lemma 2.14. But what is hopXq? We
know X » Sing |X| from the simplicial approximation theorem, hence hopXq » hopSing |X|q.
By the description in 2.13, the objects of hopSing |X|q are given by Sing0 |X|, the points of |X|.
The morphisms of hopSing |X|q are equivalence classes of Sing1 |X|, that is, equivalence classes
of paths in X. A quick unravelling of definitions shows that the equivalence relation is precisely

(5.4)Let’s sketch how to do this: One can equip Set with a trivial Kan enrichment Set∆ in which FSet∆ pS, T q is
just a disjoint union of HomSetpS, T q many points. Sending S 7!

∐
s∈S

˚ then defines a fully faithful simplicially
enriched functor Set∆ ! Kan∆. Applying N∆

p−q, we obtain a fully faithful functor of quasi-categories
NpSetq „= N∆

pSet∆
q! N∆

pKan∆
q, whose essential image are precisely the discrete animae.

(5.5)To see that every covering p : X ′ ! X is equivalent to a strict one, we need to use some details of the
construction of the equivalence from Theorem 5.4(b): Since the functor F : X ! An associated to X lands
in discrete animae, we can factor it, up to equivalence, through a functor F0 : X ! NpSetq. By Lemma 2.14,
F0 is induced by a functor of ordinary categories F 0 : hopXq ! Set. If p : U ! hopXq is the Grothendieck
construction of F 0, then Nppq : NpUq ! NphopXqq can be shown to be a strict covering. Hence the pullback
NpUq ×NphopXqq X ! X is a strict covering too and equivalent to our original covering p.

Now suppose p : X ′ ! X is a strict covering. Using that the fibres of p are disjoint unions of copies of ˚ together
with the lifting properties of Kan fibrations, it’s easy to see that for every ∆n ! X, the pullback ∆n ×X X ′

consists of a disjoint union of copies of ∆n. This means that the preimage of any cell in the CW-complex |X|
under |p| : |X ′|! |X| is a disjoint union of copies of that cell. Via some technical arguments that we omit, this
shows that |p| is a covering in the usual sense. Conversely, if q : Y ′ ! Y is a covering of topological spaces, q
is Serre fibration. Sing turns Serre fibrations into Kan fibrations because | · | : Kan  ! Top : Sing is a Quillen
adjunction (even a Quillen equivalence) by Example 3.31. Hence Sing q : Sing Y ′ ! Sing Y is a Kan fibration.
This could also be shown by an easy direct argument (observe that the pair p|∆n|, |Λn

i |q is homeomorphic
to pr0, 1s

n−1 × r0, 1s, r0, 1s
n−1 × t0uq and use the homotopy lifting property of covering spaces, see rHat02,

Proposition 1.30s for example). Since Sing preserves pullbacks and sends discrete topological spaces to disjoint
unions of copies of ˚, we see that Sing q is indeed a strict covering.
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for two paths to be homotopic. Hence hopSing |X|q is precisely the fundamental groupoid Π1|X|
of the topological space |X|, and therefore hopXq » Π1|X|. We have thus proved a classical
classification result from topology:

5.9. Theorem (Classification of covering animae). — Let X be an anima. Then CovpXq

is equivalent to the nerve of the ordinary category FunpΠ1|X|,Setq. In particular, there’s an
equivalence of ordinary categories

ho
`

CovpXq
˘

» Fun
`

Π1|X|,Set
˘

.

It might not be immediately obvious, but Theorem 5.9 comprises all you would ever want to
know about covering theory. Since it fits the theme of these notes, let us spell this out in detail:

5.10. Corollary. — Suppose X is connected and let a basepoint x ∈ X be chosen.
paq There’s a Galois correspondence (that is, a bijection) between connected coverings of X

and subgroups H ⊆ π1pX,xq.
pbq X is simply connected (that is, π1pX,xq „= 0) if and only if every covering p : X ′ ! X

admits a section s : X ! X ′ if and only if every covering of X splits into a disjoint union
of copies of X.

pcq CovpXq contains a unique object rp : rX ! X (up to equivalence) with the property that
rX is simply connected. This covering rp : rX ! X is called the universal covering of X.

If AutXp rXq denotes the group of deck transformations of rX, that is, the automorphism
group of p : rX ! X in hopCovpXqq, then AutXp rXq „= π1pX,xq.

pdq Suppose p′ : X ′ ! X is a covering and x′ ∈ X ′ is a point such that ppx′q = x. Let
f : pZ, zq! pX,xq be a morphism of pointed animae, where Z is connected too. Then the
pointed lifting problem

pX ′, x′q

pZ, zq pX,xq

p
f ′

f

has a solution if and only if the image of f˚ : π1pZ, zq ! π1pX,xq is contained in the
image of p˚ : π1pX ′, x′q! π1pX,xq. In this case, the lift f ′ is necessarily unique.

Proof sketch. Let’s denote G := π1pX,xq for short. The crucial observation is that Π1|X| is
equivalent to its full sub-groupoid spanned by txu. This full sub-groupoid consists of one
element x with HomΠ1|X|px, xq „= G many automorphisms. Therefore, the functor category
FunpΠ1|X|,Setq is equivalent to the category G9Set of sets together with a left action of G and
we obtain an equivalence of quasi-categories

CovpXq » NpG9Setq .

With this observation, (a) is immediate: We just have to note that a G-set S is connected—that
is, S can’t be written as a disjoint union of two non-empty G-sets—if and only if S consists of
a single G-orbit. This in turn happens if and only if S „= G/H is the set of left cosets for some
subgroup H ⊆ G. Part (b) is just as trivial: We have G „= 0 if and only if every G-set S has a
fixed point (or in other words, the map S ! ˚ admits a G-equivariant section). Furthermore,
G „= 0 if and only if every G-set is a disjoint union of fixed points.
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For (c), consider G with the natural action of itself as a G-set. We let rp : rX ! X be the
associated covering. Then AutXp rXq „= AutG9SetpG,Gq „= G. Furthermore, it’s easy to see that
rX is simply connected. Indeed, if q : Y ! rX is a covering of rX, then rp◦ q : Y ! X is a covering
of X and so q determines a morphism in CovpXq. This morphism corresponds to a morphism
S ! G of G-sets. Every such morphism has a section, which shows that every covering of
rX has a section and so rX is simply connected by (b). Conversely, suppose p : X ′ ! X is a
covering of X such that X ′ is simply connected. Let S be the associated G-set; by (a), we
must have S „= G/H for some subgroup H ⊆ G. Let π : G! G/H be the canonical projection.
By abuse of notation, π : rX ! X ′ also denotes the associated morphism in CovpXq. It’s easy
to see that π is a covering of X ′.(5.6) Since X ′ is simply connected, π must admit a section
s : X ′ ! rX. But then π : G ! G/H also admits a section, which is only possible if H is the
trivial subgroup.

For (d), the “only if”-part is trivial. For the “if”-part, we may assume that X ′ is connected;
otherwise just replace X ′ by the connected component of x′. Then X ′ corresponds to a G-set
of the form G/H. Furthermore, we must have π1pX ′, x′q „= H. To see this, construct a map
π : rX ! X ′ as in the proof of (c). This is necessarily the universal covering of X ′. Then
AutX′p rXq ⊆ AutXp rXq „= G is the subgroup of those automorphisms τ : G ! G that satisfy
π◦τ = π. Hence indeed AutX′p rXq. To solve our lifting problem, note that a lift of f is equivalent
to a section of the pullback covering pZ : Z ×X X ′ ! Z. Since straightening/unstraightening
transforms pullbacks into precompositions (see Theorem 5.4(a)), pZ corresponds to the set
G/H with π1pZ, zq-action induced by f˚ : π1pZ, zq! π1pX,xq = G. By assumption, the image
of f˚ is contained in H, so the action is trivial. Hence G/H is a disjoint union of fixed points;
each fixed point determines a section of pZ . Together with the requirement f ′pzq = x′, we then
get a unique solution.

§5.2. Digression: Homotopy pullbacks

After getting acquainted with straightening/unstraightening, our next goal is to prove Yoneda’s
lemma. But before we can do that, we need to go on a brief detour about homotopy pullbacks.
These guys will allow us to compute HomArpCq and HomC/y

in terms of HomC for any quasi-
category C, which will be used countless times throughout the rest of this text.

5.11. “Definition”. — Suppose we’re given a diagram of Kan complexes or quasi-categories

X X ′

Y Y ′
⇐= or

C C′

D D′
⇐=

that commutes up to homotopy or up to natural equivalence, respectively (so that the corre-
sponding diagram in An or Cat∞-commutes; see the discussion in Example 2.23). We say that
the diagram is a homotopy pullback if its image in An or Cat∞ is a pullback in the ∞-categorical
sense (which we will only define in Definition 6.9(a) below).

(5.6)We only need to show that π is a Kan fibration, because the fact that the fibres of π are discrete follows
easily from the fact that the fibres of p : X ′ ! X and p ◦ π = rp : rX ! X are both discrete. To show that π is a
Kan fibration, consider any simplex σ : ∆n ! X ′ and its image p ◦ σ : ∆n ! X in X. To solve any horn lifting
problem involving σ, we may as well base change rX and X along p ◦ σ. But the pullbacks ∆n ×p◦σ,X,p X

′ and
∆n ×p◦σ,X,rp

rX are both disjoint unions of copies of ∆n because we assume p : X ′ ! X and rp : rX ! X to be
coverings. So the new horn lifting problem has a solution for trivial reasons.
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As stated, this “definition” doesn’t lead to vicious circles, but once you try to prove anything
with it, it surely does. So let’s just say there is a way to define homotopy pullbacks properly,
in any model category. This is done in any sensible treatment of model categories; see rCis19,
Definition 2.3.22s or rF-HCII, Definition VIII.49(vi)s. For the Kan–Quillen model structure
and the Joyal model structure on sSet (see Examples 3.28 and 3.29) the above “definition” is
recovered, albeit not obviously so. ■

5.12. Model category fact. — A pullback diagram in a model category is automatically a
homotopy pullback diagram if all objects are fibrant and at least one of the legs is a fibration.
See rCis19, Proposition 2.3.27s for a proof. In the examples at hand, we deduce:
paq A pullback of Kan complexes is automatically a homotopy pullback if at least one if its

legs is a Kan fibration.
pbq A pullback of quasi-categories is automatically a homotopy pullback if at least one of its

legs is an isofibration (or categorical fibration in Lurie’s terminology). That is, it is an
inner fibration and has the lifting property against t0u! NpJq. Here J := t• •u is the
category of two objects and a pair of mutually inverse isomorphisms between them, so
lifting against t0u! NpJq means that we can lift equivalences.

So homotopy pullbacks, or equivalently, pullbacks in An or Cat∞ can be computed as follows:
First write down the diagram as a diagram of simplicial sets. Then replace one of its legs by an
equivalence followed by a Kan fibration or an isofibration; this can be done by Lemma 3.12.(5.7)

Finally, take the usual pullback along that Kan or isofibration.
As a consequence, with some care, homotopy pullbacks can usually be manipulated in the

same way as ordinary pullbacks. We’ll use this freely throughout the rest of this section. ■

5.13. Lemma. — Let C be a quasi-category and let α : x! y, α′ : x′ ! y′ be morphisms in
C. Then there exists a homotopy pullback diagram of animae

HomArpCq

`

pα : x! yq, pα′ : x′ ! y′q
˘

HomCpy, y′q

HomCpx, x′q HomCpx, y′q

≒h α˚

α′
˚

Here the pre- and postcomposition maps α˚ and α′
˚ are defined by means of the functors

HomCpx,−q : C ! An and HomCp−, y′q : Cop ! An from Example 5.5(b). ■

5.14. Remark. — The only proof I know is in Fabian’s handwritten notes rF-HCII, Proposi-
tion VIII.5s. It’s not particularly difficult: You work directly with the definition of HomArpCq to
write it as an honest pullback in which both legs are Kan fibrations. Then you check that the
corners of the pullback are homotopy equivalent to HomCpx, x′q, HomCpy, y′q, and HomCpx, y′q,
respectively. Along the way, you should also check (but this will be quite apparent from the
description in 5.6) that the maps you obtain are really the pre- and postcomposition maps α˚

and α′
˚ as defined above.

Also note that in the case where C is an ordinary category we recover our original description
of morphisms in an arrow category from Construction 1.13. Indeed, in this case all Hom

(5.7)To replace a functor of quasi-categories by an equivalence followed by an isofibration, a small variation
of the argument from Lemma 3.12 is needed. The problem is that NpJq has countably many non-degenerate
simplices, whereas Λn

i had only finitely many. This has the effect that it’s no longer sufficient to iterate the
construction of Spfq countably many times. To fix this, we simply do ℵ1 many iterations instead of ℵ0 many.
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animae are discrete (that is, sets), hence the ambiguity of α˚ and α′
˚ up to homotopy goes

away. Furthermore, any map of discrete Kan complexes is automatically a Kan fibration, so
the homotopy pullback is a pullback on the nose by model category fact 5.12(a). If you think
about this pullback briefly, that’s exactly how morphisms in ArpCq are described.

5.15. Corollary. — Let C be a quasi-category, let y ∈ C be an object, and let α : x! y and
α′ : x′ ! y be morphisms in C. Then there exists a homotopy pullback diagram of animae

HomC/y

`

pα : x! yq, pα′ : x′ ! yq
˘

tαu

HomCpx, x′q HomCpx, yq

≒h

α′
˚

Here the postcomposition map α′
˚ is again defined as in Lemma 5.13.

Proof sketch. We use the following pullback square from 2.11:

C/y ArpCq

tyu C

≒

In general, its straightforward to check that Hom in a pullback of quasi-categories is the pullback
of Hom in each component. Then we plug in Lemma 5.13 and check that everything works
out with homotopy pullbacks too. For a complete proof, see rF-HCII, Corollary VIII.6s, where
Fabian deduces the result from Lemma 5.13 as we do here, or rL-HTT, Lemma 5.5.5.12s, in
which Lurie gives a direct argument.

Homotopy pullbacks can be used to give an equivalent characterisation of cocartesian edges.
In fact, the terminology (co)cartesian morphism was originally introduced in the classical theory
of stacks (see 5.7), where it was defined using the criterion from Lemma 5.16 below.(5.8) The
equivalence with Definition 5.2(a) is due to Lurie; see rL-HTT, Proposition 2.4.4.3s or rLan21,
Corollary 3.1.16s.

5.16. Lemma. — Let p : U ! C be an inner fibration of quasi-categories. Then a morphism
φ : u! v is p-cocartesian if and only if the following diagram is a homotopy pullback of animae
for every w ∈ U :

HomU pv, wq HomU pu,wq

HomC
`

ppvq, ppwq
˘

HomC
`

ppuq, ppwq
˘

p

φ˚

≒h
p

ppφq˚

Here the precomposition maps φ˚ and ppφq˚ are once again defined as in Lemma 5.13. ■

To finish our excursion into homotopy pullbacks, we introduce a variant of cocartesian
fibrations that is occasionally quite useful, but will only play a very minor role in these notes.

(5.8)Of course, in the classical theory the homotopy pullback of animae was replaced by an ordinary pullback
of sets. But observe that a homotopy pullback of simplicial sets, in which all participating objects are disjoint
unions of copies of ˚, must automatically be an ordinary pullback. The reason is that any map between two such
simplicial sets is automatically a Kan fibration and any homotopy equivalence is automatically an isomorphism.
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5.17. Definition. — Let p : U ! C be an inner fibration of quasi-categories.
paq Let φ : u ! v be a morphism in U , corresponding to a map φ : ∆1 ! U . We call φ a

locally p-cocartesian morphism if it is pp◦φ-cocartesian, where pp◦φ : ∆1 ×p◦φ,C U ! ∆1

denotes the pullback of p along p ◦ φ : ∆1 ! C.
pbq We call p a locally cocartesian fibration if the pullback pα : ∆1 ×α,C U ! ∆1 is a cocartesian

fibration for every α : ∆1 ! C.
There are dual notions of locally p-cartesian morphisms and locally cartesian fibrations.

5.18. Corollary. — Let p : U ! C be a locally cocartesian fibration. Then p is a cocartesian
fibration if and only if the set of locally p-cartesian morphisms is closed under composition.

Proof sketch. First assume that p is a cocartesian fibration. Then cocartesian lifts are unique
up to equivalence, as we’ve seen in 5.6. A morphism being cocartesian is preserved under
pullbacks. Hence every p-cocartesian morphism φ is also pp◦φ-cocartesian. The above-mentioned
uniqueness then implies that every locally p-cocartesian morphism must also be p-cocartesian.
So locally p-cocartesian morphisms being closed under composition reduces to the same assertion
about p-cocartesian morphisms, which is easy to check (for example, using Lemma 5.16).(5.9)

Conversely, assume that locally p-cocartesian morphisms are closed under compositions. Let
φ : u! v be locally p-cocartesian. We wish to show that φ is also p-cocartesian. To this end,
we’ll verify that the diagram from Lemma 5.16 is a homotopy pullback for all w ∈ U . Using
Theorem 3.18, Lemma 3.19, and the five lemma (plus Remark 3.20), it’s enough to show that
for every α ∈ HomCpppvq, ppwqq, the induced map on homotopy fibres over α is a homotopy
equivalence. So fix α : ppvq! ppwq in C. Let Uα := ∆1 ×α,C U be the fibre over α. Furthermore,
let ψ : v ! v′ be a locally p-cocartesian lift of α (so that ppv′q = ppwq). We claim that the
homotopy-commutative diagram

(˚)
HomUαpv′, wq HomU pv, wq HomU pu,wq

␣

idppwq

(

HomC
`

ppvq, ppwq
˘

HomC
`

ppuq, ppwq
˘

ψ˚

///h

φ˚

p ///h
p

α˚ ppφq˚

exhibits HomUppwq
pv′, wq both as the homotopy fibre of HomU pv, wq! HomCpppvq, ppwqq over

tαu and the homotopy fibre of HomU pu,wq! HomCpppuq, ppwqq over tα ◦ ppφqu. As explained
above, if we could show this, we would be done.

To see this, observe that Hom animae in pullbacks are given as pullbacks of Hom animae in
the respective factors (which is straightforward to see from 2.11 and we’ll see a more general
assertion in Lemma 6.76(a)). Combining this with the assumption that ψ is locally p-cocartesian
and Lemma 5.16, we see that the following diagram consists of a homotopy pullback square
and a pullback square on the nose:

HomUαpv′, wq HomUαpv, wq HomU pv, wq

Hom∆1p0, 0q Hom∆1p0, 1q HomC
`

ppvq, ppwq
˘

ψ˚

≒h p ≒ p

α

(5.9)Closedness under composition is also clear intuitively: If β : y ! z is another morphism in C and we compose
a p-cocartesian lift of α with a p-cocartesian lift of β, then we have connected an element of F pxq with its image
under F pβq ◦ F pαq » F pβ ◦ αq : F pxq! F pzq. And that’s a p-cocartesian lift of β ◦ α.
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Hence the outer rectangle must be a homotopy pullback too. Since Hom∆1p0, 0q » ˚ » tidppwqu,
it follows that the left square in (˚) is a homotopy pullback. Since, by assumption, any choice
of composition ψ ◦ φ is locally p-cocartesian, the same argument can be used to show that the
outer rectangle in (˚) is a homotopy pullback too. This proves that HomUppwq

pv′, wq agrees with
both homotopy fibres in question and we’re done.

§5.3. Yoneda’s lemma

5.19. Theorem (Quasi-categorical Yoneda lemma). — Let C be a quasi-category, x ∈ C an
object, and E : C ! An a functor. Then evaluation at idx induces an equivalence of animae

evidx : HomFpC,Anq

`

HomCpx,−q, E
˘ »
−! Epxq .

Here HomCpx,−q : C ! An is the functor from Example 5.5(b). A dual statement holds for the
contravariant Hom functor HomCp−, xq and FpCop,Anq.

For the proof we need, more or less, the fact that ˚ » tidxu! Cx/ is a left anodyne map.
This is proved in rLan21, Lemma 4.1.4s or rF-HCII, Corollary D.7s. Their proofs use some
constructions we haven’t mentioned yet, but we can circumvent these at the cost of showing a
slightly weaker statement, which will still be sufficient for our purposes.

5.20. Lemma. — Let C be a quasi-category and x ∈ C an object. For every left fibration
X ! C, the natural map

F
`

Cx/, X
˘ »
−! Fp˚, Xq ×Fp˚,Cq F

`

Cx/, C
˘

is an equivalence of quasi-categories.

Proof sketch. We call a cofibration A! B of simplicial sets weakly left anodyne if the natural
map FpB,Xq ! FpA,Xq ×FpA,Cq FpB, Cq is an equivalence of quasi-categories for all left
fibrations X ! C. Every left anodyne map is weakly left anodyne by Corollary 3.10. Our goal
is to show that ˚! Cx/ is weakly left anodyne.

The idea to show this is as follows: Intuitively, it’s clear that idx ∈ Cx/ is an initial object.
Therefore, there should be a natural transformation η : consttidxu ⇒ idCx/

. So η witnesses the
fact that ˚! Cx/ is a homotopy equivalence—except that Cx/ is not an anima. Still, as we’ll
see, η can then be leveraged to show the desired statement.

To construct η, we can proceed as follows: The identity on ArpCq is adjoint to a map
ArpCq × ∆1 ! C. Combining this with the map C » Fp˚, Cq ! Fp∆1, Cq » ArpCq induced by
∆1 ! ˚ provides a map ArpCq × ∆1 ! ArpCq; restricting this to Cx/ yields the desired map
η : Cx/ × ∆1 ! Cx/. Putting C◁x/ := pCx/ × ∆1q/pCx/ × t0uq, it’s easy to check that η factors
through a map η : C◁x/ ! Cx/. The map ˚! Cx/ induces a map ∆1 » ˚◁ ! C◁x/. This fits into a
diagram

˚ ∆1 ˚

Cx/ C◁x/ Cx/

/// ///

η

which exhibits ˚! Cx/ as a retract of ∆1 ! C◁x/. Hence to show that ˚! Cx/ is weakly left
anodyne, it’s enough to show the same for ∆1 ! C◁x/. For this, note that t0u ! ∆1 is left
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anodyne, and so is the composition t0u! ∆1 ! C◁x/ since it is a pushout of Cx/×t0u! Cx/×∆1.
It’s easy to check that being weakly left anodyne is closed under 2-out-of-3, and so ∆1 ! C◁x/
must be weakly left anodyne too.

Proof sketch of Theorem 5.19. Let p : U ! C be the unstraightening of E : C ! An. Then

HomFpC,Anq

`

HomCpx,−q, E
˘

» HomLeftpCq

`

t : Cx/ ! C, p : U ! C
˘

» HomCat∞/C

`

t : Cx/ ! C, p : U ! C
˘

using the straightening equivalence (Theorem 5.4(b)) and the fact that LeftpCq! Cat∞/C is
fully faithful. By Corollary 5.15, the diagram

HomCat∞/C

`

pt : Cx/ ! Cq, pp : U ! Cq
˘

˚

HomCat∞

`

Cx/,U
˘

HomCat∞

`

Cx/, C
˘

≒h

is a homotopy pullback, where ˚ is sent to t : Cx/ ! C. Now recall from Theorem 2.24
that HomCat∞p−,−q » core Fp−,−q. Furthermore, we claim that the following diagrams are
homotopy pullbacks:

F
`

Cx/,U
˘

F
`

Cx/, C
˘

U C

≒h
and

core F
`

Cx/,U
˘

core F
`

Cx/, C
˘

corepUq corepCq

≒h

For the left one, we use Lemma 5.20 and model category fact 5.12(b): We only need to check
that p : U ! C is an isofibration. But any left fibration has lifting against t0u ! NpJq, as
this map is left anodyne (by an explicit horn filling argument). To see that the right square
is a homotopy pullback too, we need to check that core : QCat ! Kan preserves homotopy
pullbacks. The deeper reason for this is of course that core : Cat∞ ! An is right adjoint to
the inclusion An ⊆ Cat∞ (see Example 6.3(a)). For a direct argument, we can use 5.12: By
an easy application of Joyal’s lifting theorem (Theorem 4.1), core transforms isofibrations into
Kan fibrations and then by arguments as in the proof of Theorem 4.6 we can show that core
preserves pullbacks of quasi-categories in which at least one leg is an isofibration.

Combining the homotopy pullbacks so far (this kind of manipulation is fine by 5.12), we
find that

HomCat∞/C

`

pt : Cx/ ! Cq, pp : U ! Cq
˘

˚

corepUq corepCq

≒h

is a homotopy pullback, where ˚ is sent to x ∈ corepCq. As observed above, U ! C is an
isofibration and so corepUq! pCq is a Kan fibration. Thus, the homotopy pullback agrees with
the ordinary pullback. Now corepUq ×corepCq txu „= corepU ×C txuq „= U ×C txu » F pxq using
that the fibres U ×C txu =: p−1txu of p are animae and compute the values of F . This is what
we wanted to prove.
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Finally, we would like to construct the functor HomC : Cop × C ! An. There are several
ways to do this and we’ll outline two possibilities in Constructions 5.21 and 5.22 below. We
won’t prove that they are equivalent (they are), but we won’t ever need that either. So you can
just choose whichever is your favourite.

5.21. Construction. — Consider the functor C/− : C ! Cat∞ from Example 5.5(c). For
every x ∈ C there is a natural functor C/x ! C, so we would expect that C/− lifts to a functor
C/− : C ! Cat∞/C. To construct such a lift, first note that for all quasi-categories D and all
y ∈ D, we have an equivalence FpC,D/yq » FpC,Dq/ const y (in fact, even an isomorphism of
simplicial sets), as can be checked by a simple calculation. Furthermore, Theorem 5.4(a) and
Example 5.5(a) imply that FpC,Cat∞q/ const C » CocartpCq/ppr2 : C×C!Cq holds. So to lift our
functor C/− to Cat∞/C, it suffices to observe that the following diagram is a morphism of
cocartesian fibrations over C:

ArpCq C × C

C

ps,tq

t
///

pr2

By the dual of Corollary 4.4, C/x ! C is a right fibration for all x ∈ C, hence C/− : C ! Cat∞/C
takes values in the full sub-quasi-category RightpCq ⊆ Cat∞/C . Since RightpCq » FpCop,Anq by
the dual of Theorem 5.4(b), we obtain a functor

よC : C
C/−
−−! RightpCq

Stprightq

−−−−−! FpCop,Anq ,

which we take as our definition of the Yoneda embedding (we’ll see in Corollary 5.27 below
that it is indeed fully faithful). Finally, we let HomC : Cop × C ! An be the image ofよC under
the “currying” equivalence FpC,FpCop,Anqq » FpCop × C,Anq. We define the twisted arrow
quasi-category ps, tq : TwArpCq! Cop × C to be the unstraightening of HomC : Cop × C ! An
via Theorem 5.4(b).

Construction 5.21 has the advantage that it allows for a straightforward proof of Corol-
lary 5.27 below. On the downside, however, the unstraightening TwArpCq is very inexplicit
in this description. So alternatively, one can write down an explicit simplicial model for
ps, tq : TwArpCq! Cop × C and define HomC to be its straightening.

5.22. Construction. — For an ordinary category C, we define TwArpCq to be the ordinary
category whose objects are arrows α : x! y in C and whose morphisms pα : x! yq! pα′ : x′ !
y′q are “twisted” commutative squares

x x′

y y′

α /// α′

There are functors s : TwArpCq ! Cop and t : TwArpCq ! C that send α : x ! y to x and y,
respectively. For a quasi-category C, we re-define TwArpCq to be the simplicial set given by

TwArpCqn := HomsSet
`

N
`

rnsop ⋆ rns
˘

, C
˘

.
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Here rnsop ⋆ rns is the join of the totally ordered sets rnsop and rns. In general, if I and J are
ordinary categories, we let I ⋆ J be the category obtained from the disjoint union I ⊔ J by
adding precisely one morphism i! j for all i ∈ I, j ∈ J .

The natural maps p∆nqop „= Nprnsopq ! Nprnsop ⋆ rnsq and ∆n „= Nprnsq ! Nprnsop ⋆ rnsq

induce maps of simplicial sets s : TwArpCq ! Cop and t : TwArpCq ! C. It turns out that
ps, tq : TwArpCq! Cop × C is always a left fibration; in particular, TwArpCq is a quasi-category.
See rL-HA, Proposition 5.2.1.3s or rLan21, Proposition 4.2.4s for proofs. We can then define
HomC : Cop × C ! An to be the straightening of ps, tq : TwArpCq! Cop × C.

5.23. Remark. — If C is an ordinary category, then NpTwArpCqq » TwArpNpCqq, no
matter how you define the right-hand side. So the notational overload checks out. If you use
Construction 5.22, this equivalence is even an isomorphism of simplicial sets and straightforward
to verify. If you use Construction 5.21 instead, the proof is still not too hard, but it requires you
to know how straightening/unstraightening works under the hood, at least for ordinary categories
(in which case straightening/unstraightening is known as the Grothendieck construction).

Let’s do three quick reality checks for our newly constructed functor HomC :

5.24. Lemma. — Let HomC : Cop × C ! An be the functor from Construction 5.21 or from
Construction 5.22. For all x, y ∈ C, the restrictions

HomC |txu×C : C −! An and HomC |Cop×tyu : Cop −! An

agree with the functors HomCpx,−q and HomCp−, yq constructed in Example 5.5(b).

Proof sketch, assuming Construction 5.21. It’s straightforward to see from the construction
that HomC |Cop×tyu : Cop ! An is the straightening of the right fibration C/y ! C, which is also
the definition of HomCp−, yq in Example 5.5(b). Now let U ! C be the unstraightening of
HomC |txu×C . Note that evaluating a functor T : Cop ! An at x ∈ Cop is the same as restriction
along FpCop,Anq! Fptxu,Anq » An. By the dual of Theorem 5.4(b), this corresponds to the
pullback functor x˚ : RightpCq! Rightptxuq » An under the right straightening equivalence.
So HomC |txu×C can be described as the composition

HomC |txu×C : C
C/−
−−! RightpCq

x˚

−! Right
`

txu
˘

» An .

By “inspection”(5.10), this means that the following diagram is a homotopy pullback:

U txu × C

ArpCq C × C

≒h

ps,tq

(5.10)Unfortunately, verifying that the above diagram is a homotopy pullback requires us to know a little more
about how the straightening/unstraightening equivalence is constructed. The idea is to rewrite the equivalence
HomC |txu×C » x˚ ◦ pC/−q as a pullback HomC |txu×C » pC/−q ×const C consttxu in the functor quasi-category
FpC,Cat∞q and then to transform this into a pullback in the quasi-category CocartpCq via Theorem 5.4(a). This
immediately yields that the diagram is a pullback in CocartpCq, hence a homotopy pullback of quasi-categories.
However, to make this argument work as stated, we would need Lemma 6.12 below, which would lead to circular
reasoning. So instead, one has to show that x˚ ◦ pC/−q can be written as a homotopy pullback in a suitable
simplicial model category whose underlying quasi-category (in the sense of Remarks 4.14 and 4.15) is FpC,Cat∞q.
In fact, the proof of Theorem 5.4 works by deducing it from a Quillen equivalence between simplicial model
categories . . .
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To compute this homotopy pullback, we use model category fact 5.12(b): We claim that
ps, tq : ArpCq! C × C is already an isofibration. Indeed, it’s an inner fibration by Corollary 3.10
and lifting of equivalences follows easily from Theorem 4.5. So we can just take the pullback on
the nose, which is Cx/ by 2.11. But HomCpx,−q : C ! An was defined to be the straightening
of t : Cx/ ! C. This shows HomC |txu×C » HomCpx,−q.

Proof sketch, assuming Construction 5.22. In this case, we need to show that the pullbacks of
ps, tq : TwArpCq ! Cop × C along txu × C ! Cop × C and Cop × tyu ! Cop × C are equivalent
to Cx/ ! C and pC/yqop ! Cop, respectively. This is not quite trivial; see rL-HA, Proposi-
tion 5.2.1.10s or rLan21, Lemma 4.2.7s.

5.25. Lemma. — Let F : C ! D be a functor of quasi-categories. Then the natural maps
HomCpx, yq! HomDpF pxq, F pyqq assemble into a natural transformation

HomCp−,−q =⇒ HomD
`

F p−q, F p−q
˘

in FpCop × C,Anq. Here HomC and HomD are the functors from Constructions 5.21 or 5.22.

Proof sketch, assuming Construction 5.21. Consider the morphism t : C ×F,D,s ArpDq! D. It
is a cocartesian fibration, which can be shown using Lemmas 5.13 and 5.16 in the same way as
Example 5.5(c). Hence the following diagram is a diagram of cocartesian fibrations over C:

ArpCq C ×F,D,s ArpDq ×t,D,F C C × C

C
t

t

ps,tq

/// ///

pr2

After unravelling Construction 5.21 and using the fact that precompositions correspond to
pullbacks under straightening/unstraightening (see Theorem 5.4(a)), the diagram above will
induce the desired natural transformation HomCp−,−q ⇒ HomDpF p−q, F p−qq, provided we
can show the following claim:
p⊠q The cocartesian straightening of the middle vertical arrow is the composite functor

C F
−! D

D/−
−−−! Cat∞/D

F˚

−! Cat∞/C .

To prove (⊠) it’s enough to show that the straightening of t : C ×F,D,s ArpDq! D is F ˚ ◦ D/−,
since once again, precompositions correspond to pullbacks. Now the following diagram is a
homotopy pullback:

C ×F,D,s ArpDq C × D

ArpDq D × D

≒h F×idD

ps,tq

(in fact, it’s a pullback on the nose, and ps, tq : ArpDq ! D × D is an isofibration; see the
argument in the proof of Lemma 5.24). By a similar “inspection” as in the proof of Lemma 5.24,
this observation shows that the straightening of t : C ×F,D,s ArpDq ! D is indeed F ˚ ◦ D/−,
thus proving (⊠).
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Proof sketch, assuming Construction 5.22. It’s clear from the construction that F induces a
map TwArpCq! TwArpDq. By the universal property of pullbacks, this factors over a map

TwArpCq −! pCop × Cq ×F op×F,Dop×D,ps,tq TwArpDq .

The latter is a morphism of left fibrations over Cop × C. Since precompositions correspond
to pullbacks under straightening/unstraightening (see Theorem 5.4(a)), we get a natural
transformation HomCp−,−q ⇒ HomDp−,−q ◦ pF op ×F q » HomDpF p−q, F p−qq, as desired.

5.26. Lemma. — Let F,G : C ! D be functors of quasi-categories and let η : F ⇒ G be
a natural transformation. Then the natural transformation from Lemma 5.25 as well as η˚,
postcomposition with η, and η˚, precomposition with η, fit into a commutative diagram

HomCp−,−q HomD
`

Gp−q, Gp−q
˘

HomD
`

F p−q, F p−q
˘

HomD
`

F p−q, Gp−q
˘

F

G

/// η˚

η˚

in the quasi-category FpCop × C,Anq.

Proof sketch. First observe that if C′ is another quasi-category, then HomC×C′ » HomC × HomC′

holds in FppC × C′qop × pC × C′q,Anq. Depending on whether you use Construction 5.21 or
Construction 5.22, this basically reduces to the observations that ArpC × C′q „= ArpCq × ArpC′q
and TwArpC × C′q „= TwArpCq × TwArpC′q, respectively, but in each case you need some model-
category arguments to do the reduction, similar to the “inspection” in the proof of Lemma 5.24.
We’ll skip these arguments.

Now we regard η as a functor η : ∆1 × C ! D. Then Lemma 5.25 can be applied to η to
obtain a natural transformation

Hom∆1×Cp−,−q =⇒ HomD
`

ηp−q, ηp−q
˘

in the functor quasi-category Fpp∆1 × Cqop × p∆1 × Cq,Anq. Applying the usual “currying”
isomorphism, we obtain Fpp∆1 × Cqop × p∆1 × Cq,Anq „= Fpp∆1qop × ∆1,FpCop × C,Anqq. Since
p∆1qop × ∆1 „= ∆1 × ∆1 „= □2, an object in Fpp∆1qop × ∆1,FpCop × C,Anqq corresponds to
a commutative square in FpCop × C,Anq. By unravelling the constructions, Hom∆1×Cp−,−q

corresponds to the following square:

HomCp−,−q × Hom∆1p1, 0q HomCp−,−q × Hom∆1p1, 1q

HomCp−,−q × Hom∆1p0, 0q HomCp−,−q × Hom∆1p0, 1q

///

Indeed, this follows from the fact that Hom∆1×C » Hom∆1 × HomC, as we’ve checked above;
also note that Hom∆1p1, 0q sits in the top left corner rather than Hom∆1p0, 0q because of the
way in which we identified p∆1qop × ∆1 with □2. Now observe that Hom∆1p1, 0q „= ∅, whereas
Hom∆1p0, 0q „= Hom∆1p0, 1q „= Hom∆1p1, 1q „= ˚. This implies that the top left corner of
the diagram above is const ∅, whereas the other corners are given by HomCp−,−q. Similarly,
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HomDpηp−q, ηp−qq corresponds to the following commutative square:

HomD
`

Gp−q, F p−q
˘

HomD
`

Gp−q, Gp−q
˘

HomD
`

F p−q, F p−q
˘

HomD
`

F p−q, Gp−q
˘

η˚

η˚ /// η˚

η˚

The natural transformation Hom∆1×Cp−,−q ⇒ HomDpηp−q, ηp−qq from Lemma 5.25 corre-
sponds to a morphism between these commutative squares. By inspection, this yields the
desired commutative square.

5.27. Corollary. — For every quasi-category C, the Yoneda embeddingよC : C ! FpCop,Anq

is fully faithful.

Proof sketch. We must show thatよC induces equivalences

HomCpx, yq
»
−! HomFpCop,Anq

`

HomCp−, xq,HomCp−, yq
˘

for all x, y ∈ C. It’s clear from Theorem 5.19 that both sides are equivalent via evaluation at idx.
If you go with Construction 5.21, it’s straightforward to see that the morphism induced byよC
is an inverse to evaluation at idx, so it is an equivalence too. If you prefer Construction 5.22,
this needs a little more work, which we omit.

We finish this section with two final remarks.

5.28. Model independence. — Recall from 0.3 that, at least in an ideal version of these
notes, we planned to proceed via the following steps:
paq First, throughout §§2–5, we would set up the framework of quasi-categories.
pbq After that, we would identify a few key model-independent statements and prove (or black

box) them in the model of quasi-categories.
pcq Finally, starting from §6, all further proofs would be done in a model-independent fashion.
Step (a) is done by now, whereas step (c) lays ahead. So let’s talk about what the key statements
from step (b) are supposed to be. Of course, Theorems 4.5 and 4.6 are among them, as are
Theorem 5.19 as well as Lemmas 5.24, 5.25, and 5.26. In each of these cases, it’s clear that the
statement is really a model-independent one, even though we formulated them in the model of
quasi-categories. Somewhat surprisingly though, Theorem 5.4 can also be reformulated in a
model-independent way. In particular, there are model-independent definitions of cocartesian
and left fibrations! Indeed, if p : U ! C is a functor of ∞-categories, Lemma 5.16 provides a
model-independent definition of a morphism φ : u! v in U being p-cocartesian.The condition
that cocartesian lifts exist (Definition 5.2(b)) can be replaced by the condition that

ArpcocartqpUq ArpCq

U C

≒ s

p

is a pullback in Cat∞, where ArpcocartqpUq ⊆ ArpUq is the full sub-∞-category spanned by the
p-cocartesian morphisms. This model-independent definition of cocartesian fibrations recovers
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Definition 5.2, as we’ll see in Lemma 5.29 below. Finally, in light of Lemma 5.3, we can redefine
p to be a left fibration if it is a cocartesian fibration and ArpcocartqpUq ⊆ ArpUq is an equivalence
of ∞-categories.

In particular, Theorem 5.4 can be reinterpreted as a model-independent statement about an
equivalence of ∞-categories CocartpCq » FunpC,Cat∞q for any ∞-category C. This statement
absolutely belongs to step (b) and it will play a much more prominent role in our treatment of
∞-categories than it does in ordinary category theory.

The example of cocartesian and left fibrations is only the first of many instances where our
constructions with quasi-categories can be retconned into model-independent constructions.
We’ll see more of that in model category fact 6.13.

5.29. Lemma. — The functor ArpcocartqpUq! U ×C,s ArpCq is always fully faithful (where
the pullback is taken in Cat∞). Furthermore, the following conditions are equivalent:
paq ArpcocartqpUq ! U ×C,s ArpCq is also essentially surjective. In particular, it must be

an equivalence (by Theorem 4.6), so that p : U ! C is a cocartesian fibration in the
model-independent sense.

pbq For every factorisation p : U ! U ′ ! C into an equivalence of quasi-categories followed by
an isofibration, U ′ ! C is a cocartesian fibration in the old sense.

pcq For some factorisation p : U ! U ′ ! C into an equivalence of quasi-categories followed by
an isofibration, U ′ ! C is a cocartesian fibration in the old sense.

Proof sketch. To show that ArpcocartqpUq! U ×C,s ArpCq is fully faithful, use Lemma 5.13 to
compute Hom on either side and Lemma 5.16 to show that they coincide. This is fun to figure
out yourself so we’ll leave it to you.

The implication (b) ⇒ (c) is trivial. For (c) ⇒ (a), it’s enough to show that the functor
ArpcocartqpU ′q! U ′ ×C,sArpCq is essentially surjective, because U ! U ′ is an equivalence of quasi-
categories. Since U ′ ! C is a cocartesian fibration, it’s an isofibration too, hence the pullback
U ′ ×C,s ArpCq in Cat∞ can also be taken in simplicial sets (see 5.12(b)). Furthermore, the
condition from Definition 5.2(b) translates into ArpcocartqpU ′q! U ′ ×C,s ArpCq being surjective
on 0-simplices. Hence it must be an essentially surjective functor of quasi-categories.

By the same reasoning, to show (a) ⇒ (b), we must show that for all factorisations
p : U ! U ′ ! C into an equivalence followed by an isofibration, the map of simplicial sets
ArpcocartqpU ′q ! U ′ ×C,s ArpCq is surjective on 0-simplices. The condition from (a) tells us
this map is an equivalence of quasi-categories. In particular, it hits every equivalence class
of 0-simplices. To show that it really hits every 0-simplex, it then suffices to show that
ArpcocartqpU ′q ! U ′ ×C,s ArpCq is an isofibration. Observe that ArpU ′q ! U ′ ×C,s ArpCq is an
isofibration—it’s an inner fibration by Corollary 3.10 and lifting of equivalences can be shown by
a straightforward argument, using that the isofibration U ′ ! C admits lifting of equivalences too.
Since ArpcocartqpU ′q ⊆ ArpU ′q is a full sub-quasi-category in the sense of 2.16 and furthermore
closed under equivalences, the map ArpcocartqpU ′q! ArpU ′q must be an isofibration. It follows
that ArpcocartqpU ′q! U ′ ×C,s ArpCq is an isofibration too, as desired.

5.30. Functoriality of the Yoneda lemma. — Let C be a quasi-category. Let’s write
FunpCop,Anq =: PShpCq for the ∞-category of presheaves on C.(5.11) For an object x ∈ C and a
(5.11)In §1 we had defined PShpCq := FunpC, Setq for ordinary categories. This is, of course, not compatible with
the new definition. In the following, all presheaves will be presheaves of animae and we’ll never talk about
presheaves of sets again.
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presheaf E : Cop ! An, the dual of Theorem 5.19 tells us that

evidx : HomPShpCq

`

よCpxq, E
˘ »
−! Epxq

is an equivalence. It turns out that this equivalence is functorial both in x and in E. Of
course, thanks to Theorem 4.5, the only difficulty lies in making the map evidx functorial.
It’s straightforward to make it functorial in E, but I couldn’t find any easy argument for
functoriality in x. So if you do, please tell me!

One way of producing this natural transformation is to construct it on the level of simplicially
enriched functors. Implicitly, this requires that the construction of HomC : Cop ×C ! An via sim-
plicially enriched functors agrees with our construction; at least in the case of Construction 5.22,
this was done by Lurie rL-HA, Proposition 5.2.1.11s. A somewhat nicer argument, which is at
least model-independent (but makes heavy use of §6), goes as follows: Let’s instead construct
an inverse of evidx in a functorial way. That is, we are looking for a natural transformation

η : idPShpCq =⇒ HomPShpCq

`

よCp−q,−
˘

.

We’ll see in Lemma 6.31 that idPShpCq is the ∞-categorical left Kan extension ofよC along itself.
So it’s enough to construct a natural transformationよC ⇒よ˚

C HomPShpCqpよCp−q,−q; this can be
taken to be the image of the natural transformation HomCp−,−q ⇒ HomPShpCqpよCp−q,よCp−qq

from Lemma 5.25 under the “currying” equivalence FunpCop × C,Anq » FunpC,PShpCqq.
Even though this argument looks super fishy, I think it doesn’t run into vicious circles.

As far as I can see, we only used material up to Lemma 6.31, whereas the first time we need
functoriality of the Yoneda lemma will be, conveniently, in Lemma 6.32.
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§6. ∞-Category theory
Armed with Lurie’s straightening equivalence and the quasi-categorical Yoneda lemma, we will
spend §§6.1–6.4 redeveloping the theory from §1 (and more) in the setting of quasi-categories.
In §6.5 we will see a first major application to topology. After that, there will be a lengthy
appendix (§§6.6–6.10) in which we discuss presentable ∞-categories and prove Lurie’s adjoint
functor theorem.

Even though, implicitly, we work with quasi-categories, our arguments in §§6.1–6.4 will
be almost entirely model-independent; the same is true, at least in large parts, for §§6.5–6.10.
So from now on, instead of quasi-categories, we’ll simply write ∞-categories. We’ll consider
ordinary categories as ∞-categories via the nerve construction, but we’ll always suppress N
in our notation.(6.1) Furthermore, we’ll write FunpC,Dq instead of FpC,Dq for ∞-categories C
and D. We’ll only switch back to the old terminology in the few instances where non-model-
independent arguments are used. I believe these few exceptions could easily be treated in any
other model of ∞-categories as well. Also recall from 5.28 that many constructions and results
so far (like cocartesian/left fibrations) can be reformulated in a model-independent fashion,
and this is how we’re going to use them.

§6.1. Adjunctions

6.1. Definition. — Let L : C ! D be a functor of ∞-categories.
paq Let y ∈ D. An object x ∈ C is a right adjoint object to y under L if there exists an

equivalence
HomCp−, xq » HomD

`

Lp−q, y
˘

in the functor category FunpCop,Anq.
pbq A functor R : D ! C is a right adjoint of L if there exists an equivalence

HomC
`

−, Rp−q
˘

» HomD
`

Lp−q,−
˘

in the functor category FunpCop × D, Setq. In this case we write L ⊣ R.

6.2. Lemma (“Adjoints can be constructed pointwise”). — A functor L : C ! D has a right
adjoint if and only if every y ∈ D has a right adjoint object x ∈ C.

Proof. One implication is trivial: If R : D ! C is a right adjoint of L, then Rpyq is a right adjoint
object of y for every y ∈ D. For the other implication, consider HomDpLp−q,−q : Cop ×D ! An
as a functor R : D ! FunpCop,Anq. Our assumption implies that R takes values in the image
of the Yoneda embeddingよC : C ! FunpCop,Anq; namely, Rpyq » HomCp−, xq if x ∈ C is a
right adjoint object of y ∈ D under L. SinceよC is an equivalence onto its image, we obtain a
functor R : D ! C with the required properties.

6.3. Example. — It’s clear that any adjunction of ordinary categories is also an adjunction
of ∞-categories. Furthermore, we already know some non-trivial examples of adjunctions of
∞-categories:

(6.1)In particular, the partially ordered set rns is now identified with its nerve, the quasi-category ∆n. However,
we’ll continue to write ∆n. There are at least to reasons for this. First, I believe ∆n is notationally easier to
parse for a human brain. Second, once we reach §7, we’ll consider simplicial objects in ∞-categories, and it will
become necessary to keep the ∞-category ∆n and the object rns ∈ ∆∆ notationally separate.
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paq The inclusion An ⊆ Cat∞ is fully faithful (by Theorem 2.24 and Corollary 3.11) and
has both adjoints: A right adjoint core : Cat∞ ! An and a left adjoint | · | : Cat∞ ! An
sending C to |C|, the localisation of C at all its morphisms.

pbq For every ∞-category C, the functor − × C : Cat∞ ! Cat∞ has a right adjoint, which
sends an ∞-category D to FunpC,Dq.

Both (a) and (b) can easily be seen using Lemma 6.2: For (a), it’s enough to check that the
functors i : corepDq! D and p : C ! |C| induce functorial equivalences

i˚ : HomAn
`

−, corepDq
˘ »=⇒ HomCat∞p−,Dq , p˚ : HomAn

`

|C|,−
˘ »=⇒ HomCat∞pC,−q

via post- and precomposition, respectively. Indeed, equivalences can be checked pointwise by
Theorem 4.5 and then we can apply Lemma 4.11 (and a similar assertion for core). For (b),
observe that we have an evaluation functor ev : FunpC,Dq × C ! D for all ∞-categories C and
D. If we work with quasi-categories, this functor is simply given by the counit of the adjunction
− × C : sSet ! sSet : FpC,−q. Using Lemma 6.2, it’s enough to show that the composition

HomCat∞

`

−,FunpC,Dq
˘ −×C===⇒ HomCat∞

`

− × C,FunpC,Dq × C
˘ ev˚=⇒ HomCat∞p− × C,Dq

is an equivalence. Again, Theorem 4.5 allows us to check this pointwise, and then Theorem 2.24
reduces everything to the adjunction − × C : sSet ! sSet : FpC,−q of ordinary categories.

In particular, (b) allows us to define a functor FunpC,−q : Cat∞ ! Cat∞. With a little
more work(6.2), these functors can be assembled into a two-argument functor

Funp−,−q : Catop
∞ × Cat∞ −! Cat∞ .

Next, we’ll characterise adjunctions in terms of unit and counit.

6.4. Construction. — Let L : C  ! D :R be an adjunction. We obtain a natural trans-
formation u : idC ⇒ RL, called the unit of the adjunction, as follows: Consider the natural
transformations HomCp−,−q ⇒ HomDpLp−q, Lp−qq » HomDp−, RLp−qq, where the first one
is induced by functoriality of L and the second by the given adjunction. We can consider these
as a natural transformationよC ⇒よC ◦RL in FunpC,FunpCop,Anqq. SinceよC is fully faithful,
we obtain a natural transformation u : idC ⇒ RL, as desired. Dually, there is also a counit
c : LR ⇒ idD, as usual.

(6.2)Here’s the argument: First, let ˚ ˚ be the discrete category on two objects. In Remark 6.10 below, we’ll
construct a functor lim: Funp˚ ˚,Cat∞q! Cat∞. Under the identification Funp˚ ˚,Cat∞q » Cat∞ × Cat∞,
this functor sends a pair pC,Dq of ∞-categories to the product C ×D. By “currying”, this functor corresponds to a
functor P : Cat∞ ! FunpCat∞,Cat∞q sending C to P pCq » − × C : Cat∞ ! Cat∞. By the way, this is also how
you construct the functor −×C in (b). As we’ve seen above, P pCq is a left adjoint, and so P factors through the full
sub-∞-category FunL

pCat∞,Cat∞q ⊆ FunpCat∞,Cat∞q spanned by the left adjoint functors. By Corollary 6.8
below, extracting adjoints induces an equivalence of ∞-categories FunL

pCat∞,Cat∞q » FunR
pCat∞,Cat∞q

op.
Thus, P op can be regarded as a functor P op : Catop

∞ ! FunR
pCat∞,Cat∞q, sending C to P op

pCq » FunpC,−q.
“Currying” back, we obtain the desired functor Funp−,−q : Catop

∞ × Cat∞ ! Cat∞.
It’s true that the functor core Funp−,−q agrees with HomCat∞ p−,−q, but this is not so easy to see (and

we won’t need it). One way would be to turn Fp−,−q : QCat × QCat ! QCat into a Kan-enriched functor
and show that N∆

pFp−,−qq agrees with Funp−,−q. This is easy since N∆ turns Kan-enriched adjunctions
into adjunctions of ∞-categories. Then one has to check that HomCat∞ p−,−q agrees with N∆ applied to
core Fp−,−q : QCat × QCat! Kan. At least for Construction 5.22, this is done in rL-HA, Proposition 5.2.1.11s.
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6.5. Lemma (Triangle identities). — Let L : C  ! D :R be an adjunction of ∞-categories.
Then there are commutative diagrams

L LRL

L

Lu

iL
cL

/// and
R RLR

R

uR

iR
Rc

///

where iL and iR are pointwise(6.3) the identity (so they are equivalences by Theorem 4.5).
Conversely, if L, R are functors and u : idC ⇒ RL, c : LR ⇒ idD are natural transformations
that fit into diagrams as above, where iL and iR are equivalences (not necessarily pointwise the
identity), then L and R determine an adjunction.

Proof. First observe that the composites

HomD
`

Lp−q,−
˘ R=⇒ HomD

`

RLp−q, Rp−q
˘ u˚

=⇒ HomC
`

−, Rp−q
˘

,

HomC
`

−, Rp−q
˘ L=⇒ HomD

`

Lp−q, LRp−q
˘ c˚=⇒ HomD

`

Lp−q,−
˘

agree pointwise with the adjunction equivalence HomDpLp−q,−q » HomCp−, Rp−qq and its
inverse, and are thus an equivalences themselves (Theorem 4.5). Indeed, Yoneda’s lemma
(see the dual of Theorem 5.19) tells us that for every fixed x ∈ C, a natural transformation
HomDpLpxq,−q ⇒ HomDpx,Rp−qq is determined up to contractible choice by the image of
idLpxq : Lpxq ! Lpxq, which is a morphism x ! RLpxq. For the adjunction equivalence
HomDpLp−q,−q » HomCp−, Rp−qq, that morphism is the unit ux : x ! RLpxq by definition.
But the image of idLpxq : Lpxq! Lpxq under u˚ ◦R is also ux. The same argument applies to
show that c˚ ◦ L agrees pointwise with HomCp−, Rp−qq » HomDpLp−q,−q.

Now to prove the triangle identities, consider the diagram of natural transformations

HomD
`

Lp−q,−
˘

HomC
`

RLp−q, Rp−q
˘

HomC
`

−, Rp−q
˘

HomD
`

LRLp−q, LRp−q
˘

HomD
`

Lp−q, LRp−q
˘

HomD
`

LRLp−q,−
˘

HomD
`

Lp−q,−
˘

R

pcLq˚

///

u˚

L /// L

pLuq˚

c˚ /// c˚

pLuq˚

The top right square commutes by functoriality of L, the bottom right square commutes
since pre- and postcomposition commute, and the left cell commuting is a consequence of
c : LR ⇒ idD being a natural transformation (see Lemma 5.26). Now walking around the
bottom part of the diagram shows that pcLq˚ ◦ pLuq˚ : HomDpLp−q,−q ⇒ HomDpLp−q,−q

agrees with c˚ ◦ L ◦ u˚ ◦R, which is pointwise the identity as seen above. This establishes the
first triangle identity; the second one is analogous.

Conversely, if L, R are functors and u : idC ⇒ RL, c : LR ⇒ idD are natural transformations
satisfying the triangle identities, then the commutative diagram above (together with its dual)

(6.3)For ordinary categories, if two natural transformations agree pointwise, then they already agree. Indeed, in
the ordinary world, a natural transformation is just pointwise data, subject to certain conditions. But this no
longer works in ∞-land. Nevertheless, it should be true that iL and iR are just idL and idR. If you know why,
please tell me. In any case, this slightly weaker form of the triangle identities doesn’t cause any problems.
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shows that u˚ ◦R and c˚ ◦L induce equivalences between HomDpLp−q,−q and HomCp−, Rp−qq

(which are pointwise inverse if iL and iR are pointwise the identity).

6.6. Corollary. — Let L : C  ! D :R be an adjunction and let I be another category. Then
the pre- and postcomposition functors determine adjunctions

L ◦ − : FunpI, Cq −−! FunpI,Dq :R ◦ − ,

− ◦R : FunpC, Iq −−! FunpD, Iq :− ◦ L .

Proof. The proof of Corollary 1.5 can be copied verbatim.

To finish this subsection about adjunctions, we connect adjunctions to the theory of
straightening/unstraightening. This won’t be needed in the rest of this text (so feel free to skip
it), but it’s nice to know and a standard fact in other treatments of ∞-categories.

6.7. Lemma. — Let F : C ! D be a functor of ∞-categories, corresponding to a functor
∆1 ! Cat∞ (see Example 2.23), which in turn corresponds to a cocartesian fibration p : U ! ∆1

by Theorem 5.4(a). Then the following are equivalent:
paq F admits a right adjoint G : D ! C.
pbq The cocartesian fibration p : U ! ∆1 is also a cartesian fibration.
Furthermore, in this case G agrees with the functor classified by the cartesian straightening
Stpcartqppq : p∆1qop ! Cat∞.

Proof. The crucial observation is the following claim:
p⊠q The functor HomDpF p−q,−q : Cop × D ! An is equivalent to the composition

Cop × D
iop
0 ×i1
−−−−! Uop × U HomU−−−−! An .

Here the first arrow is given by i0 : C » t0u ×∆1 U ! U and i1 : D » t1u ×∆1 U ! U .
To prove (⊠), first observe that i0 : C ! U and i1 : D ! U are fully faithful. Indeed, Hom
animae in pullbacks are given as pullbacks of Hom animae in the respective factors (which
is straightforward to see from 2.11 and we’ll see a more general assertion in Lemma 6.76(a)).
So pullbacks of fully faithful functors are still fully faithful and it remains to observe that
t0u! ∆1 and t1u! ∆1 are both fully faithful, which is obvious. Now consider the following
commutative square in Cat∞:

C C

C D

/// F

F

It can be viewed as a natural transformation const C ⇒ F in Funp∆1,Cat∞q. After cocartesian
unstraightening, it thus induces a morphism φ : ∆1 × C ! U in Cocartp∆1q. Consider the
composite

p∆1 × Cqop × D φop×i1−−−−! Uop × U HomU−−−−! An .

By unravelling the definitions and using that i1 : D ! U is fully faithful, this composite can
be regarded as a natural transformation η : HomU pi0p−q, i1p−qq ⇒ HomU pi1F p−q, i1p−qq in
FunpCop × D,Anq. We wish to show that η is an equivalence of functors. By Theorem 4.5
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this can be checked pointwise. So fix x ∈ C, y ∈ D. By unravelling the constructions
ηpx,yq : HomU pi0pxq, i1pyqq ! HomU pi1F pxq, i1pyqq is given by precomposition with the mor-
phism φx : i0pxq ! i1F pxq in U . As we’ve seen in 5.1, φx is a cocartesian morphism. Since
Hom∆1p1, 1q » Hom∆1p0, 1q, Lemma 5.16 implies that precomposition with φx must be an
equivalence. Thus η is an equivalence of functors, as desired. To finish the proof of (⊠), it re-
mains to observe HomU pi1F p−q,−q » HomDpF p−q,−q as we’ve checked above that i1 : D ! U
is fully faithful.

Now assume that p : U ! ∆1 is a cartesian fibration too and let G : D ! C correspond
to Stpcartqppq : p∆1qop ! Cat∞. Then (⊠) and its dual provide an equivalences of functors
HomDpF p−q,−q » HomU pi0p−q, i1p−qq » HomCp−, Gp−qq, so F and G are adjoints. This
proves (b) ⇒ (a).

Conversely, suppose G : D ! C is a right adjoint of F . Fix y ∈ D. Then (⊠) and the fact
that i0 is fully faithful shows

HomU
`

i0p−q, i0Gpyq
˘

» HomC
`

−, Gpyq
˘

» HomD
`

F p−q, y
˘

» HomU
`

i0p−q, i1pyq
˘

.

The image of idi0Gpyq defines a morphism ψy : i0Gpyq ! i1pyq in U . Furthermore, Yoneda’s
lemma (or more precisely, the dual of Theorem 5.19) shows that any natural transformation
HomCp−, Gpyqq » HomU pi0p−q, i0Gpyqq ⇒ HomU pi0p−q, i1pyqq is uniquely determined by the
image of idGpyq. That uniqueness ensures that the chain of equivalences above is must be given
by postcomposition with ψy. Hence the dual of Lemma 5.16 shows that ψy is a p-cartesian
morphism and we have constructed a sufficient supply of p-cartesian lifts. This finishes the
proof of (a) ⇒ (b).

6.8. Corollary (“Extracting adjoints is functorial”). — Let FunL,FunR ⊆ Fun denote the
full sub-∞-categories spanned by the left/right adjoint functors and let CatL

∞,CatR
∞ ⊆ Cat∞ be

the non-full sub-∞-categories (in the sense of 2.16) spanned by all objects but only the left/right
adjoint functors.
paq For all ∞-categories C and D, sending a left adjoint functor L : C ! D to its right adjoint

R : D ! C can be turned into an equivalence of ∞-categories FunLpC,Dqop » FunRpD, Cq.
pbq There exists an equivalence of ∞-categories CatL

∞ » pCatR
∞qop which is the identity on

objects and sends morphisms in CatL
∞, that is, left adjoint functors L : C ! D, to their

right adjoints R : D ! C.

Proof sketch. For the equivalence in (a), it suffices show that the essential images of FunLpC,Dq

and FunRpD, Cqop under the fully faithful Yoneda embeddings

FunRpD, Cq
pよCq˚
−−−−! Fun

`

D,FunpCop,Anq
˘

» FunpCop × D,Anq ,

FunLpC,Dqop » FunRpCop,Dopq
pよDop q˚
−−−−−! Fun

`

Cop,FunpD,Anq
˘

» FunpCop × D,Anq

coincide. Using Lemma 6.2 and the definition of the Yoneda embedding, it’s straightfor-
ward to check that both essential images consist of those functors H : Cop × D ! An such
that for every x ∈ C there exists a y ∈ D such that Hpx,−q » HomDpy,−q and for every
y′ ∈ D there exists an x′ ∈ C such that Hp−, y′q » HomCp−, x′q. This proves that there
exists an equivalence FunLpC,Dqop » FunRpD, Cq as desired. Furthermore if L : C  ! D :R
is an adjunction, then the Yoneda embeddings above send both R and L to the functor
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HomCp−, Rp−qq » HomDpLp−q,−q : Cop × D ! An. So the equivalence we’ve constructed is
really given by extracting adjoints.

To prove (b), we grossly neglect set theory and regard both CatL
∞ and CatR

∞ as objects in
Cat∞. This can be repaired by considering universes or, with some care, by imposing cardinality
bounds (similar to the argument in Lemma 7.18 below, where we do this in detail). We’ll show
that there exists a functorial bijection π0 HomCat∞pC,CatL

∞q „= π0 HomCat∞pC, pCatR
∞qopq for

all ∞-categories C; if we can do this, then the Yoneda lemma in the ordinary category hopCat∞q

will show that CatL
∞ and CatR

∞ are isomorphic in the homotopy category, hence equivalent
as ∞-categories. We know HomCat∞pC,CatL

∞q » core FunpC,CatL
∞q by Theorem 2.24 and

FunpC,CatL
∞q » CocartpCq by Theorem 5.4(a). Let F : C ! Cat∞ be a functor and p : U ! C

be its cocartesian unstraightening. By Lemma 6.7, F factors through CatL
∞ ! Cat∞ if and

only if for all α : ∆1 ! C, the pullback pα : ∆1 ×α,C U ! ∆1 is not only a cocartesian, but
also a cartesian fibration. In other words, p is a locally cartesian fibration in the sense of
Definition 5.17. Since right adjoints compose, it’s clear that locally p-cartesian morphisms are
closed under composition, and so p is automatically a cartesian fibration by Corollary 5.18. In
summary, we obtain a bijection

π0 HomCat∞pC,CatL
∞q „= π0 core BicartpCq ,

where we define BicartpCq ⊆ Cat∞/C as the non-full sub-∞-category spanned by the bicartesian
fibrations. That is, objects of BicartpCq are those p : U ! C that are both cocartesian and carte-
sian fibrations, and morphisms are those functors in Cat∞/C that preserve both p-cocartesian
and p-cartesian morphisms. In the same way, we find bijections

π0 HomCat∞

`

C, pCatR
∞qop˘ „= π0 HomCat∞

`

Cop,CatR
∞
˘

„= π0 core BicartpCq .

Hence π0 HomCat∞pC,CatL
∞q „= π0 HomCat∞pC, pCatR

∞qopq and so CatL
∞ » pCatR

∞qop, as argued
above. By unravelling the cases C » ˚ and C » ∆1 (the latter using Lemma 6.7), we find
that this adjunction is really the identity on objects and given by extracting adjoints on
morphisms.

§6.2. Limits and colimits

6.9. Definition. — Let I and C be ∞-categories.
paq Let F : I ! C be a functor of ∞-categories. A colimit of F , denoted colimF (or sometimes

colimi∈I F piq), is a left adjoint object of F under const : C ! FunpI, Cq that sends x ∈ C
to the constant functor with value x. Dually, a limit of F , denoted limF (or sometimes
limi∈I F piq), is a right adjoint object of F under const.

pbq We say that C has all I-shaped colimits or all I-shaped limits if all functors I ! C admit
colimits or limits, respectively.

6.10. Remark. — If C has all I-shaped colimits, then Lemma 6.2 implies that forming
colimits assembles into a functor colim: FunpI, Cq! C. The same is true for limits.

6.11. Lemma. — Left adjoint functors between ∞-categories preserve colimits and right
adjoint functors preserve limits.

Proof. The proof of Lemma 1.7 can be copied verbatim.
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6.12. Lemma (“Colimits in functor ∞-categories are computed pointwise.”). — Let C, D,
and I be ∞-categories such that D has all I-shaped colimits. Then FunpC,Dq has again all
I-shaped colimits and the evaluation functor

evx : FunpC,Dq −! Fun
`

txu,D
˘

» D

preserves I-shaped colimits for all x ∈ C. A dual assertion holds for limits.

Proof. The proof of Lemma 1.8 can be copied verbatim.

Our next goal is to analyse limits and colimits in the ∞-categories An and Cat∞. We start
with a procedure for computing pullbacks and pushouts which is very useful in practice.

6.13. Pushouts and pullbacks in An and Cat∞. — Pushouts and pullbacks in An or
Cat∞ can be computed using the following recipe:
paq Write down the diagram on the level of Kan complexes or quasi-categories.
pbq For pushouts, use Lemma 3.12 to replace one leg by a cofibration. For pullbacks, use

Lemma 3.12 to replace one leg by a Kan fibration/isofibration (depending on whether you
take the pullback in An or Cat∞, respectively).

pcq Take the pushout or pullback in sSet.
pdq For pushouts, the result of (c) will usually not be a Kan complex/quasi-category, so we

need to use Lemma 3.12 once again to replace it by a Kan complex/quasi-category. For
pullbacks, this step is unnecessary.

We’ve already seen the case of pullbacks in “Definition” 5.11 and model category fact 5.12.
The procedure above is a consequence of the general model category fact that a pushout of
cofibrant objects in a model category is automatically a homotopy pushout too if at least one
leg is a cofibration, and a pullback of fibrant objects is a homotopy pullback if at least one
leg is a fibration. See rCis19, Corollary 2.3.28s for a proof of the general fact and rL-HTT,
Theorem 4.2.4.1, Remark A.3.3.14s or rF-HCII, Theorem X.21s for a proof that homotopy
colimits/limits in a simplicial model category agree with colimits/limits in the underlying
∞-category.

The procedure above implies that many pullback constructions we’ve seen so far with
simplicial sets are also pullbacks in An or Cat∞ and can thus be reinterpreted as model-
independent constructions. For example, the diagram from 2.11 defining Cx/ and HomCpx, yq

is also a pullback in Cat∞, because ps, tq : ArpCq ! C × C is an isofibration (see the proof
of Lemma 5.24). As another example, if p : U ! C is a cocartesian fibration, then the fibre
p−1txu, which computes the value of the associated functor Stpcocartq : C ! Cat∞ at x, can also
be identified with the ∞-categorical pullback txu ×C U , because any cocartesian fibration p is
automatically an isofibration. We’ll often use these facts without mention. Let us also mention,
and later use without mention, that An ⊆ Cat∞ preserves both pushouts and pullbacks; in fact,
it preserves all limits and colimits by Example 6.3(a) and Lemma 6.11. ■

But there’s also a description of limits and colimits that works in full generality and
doesn’t rely on the simplicial model.(6.4) To formulate this, we need to introduce some
notation. Let I be an ∞-category and let p : U ! I a cocartesian fibration. Furthermore, let

(6.4)I’d like to see a proof of model category fact 6.13 using only Lemma 6.14 below; I’m not sure if this works,
so I’ll leave it to you to figure out.
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FunIpI,Uq := FunpI,Uq ×FunpI,Iq tidIu, the pullback being taken in Cat∞ (but we could take
it in sSet as well by model category fact 5.12) and let

Funpcocartq

I pI,Uq ⊆ FunIpI,Uq

be the full sub-∞-category spanned by those I ! U such that all morphisms in I are sent to
p-cocartesian morphisms. Note that if p is a left fibration, then

Funpcocartq

I pI,Uq » FunIpI,Uq » HomCat∞/I pI,Uq .

Indeed, the first equivalence is clear since in this case all morphisms in U are p-cocartesian by
Lemma 5.3. The second equivalence follows from Corollary 5.15 combined with the facts that
core : An ! Cat∞ preserves pullbacks (because it is a right adjoint by Example 6.3(a)) and
that FunIpI,Uq is already an anima (by Corollary 3.10 and Corollary 4.3).

6.14. Lemma. — Let F : I ! Cat∞ be a functor and let p : U ! I be its cocartesian
unstraightening. Then the colimit and the limit of F in Cat∞ are given by

colim
i∈I

F piq » U
“

tcocartesian morphismsu−1‰ and lim
i∈I

F piq » Funpcocartq

I pI,Uq .

In particular, if F takes values in An, then the colimit and the limit of F in An are given by

colim
i∈I

F piq » |U| and lim
i∈I

F piq » HomCat∞/I pI,Uq .

For the proof, we need the following lemma. In Corollary 6.17, a more general version of
Lemma 6.15 is proved, but we need this special case as an input.

6.15. Lemma. — For every ∞-category C, the functor HomCat∞pC,−q : Cat∞ ! An pre-
serves pullbacks.

Proof sketch. As explained in footnote (6.2) in Example 6.3, Lurie constructs an equivalence of
functors HomCat∞p−,−q » core Funp−,−q in rL-HA, Proposition 5.2.1.11s, provided that you go
with Construction 5.22. Thanks to Lemma 5.24, this proves HomCat∞pC,−q » core FunpC,−q,
no matter whether you use Construction 5.21 or 5.22. Now the claim is obvious, since both
core : Cat∞ ! An and FunpC,−q : Cat∞ ! Cat∞ are right adjoints by Example 6.3.

In fact, to show preservation of pullbacks in this way, we can get away with a little less
than Lurie’s result: We only need that HomCat∞pC,−q and core FunpC,−q agree on objects and
morphisms. The former is clear by Theorem 2.24. Unfortunately, the latter still needs some
care (and simplicial arguments): We know what core Funp−,−q does on morphisms, because it
agrees with N∆pcore Fp−,−qq (the argument is in Example 6.3). For HomCat∞pC,−q, we need
to unravel what straightening does on morphisms; this is quite nasty, but doable via 5.6.

Proof sketch of Lemma 6.14. The idea in all of these statements is that the unstraightening of
a constant functor constX is precisely the projection pr2 : X × I ! I. Let’s first consider the
case of colimits in An and see where this ideas takes us. To show that |U| is the desired colimit,
we want an equivalence HomAnp|U|,−q » HomFunpI,AnqpF, constp−qq. Let’s start manipulating
the right-hand side. By Theorem 5.4(b), FunpI,Anq » LeftpIq, hence

HomFunpI,Anq

`

F, constp−q
˘

» HomLeftpIq

´

U ,Unpleftq
`

constp−q
˘

¯

.
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The unstraightening of constX : I ! An is the projection X × I ! I, functorially in X ∈ An
(this is a consequence of the fact that precomposition corresponds to pullback in Theorem 5.4(a)).
So we can continue our manipulations as follows:

HomLeftpIqpU ,− × Iq » HomCat∞/I pU ,− × Iq

» HomCat∞pU ,− × Iq ×HomCat∞ pU ,Iq tpu

»
`

HomCat∞pU ,−q × HomCat∞pU , Iq
˘

×HomCat∞ pU ,Iq tpu

» HomCat∞pU ,−q .

In the first step we use that LeftpIq ! Cat∞/I is fully faithful. In the second step we use
Corollary 5.15; by Lemma 6.12, the pullback is automatically functorial provided the square
from Corollary 5.15 is functorial, which it clearly is by construction. In the third step, we use
HomCat∞pU ,− × Iq » HomCat∞pU ,−q × HomCat∞pU , Iq by Lemma 6.15. Finally, in the fourth
step we use that HomCat∞pU , Iq ×HomCat∞ pU ,Iq tpu » tpu is just a point.

It remains to observe HomAnp|U|,−q » HomCat∞pU ,−q because | · | : Cat∞ ! An is left
adjoint to the inclusion An ⊆ Cat∞. Thus, we have proved colimi∈I F piq » |U| by verifying
that |U| satisfies the desired universal property.

Let us now indicate the necessary changes to prove the other cases. For limits in An, we can
use a similar calculation; the crucial step is HomCat∞p−,FunIpI,Uqq » HomCat∞/I pp−q×I,Uq,
which uses Lemma 6.15, the adjunction from Example 6.3(b), and Corollary 5.15. We leave
the details to you. When taking colimits or limits in Cat∞, we can no longer argue that
CocartpIq ! Cat∞/I is fully faithful. Instead, in the colimit case, HomCocartpIqpU ,− × Iq ⊆
HomCat∞/I pU , C × Iq is a collection of path components by Lemma 4.9 and we have to check
that it agrees with HomCat∞pUrtcocartesian morphismsu−1s,−q ⊆ HomCat∞pU ,−q, which is
also a collection of path components by Lemma 4.11. This is straightforward. A similar
argument applies in the limit case.

6.16. Corollary. — Let F : I ! C be a functor of ∞-categories. A natural transformation
cF : const y ⇒ F exhibits y ∈ C as a limit of F if and only if the natural map

c˚
F : HomCpx, yq

»
−! lim

i∈I
HomC

`

x, F piq
˘

is an equivalence for all x ∈ C. A dual assertion holds for colimits.

Proof. The unstraightening of HomCpx, F p−qq : I ! An is the left fibration F ˚pCx/q! I, the
pullback of the slice-∞-category projection t : Cx/ ! C along F : I ! C. Hence, according
to Lemma 6.14, limi∈I HomCpx, F piqq » HomCat∞/I pI, F ˚pCx/qq. Let us now manipulate the
right-hand side as follows:

HomCat∞/I

`

I, F ˚pCx/q
˘

» HomCat∞

`

I, F ˚pCx/q
˘

×t,HomCat∞ pI,Iq tidIu

» HomCat∞

`

I, txu ×C,s ArpCq ×t,C,F I
˘

×t,HomCat∞ pI,Iq tidIu

» tconstxu ×HomCat∞ pI,Cq,s HomCat∞

`

I,ArpCq
˘

×t,HomCat∞ pI,Cq tF u

» HomFunpI,Cqpconstx, F q .

In the first step we plug in Corollary 5.15 to write HomCat∞/I as a pullback. In the second
step, we plug in F ˚pCx/q „= txu ×C,s ArpCq ×t,C,F I. In the third step we use Lemma 6.15 and
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simplify the pullback. Finally, in the fourth step we write HomCat∞pI, Cq » core FunpI, Cq

and HomCat∞pI,ArpCqq » Homp∆1,FunpI, Cqq » core ArpFunpI, Cqq and use the definition of
HomFunpI,Cqpconstx, F q from 2.11; as we’ve seen in model category fact 6.13, the pullbacks in
sSet from 2.11 can be taken in Cat∞ as well, and since HomFunpI,Cqpconstx, F q is an anima
anyway, it doesn’t matter that we apply core everywhere.

Therefore, at least pointwise, c˚
F takes the form c˚

F : HomCpx, yq! HomFunpI,Cqpconstx, F q

for all x ∈ C. Since a natural transformation is an equivalence if and only if it is a pointwise
equivalence (Theorem 4.5), we are done.

6.17. Corollary. — For every ∞-category C, the functors HomCpx,−q : C ! An and
HomCp−, yq : Cop ! An preserve limits for all x, y ∈ C (note that limits in Cop correspond to
colimits in C). Likewise, the Yoneda embeddingよC : C ! FunpCop,Anq preserves limits.

Proof. The first two assertions follow immediately from Corollary 6.16. The last one follows
from the first plus the fact that limits and equivalences in functor categories are pointwise by
Lemma 6.12 and Theorem 4.5.

§6.3. Cofinality

Our next goal is to develop a theory of cofinality for limits and colimits in ∞-categories. This
is summarised by the following theorem due to Joyal, with a first written proof appearing in
rL-HTT, Theorem 4.1.3.1s.

6.18. Theorem (Joyal’s version of Quillen’s theorem A). — For a functor α : I ! J of
∞-categories, the following are equivalent:
paq For every ∞-category C and every F : J ! C, the functor F has a colimit if and only if

F ◦α has a colimit. Furthermore, in this case the following natural map is an equivalence:

colim
i∈I

F
`

αpiq
˘ »
−! colim

j∈J
F pjq .

pbq For every right fibration f : X ! J , the following natural map is an equivalence:

HomCat∞/J pI, Xq
»
−! HomCat∞/J pJ , Xq .

pcq For every j ∈ J , the slice-∞-category Ij/ := I ×J Jj/ is weakly contractible. That is, we
have |Ij/| » ˚.

A dual assertion holds for limits, left fibrations, and the slice-∞-categories I/j.

6.19. Definition. — If α : I ! J satisfies the equivalent conditions from Theorem 6.18,
then α is called cofinal. Dually, α is called final if it satisfies the dual equivalent conditions for
limits.

6.20. Example. — The following are examples of cofinal functors:
paq Right anodyne maps are cofinal. It’s clear from Corollary 3.10 and Corollary 5.15 that

the condition from Theorem 6.18(b) is satisfied.
pbq Right adjoint functors α : I ! J are cofinal. Indeed, if β is a left adjoint, then

α˚ : FunpJ , Cq ! FunpI, Cq :β˚ is an adjunction by Corollary 6.6 and so to verify the con-
dition colimI ◦α˚ » colimJ from Theorem 6.18(a), it’s enough to check β˚ ◦const » const,
which is clear.
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pcq Localisations p : I ! IrW−1s are cofinal. One way to see this is that localisations are
right anodyne, since by construction, p factors into I ! I ! IrW−1s, where the second
arrow is inner anodyne and the first arrow is right anodyne, because ∆1 ! J is right
anodyne. Then (a) does it.

But of course there’s also a synthetic way to see this. Since the precomposition functor
p˚ : FunpIrW−1s, Cq! FunpI, Cq is fully faithful by Lemma 4.11, we have

HomFunpI,CqpF ◦ p, const yq » HomFunpIrW−1s,CqpF, const yq ,

functorially in F : IrW−1s ! C and all y ∈ C, which proves that the condition from
Theorem 6.18(a) is satified.

Proof of Theorem 6.18, (a) ⇔ (b). Let F : J ! An be a functor with unstraightening U ! J .
Then the pullback α˚pUq ! I is the unstraightening of F ◦ α : I ! An. Lemma 6.14 shows
limj∈J F pjq » HomCat∞/J pJ ,Uq. Similarly,

lim
i∈I

F
`

αpiq
˘

» HomCat∞/I

`

I, α˚pUq
˘

» HomCat∞/I pI,Uq ;

here the second equivalence is a quick calculation using Corollary 5.15 and Corollary 6.16. This
shows that (b) holds if and only if (a) holds for functors F : J ! An. Now let F : J ! C
be an arbitrary functor. By Corollary 6.16,よC : C ! FunpCop,Anq preserves limits and it is
fully faithful, so (a) holds for F : J ! C if and only if it holds forよC ◦ F : J ! FunpCop,Anq.
Finally, limits in FunpCop,Anq are computed pointwise by Lemma 6.12 and equivalences can
be checked pointwise by Theorem 4.5, so (a) holds for functors into FunpCop,Anq if and only if
it holds for functors into An. This finishes the proof of (a) ⇔ (b).

Before we can prove (a) ⇒ (c) ⇒ (b), we need another lemma.

6.21. Lemma. — A cartesian fibration p : U ! J satisfies the conclusion of Theorem 6.18(b)
if and only if the fibres p−1tju of p are weakly contractible, that is,

∣∣p−1tju
∣∣ » ˚ for all j ∈ J .

Proof. Let E : J op ! Cat∞ be the straightening of p : U ! J and let f : X ! J be a right
fibration with straightening F : J op ! An. Then the cartesian straightening equivalence (the
dual of Theorem 5.4(a)) shows

HomCat∞/J pU , Xq » HomCartpJ qpU , Xq » HomFunpJ op,Cat∞qpE,F q .

Note that the first equivalence holds even though CartpJ q ! Cat∞/J is not fully faithful,
since we’re mapping into a right fibration where every morphism is cartesian (by the dual of
Lemma 5.3). Now | · | : Cat∞ ! An is left adjoint to the inclusion An ⊆ Cat∞ by Example 6.3(a)
and that adjunction persists to functor-∞-categories by Corollary 6.6. Thus

HomFunpJ op,Cat∞qpE,F q » HomFunpJ op,Cat∞q

`

|E|, F
˘

.

The cartesian straightening of idJ : J ! J is const ˚ : J op ! An. By the same arguments as
above we then obtain

HomCat∞/J pJ , Xq » HomFunpJ op,Cat∞qpconst ˚, F q .

Putting everything together, we see that the condition from Theorem 6.18(b) is satisfied if and
only if p : U ! J induces an equivalence |E| ⇒ const ˚ in FunpJ op,Anq. Since equivalences
can be checked pointwise (Theorem 4.5), this becomes precisely the condition that all fibres of
p are weakly contractible.
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Note that Lemma 6.21 and Theorem 6.18(c) look very much alike, but are a priori two
different criteria for a cartesian fibration p : U ! J to be cofinal. As a reality check, let’s see
that they are indeed equivalent. This isn’t necessary to complete our proof of Theorem 6.18,
but we’ll need it later.

6.22. Lemma. — Let p : U ! J be a cartesian fibration. Then for every j ∈ J , the natural
functor p−1tju ! U ×J Jj/ admits a right adjoint. In particular, we obtain a homotopy
equivalence of animae |p−1tju| » |U ×J Jj/|.

Proof sketch. By Lemma 6.2, right adjoints can be constructed pointwise. This can be done
as follows: Fix an object pu, φq ∈ U ×J Jj/, given by an element u ∈ U and a morphism
φ : j ! ppuq in J . Let φ : u′ ! u be a p-cartesian lift of φ. Then u′ ∈ p−1tju is a right adjoint
object to pu, φq under p−1tju ! U ×J Jj/. To see this, note that, by construction, we have
a morphism c : pu′, idjq ! pu, φq in U ×J Jj/ (which will play the role of the counit); using
Theorem 4.5, we have to show that the composition

Homp−1tjupu′′, u′q −! HomU×J Jj/

`

pu′′, idjq, pu′, idjq
˘ c˚−! HomU×J Jj/

`

pu′′, idjq, pu, φq
˘

is an equivalence for all u′′ ∈ p−1tju. Now use the characterisation of cartesian morphisms
from the dual of Lemma 5.16 together with Corollary 5.15 and the fact that Hom animae in
pullbacks of ∞-categories are pullbacks of the respective Hom animae (which is straightforward
to see; we’ll prove a more general statement in Lemma 6.76(a)) to show that both sides are
equivalent to HomU pu′′, uq ×HomJ pj,ppuqq tφu and that the morphism between them is equivalent
to the identity. We’ll leave the details to you.

Proof of Theorem 6.18, (a) ⇒ (c) ⇒ (b). Assume (a) holds true and consider the functor
HomJ pj0,−q : J ! An for some j0 ∈ J . Its unstraightening is the slice-∞-category pro-
jection t : Jj0/ ! J , hence colimj∈J HomJ pj0, jq » |Jj0/| by Lemma 6.14. But Jj0/ has an
initial element given by idj0 , and so tidj0u ! Jj0/ is an adjunction. Since adjunctions induce
homotopy equivalences after | · |, we conclude |Jj0/| » ˚.

Now consider HomJ pj0, αp−qq : I ! An. Its unstraightening is Ij0/ » I ×J Jj0/ (here we
use that precomposition with α corresponds to pullback along α under the unstraightening
equivalence, see Theorem 5.4). Combining Lemma 6.14 with condition (a), we obtain∣∣Ij0/∣∣ » colim

i∈I
HomJ

`

j0, αpiq
˘

» colim
j∈J

HomJ pj0, jq » ˚ ,

as claimed. This finishes the proof of the implication (a) ⇒ (c).
Now assume (c). We can factor α : I ! J into I ! I ×J ,s ArpJ q ! J , where the first

functor sends i ∈ I to the pair pi, idαpiq : αpiq ! αpiqq and the second functor is induced by
the target projection t : ArpJ q! J . It’s straightforward to verify that I ! I ×J ,s ArpJ q is
right adjoint to the projection s : I ×J ,s ArpJ q! I.(6.5) By Example 6.20(b), we see that the
functor I ! I ×J ,s ArpJ q satisfies (a), hence also (b). Furthermore, a slight generalisation of
Example 5.5(c) (which can be proved by the same argument) shows that t : I ×J ,s ArpJ q! J
is a cocartesian fibration. Its fibres t−1tju » I ×J Jj/ are weakly contractible. Hence

(6.5)For example, one could use Lemma 5.13; alternatively, unit and counit as well as the triangle identities are
easily constructed by hand.
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t : I ×J ,s ArpJ q! J satisfies (b) by Lemma 6.21. We conclude that α : I ! J must satisfy
(b) as well. Indeed, if f : X ! J is a right fibration, then

HomCat∞/J pJ , Xq » HomCat∞/J

`

I ×J ,s ArpJ q, X
˘

» HomCat∞/I×J ,sArpJ q

`

I ×J ,s ArpJ q, t˚pXq
˘

.

In the first equivalence we use (b) for t : I ×J ,s ArpJ q! J . In the second equivalence we let
t˚pXq ! I ×J ,s ArpJ q be the pullback of f along t and use Lemma 6.23(a) below. Now a
pullback of a right fibration is again a right fibration, whence

HomCat∞/I×J ,sArpJ q

`

I ×J ,s ArpJ q, t˚pXq
˘

» HomCat∞/I×J ,sArpJ q

`

I, t˚pXq
˘

» HomCat∞/J pI, Xq .

In the first equivalence we use (b) for I ! I ×J ,sArpJ q and in the second we use Lemma 6.23(a)
below again. This finishes the proof of the implication (c) ⇒ (b).

§6.4. Kan extensions

We’re now working towards an ∞-categorical analogue of Theorem 1.17. Our first goal is to
construct left Kan extensions for presheaf categories. As it turns out, this is most easily done
in the fibration picture.

6.23. Lemma. — Let F : C ! D be a functor of ∞-categories.
paq The pullback functor F ˚ : Cat∞/D ! Cat∞/C has a left adjoint, namely the forgetful

functor Cat∞/C ! Cat∞/D that sends f : C′ ! C to F ◦ f : C′ ! D.
pbq The inclusion RightpDq ⊆ Cat∞/D has a left adjoint that sends g : D′ ! D to q : Y ! D,

where
D′ −! Y

q
−! D

is any factorisation of g into a cofinal functor followed by a right fibration.
pcq The functor F ˚ : RightpDq ! RightpCq has a left adjoint F! : RightpCq ! RightpDq. On

objects, F! is given as follows: Let p : X ! C be a right fibration and let

X −! Y
q
−! D

be any factorisation of F ◦ p into a cofinal functor followed by a right fibration. Then we
have F!pp : X ! Cq » pq : Y ! Dq. In particular, all such factorisations are equivalent.

Proof. For (a), note that left adjoints can be constructed pointwise by Lemma 6.2, so its enough
to show that F ◦ f : C′ ! C is a left adjoint object to f : C′ ! C under F ˚. To this end, let
g : D′ ! D be an element in Cat∞/D. We have a diagram

HomCat∞/C

`

C′, F ˚pD′q
˘

HomCat∞

`

C′, F ˚pD′q
˘

HomCat∞pC′,D′q

tfu HomCat∞pC′, Cq HomCat∞pC′,Dq

≒ ≒
F˚
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in which the left square is a pullback by Corollary 5.15 and the right square is a pullback by
Corollary 6.16. Hence the outer rectangle is a pullback too. Combining this with Corollary 5.15,
we obtain

HomCat∞/C

`

C′, F ˚pD′q
˘

» HomCat∞/D pC′,D′q .

Since every step in the argument can be made functorial in g : D′ ! D, we have proved (a).
For (b), note that (a) combined with Theorem 6.18(b) immediately implies that q : Y ! D is

a left adjoint object to g : D′ ! D under the inclusion RightpDq ⊆ Cat∞/D. Since left adjoints
can be constructed pointwise by Lemma 6.2, we only need to check that such a factorisation
always exists. But that’s easy! For example, we could choose D′ ! Y to be right anodyne by
Lemma 3.12 and Example 6.20(a). If you’d like to avoid simplicial sets, we could also argue
as follows: Choose a factorisation D′ ! Y ′ ! D into a right adjoint functor followed by a
cartesian fibration g′ : Y ′ ! D as in the proof of Theorem 6.18. Then put

pg : Y ! Dq := Unprightq

ˆ

D Stpcartqpgq
−−−−−−! Cat∞

| · |
−! An

˙

.

Finally, (c) follows from the combined powers of (a) and (b).

In the following, we let PShpCq := FunpCop,Anq denote the ∞-category of presheaves on C.

6.24. Corollary. — Let F : C ! D be a functor of ∞-categories. Then the precomposition
functor F ˚ : PShpDq! PShpCq has a left adjoint F! such that the diagram

C D

PShpCq PShpDq

F

よC /// よD

F!

commutes in the ∞-category Cat∞.

Proof. It’s clear from Lemma 6.23 and the right straightening equivalence (the dual of Theo-
rem 5.4(b)) that F! exists, so we only have to show that the diagram commutes. To this end,
first note that the natural transformation HomCp−,−q ⇒ HomDpF p−q, F p−qq gets transformed
intoよC ⇒ F ˚ ◦よD ◦ F under the equivalence in FunpCop × C,Anq » FunpC,PShpCqq. Using
the adjunction F! ⊣ F ˚ as well as Corollary 6.6, this transformation is adjoint to a natural
transformation F! ◦よC ⇒よD ◦ F .

So our diagram commutes up to natural transformation, and we have to show that said
natural transformation is an equivalence. By Theorem 4.5, this can be done pointwise. So choose
x ∈ C. Under the straightening equivalence, the functorよCpxq » HomCp−, xq corresponds to
the right fibration C/x ! C. Likewise,よDpF pxqq » HomDp−, F pxqq corresponds to D/F pxq ! D.
Using Lemma 6.23(c), we only have to show that the top horizontal arrow in the diagram

C/x D/F pxq

C D

///

F

is cofinal. But that’s easy! Both C/x and D/F pxq have terminal objects, hence there are
adjunctions C/x  ! tidxu and D/F pxq  ! tidF pxqu. Hence ˚ ! C/x and ˚ ! D/F pxq are both
cofinal by Example 6.20(b). Since being cofinal is closed under 2-out-of-3 (for example, by the
condition from Theorem 6.18(a)), C/x ! D/F pxq must be cofinal too.
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Corollary 6.24 allows us to compute Hom animae in functor ∞-categories!

6.25. Corollary. — Given functors F,G : C ! D of ∞-categories, the anima of natural
transformations HomFunpC,DqpF,Gq can be computed as the following limit:

lim
px!yq∈TwArpCq

HomD
`

F pxq, Gpyq
˘

:= lim
ˆ

TwArpCq
ps,tq
−−! Cop × C F op×G

−−−−! Dop × D HomD−−−! An
˙

.

Proof. By Lemma 6.14, the right-hand side can be computed as HomCat∞/ TwArpCq
pTwArpCq,Uq,

where U denotes the unstraightening of HomD ◦ pF op × Gq ◦ ps, tq : TwArpCq ! An. Since
unstraightening transforms compositions into pullbacks and the unstraightening of HomD is
TwArpDq! Dop × D by Construction 5.21 or 5.22, we have a pullback diagram

U U ′ TwArpDq

TwArpCq Cop × C Dop × D

≒ ≒
ps,tq F op×G

Using Lemma 6.23(c), we see HomCat∞/ TwArpCq
pTwArpCq,Uq » HomCat∞/Cop×C pTwArpCq,U ′q.

But these are both left fibrations over Cop × C, so the Hom anima on the right-hand side can
be equivalently computed as HomFunpCop×C,AnqpHomC ,HomD ◦ pF op ×Gqq. Now the “currying”
equivalence FunpCop × C,Anq » FunpC,PShpCqq sends HomC toよC and HomD ◦ pF op ×Gq to
F ˚ ◦よD ◦G, hence the Hom anima under consideration is given by

HomFunpC,PShpCqq

`

よC , F
˚ ◦よD ◦G

˘

» HomFunpC,PShpDqq

`

F! ◦よC ,よD ◦G
˘

» HomFunpC,PShpDqq

`

よD ◦ F,よD ◦G
˘

» HomFunpC,DqpF,Gq ,

as claimed. For the first equivalence, we use that F! ◦ − is an adjoint of F ˚ ◦ − by construction
and Corollary 6.6, the second equivalence follows from Corollary 6.24, and the third one since
よD : D ! PShpDq is fully faithful by Yoneda’s lemma (Corollary 5.27).

We’ll now define and construct Kan extensions in the ∞-categorical world.

6.26. Definition. — Let f : C ! C′ and F : C ! D be functors of ∞-categories. A left
Kan extension of F along f , denoted Lanf F : C′ ! D, is a left adjoint object to F un-
der f˚ : FunpC′,Dq ! FunpC,Dq. Dually, a right Kan extension of F along f , denoted
Ranf F : C′ ! D, is a right adjoint object to F under f˚.

Kan extensions in the ∞-categorical world can be computed by the same formula as in the
ordinary case (Lemma 1.15):

6.27. Lemma (Kan extension formula). — In the situation of Definition 6.26, assume that
for all x′ ∈ C′ the following colimits exist in D:

colim
px,fpxq!x′q∈C/x′

F pxq := colim
´

C/x′ −! C F
−! D

¯

Then Lanf F exists and Lanf F px′q is given by that colimit.
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To prove this, we first show that taking colimits is functorial in both the indexing ∞-category
and the functor. As it will turn out during the proof, this is equivalent to constructing a partial
left adjoint to the Yoneda embeddingよD : D ! PShpDq.

6.28. Lemma (“Colimits are functorial”). — Let D be an ∞-category. Let T ⊆ Cat∞/D be
spanned by those α : I ! D that admit a colimit. Consider the functor D/− : D ! Cat∞/D that
sends y ∈ D to D/y ! D. Then D/− lands in T and admits a left adjoint colim: T ! D that
sends α : I ! D to colimi∈I αpiq ∈ D.

Proof. Formally, the functor D/− : D ! Cat∞/D is defined via

D よD−−! PShpDq » RightpDq −! Cat∞/D ,

using the Yoneda embedding and the right straightening equivalence (the dual of Theorem 5.4(b)).
It’s clear that D/− takes values in T . Indeed, D/y has a terminal object and so the colimit over
D/y ! D is just y. To prove the second assertion, by Lemma 6.2, it’s enough to prove that for
every α : I ! D, the colimit colimi∈I αpiq ∈ D is a left adjoint object to α under D/− : D ! T .
This can be seen as follows: If c » colimi∈I αpiq, then the associated natural transformation
α ⇒ const c induces a functor uα : I ! D/c in Cat∞/D. We then get a natural transformation

HomDpc,−q
D/−===⇒ HomCat∞/D

`

D/c,D/−
˘ u˚

α==⇒ HomCat∞/D

`

I,D/−
˘

.

Equivalences can be checked pointwise by Theorem 4.5. So choose y ∈ D. We compute

HomCat∞/D

`

I,D/y

˘

» tαu ×HomCat∞ pI,Dq,s HomCat∞

`

I,ArpDq ×t,D tyu
˘

» tαu ×HomCat∞ pI,Dq,s HomCat∞

`

I,ArpDq
˘

×t,HomCat∞ pI,Dq tconst yu

» HomFunpI,Dqpα, const yq ,

and this agrees with HomDpc, yq by definition of c. In the first step we use Corollary 5.15 as
well as D/y » ArpDq ×t,D tyu. In the second step we use Corollary 6.17. In the third step, we
use “currying” in the form of HomCat∞pI,ArpDqq » HomCat∞p∆1,FunpI,Dqq and then plug
in the definition of HomFunpI,Dq as in 2.11.

Proof of Lemma 6.27. Consider the diagram of functors

FunpC,Dq Fun
`

C,PShpDq
˘

Fun
`

C′,RightpDq
˘

RightpD × Copq Right
`

D × pC′qop˘

pよDq˚

» »

pidD ×fopq!

(the vertical equivalences follow from the right straightening equivalence, see the dual of
Theorem 5.4(b)). Let F ′ : C′ ! RightpDq denote the image of F under the top row functors
and let T := T ∩ RightpDq, where T is defined as in Lemma 6.28. If we can show that F ′

is contained in the full sub-∞-category FunpC′, T q ⊆ FunpC′,RightpDqq, then we can define
Lanf F := colim ◦ F ′ ∈ FunpC′,Dq. It’s clear from the various equivalences and adjunctions
involved (more precisely, from Corollary 5.27, Lemma 6.23(c), and Lemma 6.28 combined with
Corollary 6.6) that Lanf F is indeed a left adjoint object of F under the precomposition functor
f˚ : FunpC′,Dq! FunpC,Dq.

84



§6.4. Kan extensions

So we have to check that F ′ is indeed contained in FunpC′, T q. The image of F under
pよDq˚ followed by the “currying” equivalence FunpC,FunpDop,Anqq » FunpDop × C,Anq is
HomDp−, F p−qq : Dop × C ! An. Its right unstraightening is

TwArpDqop ×top,Dop,F op Cop −! D × Cop .

Indeed, the right unstraightening of HomD : Dop ×D ! An is psop, topq : TwArpDqop ! D×Dop

by definition (of either HomD or TwArpDq, see Constructions 5.21 and 5.22), and precomposition
with F : C ! D corresponds to pullback along F op.

By Lemma 6.23(c), the functor pidD ×fopq! sends TwArpDqop ×top,Dop,F op Cop ! D × Cop

to a cofinal replacement of TwArpDqop ×top,Dop,F op Cop ! D × Cop ! D × pC′qop by a right
fibration. To figure out how such a cofinal replacement looks like, we claim the following:
p⊠1q In the diagram below, both vertical arrows are cofinal:

TwArpDqop ×top,Dop,F◦top TwArpCqop ×f◦sop,C′,sop TwArpC′qop

C ×f,C′,sop TwArpC′qop TwArpDqop ×top,Dop,F op Cop

To prove claim (⊠1), we first observe that for every ∞-category I, both the source projection
sop : TwArpIqop ! I and the target projection top : TwArpIqop ! Iop are cofinal cartesian
fibrations. Indeed, cartesianness is clear since TwArpIqop ! I × Iop is a right fibration and
projection to either factor is cartesian. For cofinality, we use Lemma 6.21: The fibre of top

over i ∈ Iop is ptopq−1tiu » I/i; this follows from Lemma 5.24, regardless of which construction
of TwArpIq you use. Now I/i is weakly contractible since it has a terminal object. The same
argument applies to sop. To apply this observation, observe that in the diagram above, the
left vertical arrow is a composition of a base change of top : TwArpCqop ! Cop and a base
change of sop : TwArpC′qop ! C′. Since the conditions from Lemma 6.21 are stable under
base change, this proves that the left vertical arrow is indeed cofinal. Similarly, the right
vertical arrow is a composition of a base change of sop : TwArpCqop ! C and a base change of
top : TwArpDqop ! Dop, whence the same argument applies.

So we may equivalently look for a cofinal replacement of C ×f,C′,sop TwArpC′qop ! D × pC′qop

by a right fibration. Once again, we won’t do this directly; instead, we claim another claim:
p⊠2q In the diagram below, the vertical arrows are cartesian fibrations over pC′qop and the

horizontal arrows preserve cartesian lifts:

D × pC′qop C × pC′qop C ×C′,sop TwArpC′qop

pC′qop
pr2

pr2

F×idpC′qop

/// ///

psop, topq

top

Indeed, by definition of TwArpC′q, the arrow labelled psop, topq is a right fibration, and it’s clear
that both arrows labelled pr2 are cartesian fibrations (see Example 5.5(a)). Hence top, being a
composition of cartesian fibrations, is cartesian too. Furthermore, by a simple unravelling, we
see that top-cartesian lifts are precisely the psop, topq-cartesian lifts of pr2-cartesian lifts, which
immediately proves that psop, topq preserves cartesian lifts. Finally, it’s clear that F × idpC′qop
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preserves cartesian lifts, since these are given by those morphisms in C × pC′qop and D × pC′qop

that are equivalences in the first component. This proves claim (⊠2).
The cartesian straightening Stpcartqptopq is a functor C′ ! Cat∞. By the diagram above,

it comes with a natural transformation Stpcartqptopq ⇒ const D, so that Stpcartqptopq lifts to a
functor C/− : C′ ! Cat∞/D. On objects, C/− is given by sending x′ ∈ C′ to the slice category
C/x′ , which becomes an object in Cat∞/D via

C/x′ −! C F
−! D .

Now that’s something we’ve seen before! Our assumption that the functor above admits a
colimit precisely tells us that C/− restricts to a functor C/− : C′ ! T . To finish the proof,
let c : Cat∞/D ! RightpDq denote the left adjoint to RightpDq ⊆ Cat∞/D, which exists due
to Lemma 6.23(b). It’s clear from Theorem 6.18(a) that c sends T to T , hence we obtain a
functor c ◦ C/− : C′ ! T . We claim that this finally allows us to compute the desired cofinal
replacement:
p⊠3q If p : X ! D × pC′qop is a cofinal replacement of C ×f,C′,sop TwArpC′qop ! D × pC′qop by

a right fibration, then the image of p under RightpD × pC′qopq » FunpC′,RightpDqq will
coincide with c ◦ C/−.

To prove claim (⊠3), consider the following diagram, in which the dashed arrows are left adjoints
(whose existence we’re going to prove below):

`

Cat∞/pC′qop
˘

/D×pC′qop Cart
`

pC′qop˘
/D×pC′qop Fun

`

C′,Cat∞/D
˘

Cat∞/D×pC′qop Right
`

D × pC′qop˘ Fun
`

C′,RightpDq
˘

» ///

»

c /// c˚

c »

The horizontal equivalences as well as commutativity of the square on the right follow from the
cartesian straightening equivalence (the dual of Theorem 5.4). Furthermore, once we know that
the left adjoints exist, they will also form a commutative square on the right, since taking left
adjoints is always compatible with equivalences. The vertical equivalence on the left follows by
inspection (“a slice of a slice is a slice”). The vertical left adjoint c˚ exists by Corollary 6.6.
The horizontal left adjoint c : Cat∞/D×pC′qop ! RightpD × pC′qopq exists by Lemma 6.23(b), and
it we claim that it induces a left adjoint

c : Cart
`

pC′qop˘
/D×pC′qop −! Right

`

D × pC′qop˘

to the forgetful functor RightpD × pC′qopq! CartppC′qopq/D×pC′qop . Indeed, if U ! D × pC′qop

and U ′ ! D × pC′qop are objects in CartppC′qopq/D×pC′qop , then

HomCartppC′qopq/D×pC′qop pU ,U ′q −! HomCat∞/D×pC′qop pU ,U ′q

is usually not an equivalence, only an inclusion of path components, since on the left-hand
side, cartesian lifts need to be preserved. However, if U ′ ! D × pC′qop happens to be a right
fibration, then cartesian lifts are preserved automatically(6.6), so in this case we do get an

(6.6)It’s easy to get confused here: U ′ ! pC′
q

op need not be a right fibration, so we can’t appeal to (the dual
of) Lemma 5.3 directly. But the argument is still straightforward: If U ′ ! D × pC′

q
op is a right fibration, then

any lift of a cartesian morphism in D × pC′
q

op will be cartesian again, thanks to (the dual of) Lemma 5.3. So
a morphism U ! U ′ in Cat∞/D×pC′qop preserves cocartesian lifts if and only if U ! D × pC′

q
op does. But the

latter is true by definition, since U ! D × pC′
q

op is a morphism in CartppC′
q

op
q if U is an object of the slice

∞-category CartppC′
q

op
q/D×pC′qop .
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equivalence, which proves that c is still a left adjoint when restricted along the non-fully faithful
functor CartppC′qopq/D×pC′qop ! Cat∞/D×pC′qop . So we’ve proved that the diagram above also
commutes if we take the dashed left adjoints into account. This is precisely what we need to
prove claim (⊠3).

Using claim (⊠3), we’ve now succeeded in proving that F : C′ ! RightpDq takes values in
T , which proves that Lanf F exists. Furthermore, for every c′ ∈ C′, the value Lanf F px′q is
given by a colimit over cpC/x′q. Since the unit morphism uC/x′ : C/x′ ! cpC/x′q is cofinal by
Lemma 6.23(c), we may as well take the colimit over C/x′ . This proves that Lanf F px′q is given
by the desired formula and we’re finally done!

6.29. Corollary. — In the situation from Definition 6.26, assume that f : C ! C′ is fully
faithful and that the colimits from Lemma 6.27 exist in D. Then the natural transformation
uF : F ⇒ Lanf F ◦ f is an equivalence.

Proof. This follows from the same argument as in Corollary 1.16, plus the fact that equivalences
can be checked pointwise by Theorem 4.5.

We can now state the main result of this section: the ∞-categorical analogue of Theorem 1.17!

6.30. Theorem (“PShpCq arises by freely adding colimits to C.”). — Let C and D be ∞-
categories, where D has all colimits. Then restriction along the Yoneda embeddingよC induces
an equivalence

よ˚
C : Funcolim`PShpCq,D

˘ »
−! FunpC,Dq .

Here FuncolimpPShpCq,Dq ⊆ FunpPShpCq,Dq is the full sub-∞-category spanned by the colimits-
preserving functors. Furthermore, every colimits-preserving functor PShpCq! D admits a right
adjoint.

As it turns out, the proof will be exactly the same as for ordinary categories. Let’s start
with the two lemmas whose proofs where omitted in the ordinary case.

6.31. Lemma (“Every presheaf is a colimit of representables.”). — Let C be an ∞-category.
For every E ∈ PShpCq, the natural morphism

colim
py,HomCp−,yq!Eq∈C/E

HomCp−, yq
»
−! E

is an equivalence.

Proof. Since we get the natural transformation for free, we can check pointwise whether it is
an equivalence (Theorem 4.5). So fix x ∈ C. Since colimits in PShpCq are computed pointwise
(Lemma 6.12), what we need to show is

colim
ˆ

C/E
s
−! C HomCpx,−q

−−−−−−−! An
˙

» Epxq .

By Lemma 6.14, the colimit on the left-hand side is given by |U|, where U is the unstraightening
of HomCpx,−q ◦ s. Since precomposition transforms into pullbacks under unstraightening, we
find that U sits inside a pullback

U C/E PShpCq/E

Cx/ C PShpCq

≒ s ≒ s

よC
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Since PShpCq/E ! PShpCq is a right fibration, U ! Cx/ is one too. In particular, it is a cartesian
fibration. Hence Lemma 6.22 shows |U ×Cx/

tidxu| » |U ×Cx/
pCx/qpidx : x!xq/| » |U|; here we

use pCx/qpidx : x!xq/ » Cx/ (“a slice of a slice is a slice”). Now∣∣U ×Cx/
tidxu

∣∣ » U ×Cx/
tidxu » PShpCq/E ×PShpCq

␣

よCpxq
(

» HomPShpCq

`

よCpxq, E
˘

» Epxq .

In the first step, we use that the fibre U ×Cx/
tidxu is already an anima, since U ! Cx/ is

a right fibration. The second equivalence follows from the pullback diagram above. In the
third step, we use the definition of HomPShpCq, and in the fourth step, we use Yoneda’s lemma
(Theorem 5.19). In total, we find |U| » Epxq, which is exactly what we wanted to prove.

6.32. Lemma. — For every F : C ! D, the left Kan extension LanよC
F : PShpCq ! D

(which exists due to Lemma 6.27) admits a right adjoint. The right adjoint sends y ∈ D to
HomDpF p−q, yq : Cop ! Set.

Proof. Fix y ∈ D. Since adjoints can be constructed pointwise (Lemma 6.2), we only need to
construct an equivalence

HomD
`

LanよC
F p−q, y

˘

» HomPShpCq

`

−,HomDpF p−q, yq
˘

of functors PShpCqop ! An. Restricting alongよop
C : Cop ! PShpCqop, both sides become

HomDpF p−q, yq: The left-hand side by Corollary 6.29, the right-hand side by Yoneda’s lemma
(Theorem 5.19; see also 5.30). By the universal property of right Kan extension, we thus obtain
natural transformations

HomD
`

LanよC
F p−q, y

˘

=⇒ Ranよop
C

HomD
`

F p−q, y
˘

⇐= HomPShpCq

`

−,HomD
`

F p−q, y
˘˘

.

We claim that they’re both equivalences. In either case, this can be checked pointwise by
Theorem 4.5. So plug in some E ∈ PShpCq. We obtain a diagram

HomD
`

LanよC
F pEq, y

˘

Ranよop
C

HomD
`

F pEq, y
˘

HomPShpCq

`

E,HomD
`

F p−q, y
˘˘

lim
px,よCpxq!Eq∈pC/Eqop

HomD
`

F pxq, y
˘»

/// » ///

»

The vertical arrow in the middle is an equivalence by the dual of Lemma 6.27. For the
vertical arrow on the left, we plug in the left Kan extension formula from Lemma 6.27 and
use Corollary 6.16 to see that HomDp−, yq transforms the colimit into a limit. For the
vertical arrow on the right, we plug in Lemma 6.31, use Corollary 6.16 again to see that
HomPShpCqp−,HomDpF p−q, yqq transforms the colimit into a limit, and then use Yoneda’s
lemma. This proves that we obtain equivalences as desired.

6.33. Lemma. — Let C and D be categories and let L : C  ! D :R be an adjunction.
paq The left adjoint L is fully faithful if and only if the unit transformation u : idC ⇒ RL is

an equivalence.
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pbq Suppose the condition from (a) is true. Furthermore, suppose that R is conservative (that
is, if α : x ! y is a morphism in D such that Rpαq is an isomorphism, then α is an
isomorphism too). Then L and R are inverse equivalences of categories.

Proof. The proof of Lemma 1.20 can be copied verbatim.

Proof of Theorem 6.30. By Lemma 6.32 and Lemma 6.11, the adjunction LanよC
⊣よ˚

C restricts
to an adjunction

LanよC
: FunpC,Dq −−! Funcolim`PShpCq,D

˘

:よ˚
C .

By Lemma 6.33(b), to prove that LanよC
andよ˚

C are inverse equivalences, we need to show
that the unit u : idFunpC,Dq ⇒ よ˚

C ◦ LanよC
is an equivalence and that よ˚

C is conservative.
That u is an equivalence can be checked object-wise by Theorem 4.5, where it follows from
Corollary 6.29, since the Yoneda embeddingよC is fully faithful (Corollary 5.27). To see that
よ˚

C is conservative, we must show that a natural transformation η : F ⇒ G between colimits-
preserving functors F,G : PShpCq! D is an equivalence already if it is an equivalence when
restricted to representable presheaves. But this is clear since every presheaf can be written as a
colimit of representables (Lemma 6.31).

§6.5. Homology, cohomology, Eilenberg–MacLane animae

Theorem 6.30 is surprisingly powerful even in the special case C » ˚. In this case we have
PShp˚q » An and so Theorem 6.30 says that a colimits-preserving functor An! D is uniquely
determined by what it does on ˚ ∈ An.(6.7) Using this observation, our goal in this subsection
is to give a purely abstract proof of the Eilenberg–MacLane theorem (Theorem 6.44).

The first step is to construct an interesting ∞-category D with all colimits: For a ring R
(not necessarily commutative), we’ll give a brief introduction to the derived ∞-category DpRq

and its variant D⩾0pRq.

6.34. Crash course in derived ∞-categories I: Basic definitions. — Let ChpRq be the
category of chain complexes

M˚ =
´

· · · ∂
−!Mn+1

∂
−!Mn

∂
−!Mn−1

∂
−! · · ·

¯

of left R-modules and let Ch⩾0pRq ⊆ ChpRq be the full subcategory of those chain complexes
that satisfy Mn

„= 0 for n < 0. We usually write ZnpM˚q := kerp∂ : Mn ! Mn−1q and
BnpM˚q := imp∂ : Mn+1 ! Mnq. The quotient HnpM˚q := ZnpM˚q/BnpM˚q is called the
nth homology of M˚. A morphism α : M˚ ! N˚ in ChpRq is called a quasi-isomorphism if
Hnpαq : HnpM˚q

„=−! HnpN˚q is an isomorphism for all n. Then we put

DpRq := ChpRq
“

tquasi-isomorphismsu−1‰

D⩾0pRq := Ch⩾0pRq
“

tquasi-isomorphismsu−1‰ ,

where the localisations are taken in the ∞-categorical sense (see Construction 4.10). If you’ve
seen the ordinary derived categories DpRq and D⩾0pRq before, then Corollary/Warning 4.12
will convince you that these are simply the homotopy categories ho DpRq and ho D⩾0pRq.

(6.7)If you think about this fact for a bit, it becomes very natural: Theorem 3.26 says that animae are essentially
CW complexes and every CW complex is glued together from topological disks Dn. But Dn

» ˚. So it makes
sense that ˚ should generate all of An under colimits. Another way to see this is via Lemma 6.14: It’s immediately
clear that X » colimpconst ˚ : X ! Anq for all X ∈ An.
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This definition of DpRq is easy to state, but just from that it’s nearly impossible to say
anything about colimits in DpRq, which is why, we will describe a more explicit construction of
DpRq in crash course 6.36 below. However, already with the abstract definition one can get
quite far. For example, let’s show that D⩾0pRq is indeed a full sub-∞-category of DpRq. To this
end, observe that the inclusion Ch⩾0pRq ⊆ ChpRq has a right adjoint τ⩾0 : ChpRq! Ch⩾0pRq

given by smart truncation: For a chain complex M˚ and an integer i ∈ Z, we let τ⩾iM˚ be the
chain complex given by

pτ⩾iM˚qn :=

#

Mn if n > i

ZipM˚q if n = i

0 if n < i

,

so that Hnpτ⩾iM˚q „= HnpM˚q if n ⩾ i and Hnpτ⩾iM˚q „= 0 for n < i. It’s clear that τ⩾i preserves
quasi-isomorphisms, hence it descends to a functor τ⩾i : DpRq! D⩾0pRq by Lemma 4.11. We
claim that τ⩾0 is a right adjoint to D⩾0pRq! DpRq. By Lemma 6.5, it’s enough to provide a
unit and a counit transformation and to verify the triangle identities. But Lemma 4.11 allows
us to inherit all this data from the adjunction i : Ch⩾0pRq  ! ChpRq :τ⩾0.(6.8) Now to show
that D⩾0pRq! DpRq is fully faithful, it’s enough to check that the unit is an equivalence (see
Lemma 6.33(a)), which is obvious.

Apart from τ⩾i : DpRq! DpRq, there are some more useful functors that can be constructed
directly using our definition of DpRq and Lemma 4.11. For example, if M˚ is a chain complex,
its shift by i is the chain complex M ris˚ given by M risn „= Mn−i; the differentials are those of
M˚, but multiplied by p−1qi (for technical reasons). It’s clear that p−qris : ChpRq ! ChpRq

preserves quasi-isomorphisms and so it defines a functor p−qris : DpRq! DpRq. For an even
more obvious example, consider Hn : ChpRq ! ModR and Hn : Ch⩾0pRq ! ModR. These
functors send quasi-isomorphisms to isomorphisms (by definition), hence they define essentially
unique functors

Hn : DpRq −! ModR and Hn : D⩾0pRq −! ModR .

by Lemma 4.11. It’s probably clear to you, but let us mention that neither Zn : ChpRq! ModR
nor Bn : ChpRq ! ModR preserves quasi-isomorphisms, so they don’t extend to DpRq, even
though their quotient Hn

„= Zn/Bn does.

For a chain complex M˚, we often write M for its image in DpRq to emphasise that this is
no longer a “complex up to isomorphism”, but a “complex up to quasi-isomorphism”, so that
for M ∈ DpRq there is no longer a well-defined notion of “Mn, the degree-n part of M”.(6.9)

(6.8)We’ve seen a similar argument in Remark 4.15. The crucial observation to construct natural transformations
via Lemma 4.11 is the following: For every ∞-category C and every collection of morphisms W in C, the functor

`

C × ∆1˘
”

`

W × tid0u ∪W × tid1u
˘−1

ı

»
−! CrW−1

s × ∆1

(which is itself constructed via Lemma 4.11) is an equivalence of ∞-categories. Back in Remark 4.15, we appealed
to the explicit simplicial construction, but there’s also a model-independent way to see this fact. By Yoneda’s
lemma, Theorem 4.5, and Lemma 4.11, it’s enough to check for every ∞-category D that the morphism of
animae HomCat∞ pCrW−1

s × ∆1,Dq! HomCat∞ pC × ∆1,Dq exhibits the left-hand side as the collection of path
components of functors that send W × tid0u ∪W × tid1u to equivalences. By Example 6.3(b), we can rewrite the
morphism in question as HomCat∞ pCrW−1

s,ArpDqq! HomCat∞ pC,ArpDqq and then Lemma 4.11 shows that,
indeed, we get the correct inclusion of path components.

(6.9)On a related note, the inclusion Ch⩾0pRq ⊆ ChpRq also has a left adjoint, which simply replaces everything
in negative degrees by 0. This is called the stupid truncation. It doesn’t preserve quasi-isomorphisms (hence the
name) and so we couldn’t have used it to show that D⩾0pRq! DpRq is fully faithful.
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6.35. Crash course in derived ∞-categories II: Simplicialities. — The famous Dold–
Kan correspondence (see rL-HA, Theorem 1.2.3.7s or rGJ99, §III.2s for example) states that
there is an equivalence

Ch⩾0pZq
»
−! sAb

between the category of chain complexes in non-negative degrees and the category of simplicial
abelian groups. We’ll need following two facts about the Dold–Kan correspondence:
paq Every simplicial abelian groups is automatically a Kan complex and every degree-wise

surjective morphism in sAb maps to a Kan fibration in sSet.
pbq If A is a simplicial abelian group and M˚ is the associated chain complex, then there are

isomorphisms πnpA, aq „= HnpM˚q for all a ∈ A and all n ⩾ 0.
Fact (a) not particularly difficult, but not completely obvious either; see rStacks, Tags 08NZ
and 08P0s. Let us sketch how to prove (b). First, we may assume a = 0, since p−q + a : A! A
is an automorphism of A as a simplicial set and induces an isomorphism πnpA, 0q „= πnpA, aq.
Now πnpA, 0q „= rp∆n, ∂∆nq, pA, 0qs by Lemma 3.21, where r−,−s denotes homotopy classes
of maps of pairs. Since pA, 0q is a group object, even in the homotopy category of pairs,
rp∆n, ∂∆nq, pA, 0qs inherits a group structure. Using the Eckmann–Hilton trick (see the proof
of Lemma 3.17(b)), we see that this group structure agrees with the one on πnpA, 0q.

Using Corollary 1.5, the free-forgetful adjunction Zr−s : Set ! Ab :forget induces a similar
adjunction Zr−s : sSet ! sAb : forget. Then a map of pairs p∆n, ∂∆nq! pA, 0q is the same as a
morphism Zr∆ns/Zr∂∆ns! A in sAb. We are, however, not interested in maps, but homotopy
classes of maps. Our analysis of the group structure on πnpA, 0q shows: Instead of quotienting
out the equivalence relation generated by homotopies, we may as well quotient out the subgroup
generated by the nullhomotopic maps. Using the results from §3, it’s straightforward to
show that, for any pointed Kan complex pX,xq, a map of pairs σ : p∆n, ∂∆nq ! pX,xq is
nullhomotopic if and only if it can be extended to a map of pairs σ : p∆n+1,Λn+1

n+1q! pX,xq in
such a way that d˚

n+1pσq = σ. By the same reasoning as above, such a map is the same as a
morphism Zr∆n+1s/ZrΛn+1

n+1s! A. In total, this proves:

πnpA, 0q „= HomsAb
`

Zr∆ns/Zr∂∆ns, A
˘

/HomsAb
`

Zr∆n+1s/ZrΛn+1
n+1s, A

˘

A simple unravelling of the Dold–Kan correspondence shows that Zr∆ns/Zr∂∆ns is sent to
Zrns˚, the chain complex consisting of a single Z in degree n and zeros everywhere else. Hence
HomsAbpZr∆ns/Zr∂∆ns, Aq „= HomCh⩾0pZqpZrns˚,M˚q „= ZnpM˚q. A similar analysis shows
that HomsAbpZr∆n+1s/ZrΛn+1

n+1s, Aq „= BnpM˚q. Hence πnpA, 0q „= HnpM˚q, as desired.

6.36. Crash course in derived ∞-categories III: Projective resolutions. — Recall
the simplicial nerve from Construction 2.21. It’s also possible to construct DpRq and D⩾0pRq

in this way; this alternative construction will allow us to study colimits. We’ll first explain how
to equip DpRq and D⩾0pRq with a Kan enrichment: Let HomRpM˚, N˚q be the chain complex
of abelian groups given by

HomRpM˚, N˚qn :=
∏
i∈Z

HomRpMi, Ni+nq .

The differentials send a family of morphisms f = pfiqi∈Z ∈
∏
i∈Z HomRpMi, Ni+nq to the family

∂f := p∂N ◦ fi − p−1qnfi−1 ◦ ∂M qi∈Z; here ∂M and ∂N denote the differentials of M˚ and N˚,
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respectively. By unravelling the definitions, we see that the n-cycles and n-boundaries of
HomRpM˚, N˚q are given by

Zn
`

HomRpM˚, N˚q
˘

„= HomChpRq

`

M˚, N r−ns˚

˘

Bn

`

HomRpM˚, N˚q
˘

„=
␣

f ∈ HomChpRq

`

M˚, N r−ns˚

˘

∣∣∣ f nullhomotopic
(

.

Here N r−ns˚ denotes the shift from crash course 6.34. Since Hn
„= Zn/Bn, we deduce that

HnpHomRpM˚, N˚qq is in bijection with the set of homotopy classes of maps M˚ ! N r−ns˚.
The complexes HomRp−,−q provide an enrichment of ChpRq over ChpAbq (in fact, even an

enrichment of ChpRq over itself). To make this into a Kan enrichment, we let τ⩾0 HomRpM˚, N˚q

be the smart truncation from crash course 6.34 and let FChpRqpM˚, N˚q denote the simplicial
abelian group corresponding to τ⩾0 HomRpM˚, N˚q under the Dold–Kan correspondence. The
simplicial abelian groups FChpRqp−,−q provide an enrichment of ChpRq in simplicial sets, which
is automatically a Kan enrichment by crash course 6.35(a).

A complex P˚ of R-modules is called K-projective if HomRpP˚,−q : ChpRq ! ChpRq

preserves quasi-isomorphisms. It was shown by Spaltenstein rSpa88s that every chain complex
of R-modules M˚ admits a quasi-isomorphism P˚ !M˚ from a K-projective complex. If P˚ is
K-projective, then it is degree-wise projective in the sense that every Pn is a projective R-module.
Conversely, if P˚ is degree-wise projective and bounded below in the sense that Pn „= 0 for
n ≪ 0, then P˚ is K-projective. These statements can be found in rHov99, Lemma 2.3.6s; the
second statement also appears (in dual form) in rStacks, Tag 070Js.

Let K9ProjpRq ⊆ ChpRq and Proj⩾0pRq ⊆ Ch⩾0pRq be the full subcategories spanned by
the K-projective complexes. Equip K9ProjpRq and Proj⩾0pRq with the Kan enrichment above.
Then

DpRq » N∆`K9ProjpRq
˘

and D⩾0pRq » N∆`Proj⩾0pRq
˘

.

The idea to prove this is, of course, similar to Theorem 4.13: One can construct a simplicial model
structure on ChpRq (and, by restriction, on Ch⩾0pRq) in such a way that K9ProjpRq » ChpRqcf

are precisely the bifibrant objects, see rHov99, §2.3s. Then the above equivalences follow from
Remarks 4.14 and 4.15.(6.10)

This alternative construction is useful to compute HomDpRq. Let M˚ and N˚ be complexes
and let P˚ !M˚ and Q˚ ! N˚ be quasi-isomorphisms from K-projective complexes. Using
Theorem 2.24, we get HomDpRqpM,Nq » FChpRqpP˚, Q˚q. In particular, since the Dold–Kan
correspondence transforms homotopy groups of simplicial abelian groups into homology groups
of the associated chain complexes by crash course 6.35(b), we find

πn HomDpRqpM,Nq „= πn FChpRqpP˚, Q˚q „= Hn

`

HomRpP˚, Q˚q
˘

for all n ⩾ 0 and all basepoints. Furthermore, HnpHomRpP˚, Q˚qq „= HnpHomRpP˚, N˚qq by
definition of P˚ being K-projective, so we only need to resolve M˚ by a K-projective complex.
(6.10)It’s worth pointing out that the process of choosing a cofibrant replacement in Ch⩾0pRq precisely recovers
the method of projective resolutions that you may be familiar with from homological algebra. Indeed, the
cofibrant objects in Ch⩾0pRq are precisely the degree-wise projective complexes in non-negative degrees. Now if
M is a left R-module and we think of M as a complex M r0s˚ concentrated in degree 0 (see Construction 6.41,
then a cofibrant replacement of M r0s˚, that is, a quasi-isomorphism P˚ !M r0s˚ from a degree-wise projective
complex, is precisely a projective resolution of M . This begs the question how injective resolutions fit into the
picture. There is another simplicial model structure on ChpRq in which the bifibrant objects are the K-injective
complexes, that is, those I˚ for which HomRp−, I˚q preserves quasi-isomorphisms. A K-injective complex is
degree-wise an injective R-module and conversely any degree-wise injective and bounded above complex is
K-injective. One then has similar equivalences DpRq » N∆

pK9InjpRqq and D⩽0pRq » N∆
pInj⩽0pRqq.
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If you’ve seen derived categories before, you’ll probably have noticed that HomDpRqpM,Nq

looks suspiciously like the derived Hom functor RHomRpM,Nq: We’ll see in Corollary 7.50
how exactly these two are related. ■

To be able to apply Theorem 6.30 to DpRq or D⩾0pRq, we need to show that these ∞-
categories have all colimits. In order to to this, we’ll show some general results about colimits
in ∞-categories; these results will also be very useful later on.

6.37. Lemma. — An ∞-category C has all colimits if and only if C has pushouts and arbitrary
coproducts. A functor F : C ! D of ∞-categories preserves colimits if and only if it preserves
pushouts and arbitrary coproducts. A dual assertion holds for limits.

The crucial point, and the reason why we get away with “ordinary” colimits like pushouts
and coproducts, is that tnu! ∆n is cofinal (in fact, right anodyne, so Example 6.20(a) applies).
Hence every functor T : ∆n ! C admits a colimit. For a general functor T : I ! C, we write I
as a colimit of its skeleta to build colimi∈I T piq “simplex-by-simplex”: This needs pushouts (to
attach n-simplices in the nth step) and coproducts (to attach arbitrarily many n-simplices at
the same time).

To make this precise, we’ll prove a lemma that will allow us to manipulate colimits: We can
“slice a colimit into pieces” and “assemble colimits from subdiagrams”:

6.38. Lemma. — Let I and C be ∞-categories.
paq Suppose p : U ! I is a cocartesian fibration and T : U ! C is a functor such that

T |p−1tiu : p−1tiu! C admits a colimit for all i ∈ I. Then these colimits assemble into a
functor T : I ! C satisfying T piq » colimu∈p−1tiu T puq. Furthermore,

colim
u∈U

T puq » colim
i∈I

T piq ,

provided that at least one of these colimits exists in C (in which case the other exists as
well). Informally, we can rephrase this as colimu∈U T puq » colimi∈I colimu∈p−1tiu T puq.

pbq Suppose I » colimj∈J Ij in Cat∞. Let T : I ! C be a functor such that the restrictions
T |Ij : Ij ! C admit colimits for all j ∈ J . Then these colimits assemble into a functor
T : J ! C satisfying T pjq » colimi∈Ij T piq. Furthermore,

colim
i∈I

T piq » colim
j∈J

T pjq .

provided that at least one of these colimits exists in C (in which case the other exists as
well). Informally, we can rephrase this as colimi∈I T piq » colimj∈J colimi∈Ij T piq.

In particular, “colimits commute with colimits”: If J is an ∞-category and T : I × J ! C is
any functor, then

colim
i∈I

colim
j∈J

T pi, jq » colim
pi,jq∈I×J

T pi, jq » colim
j∈J

colim
i∈I

T pi, jq .

Proof. To prove (a), first note that Lanp T exists. Indeed, p−1tiu ! U/i is cofinal by the
dual of Lemma 6.22 and Example 6.20(b), so the existence of the colimits over p−1tiu implies
that the condition from Lemma 6.27 is satisfied. So we can put T := Lanp T . Now colimT
corresponds to taking the left Kan extension of T along U ! ˚ (see Example 1.12). But we
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may as well first left Kan extend along U ! I and then left Kan extend along I ! ˚. This
proves colimT » colim Lanp T and we’ve finished the proof of (a). In the special case where p
is the projection pr1 : I × J ! J , we obtain the “in particular”.

For (b), let p : U ! J be the unstraightening of the functor J ! Cat∞ of which I is the
colimit. Then I is a localisation of U by Lemma 6.14, so there’s a natural functor q : U ! I.
We have p−1tju » Ij , so we can apply (a) to the functor q ◦ T : U ! C. This allows us to
construct T and we obtain colimT » colim q ◦ T . But q, being a localisation, is cofinal by
Example 6.20(c), and so colim q ◦ T » colimT . This proves (b).

Proof sketch of Lemma 6.37. In simplicial sets, we can write I „= colimn⩾0 skn I, where skn I
is obtained from skn−1 I by attaching copies of ∆n; that is, we take a pushout along some
coproduct of the form

∐
∂∆n !

∐
∆n. Up to replacing everything by quasi-categories (using

Lemma 3.12), we can thus write I » colimn⩾0 In in Cat∞ in such a way that In is obtained from
In−1 by a pushout along

∐
Bn !

∐
∆n, where Bn is defined by choosing an inner anodyne map

∂∆n ! Bn into a quasi-category. By an inductive argument (in which Lemma 6.38(b) powers
the inductive step), we find that colimi∈In T piq exists in C for all n ⩾ 0. Using Lemma 6.38(b)
once again, it remains to show that colimn⩾0 colimi∈In T piq exists in C. But this colimit can be
easily written as a suitable pushout of the disjoint union

∐
n⩾0 colimi∈In T piq.

To study colimits in derived ∞-categories, we introduce the following convenient terminology.

6.39. Definition. — Let C be an ∞-category with a terminal object ˚ and let α : x! y be
a morphism in C. The cofibre of α is defined as the pushout

x y

˚ cofibpαq

α

≓

(provided this exists in C). We say that x α
−! y ! z is a cofibre sequence in C if the induced

morphism x! z can be factored through ˚ in such a way that it exhibits z as the cofibre of α.
There are dual notions of the fibre of α fibpαq (given as the pullback against an initial object)
and fibre sequences.

6.40. Lemma. — Let R be any ring (not necessarily commutative). The ∞-category DpRq

has all colimits. The full sub-∞-caegory D⩾0pRq ⊆ DpRq is closed under colimits in DpRq and
therefore has all colimits too. Coproducts and pushouts in DpRq can be described as follows:
paq If I is any set and Mi,˚ are chain complexes of left R-modules, then the chain complex

À

i∈IMi,˚ defines a coproduct of the objects Mi ∈ DpRq.
pbq Let α : M˚ ! N˚ be a morphism of chain complexes of R-modules for some ring R. Then

the cofibre of α in DpRq can be computed as the mapping cone(6.11)

cofibpα : M ! Nq » conepα : M˚ ! N˚q .

(6.11)The mapping cone conepαq˚ is the chain complex given by conepαqn
„= Nn ‘Mn−1, with differentials given

by the matrix
ˆ

∂N α
0 −∂M

˙

: Nn ‘Mn−1 ! Nn−1 ‘Mn−2 ;

here ∂M and ∂N denote the differentials of M˚ and N˚, respectively. The mapping cone comes equipped
with obvious maps N˚ ! conepαq˚ and conepαq˚ !M r1s˚. The induced maps HnpN˚q! Hnpconepαq˚q and
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More generally, if β : M˚ !M ′
˚ is another morphism of complexes, then the pushout of

the span N˚  M˚ !M ′
˚ in DpRq is given by coneppα,−βq : M˚ !M ′

˚ ‘N˚q.

Proof sketch. By Lemma 6.37, to show that DpRq has all colimits, it’s enough to check that
coproducts and pushouts in DpRq can be described as in (a) and (b). Furthermore, it’s clear
from these descriptions that D⩾0pRq ⊆ DpRq is closed under formation of coproducts and
pushouts, hence under all colimits.

To prove (a), choose quasi-isomorphisms Pi,˚ !Mi,˚ from K-projective complexes. Since
quasi-isomorphisms are preserved under direct sums, it’s enough to show that

À

i∈I Pi is a
coproduct of the Pi. Using Corollary 6.16, we must show that

HomDpRq

ˆ

à

i∈I
Pi, T

˙

»
−!

∏
i∈I

HomDpRqpPi, T q

is an equivalence of animae for all K ∈ DpRq. But if T˚ is any chain complex represent-
ing T , then HomR

`
À

i∈IMP,˚, T˚

˘

„=
∏
i∈I HomRpPi,˚, T˚q holds in ChpRq. Both the func-

tor τ⩾0 : ChpRq ! Ch⩾0pRq and the Dold–Kan equivalence Ch⩾0pRq » sAb preserve prod-
ucts. Hence we get an isomorphism of Kan complexes (in fact, of simplicial abelian groups)
FChpRq

`
À

i∈I Pi,˚, T˚

˘

„=
∏
i∈I FChpRqpPi,˚, T˚q. By crash course 6.36, this is (stronger than)

what we need.
The proof of (b) is similar, but needs a little more care. First, the assertion about pushouts

is a formal consequence of the assertion about cofibres; we leave this to you (just verify the
universal property). To show the assertion about cofibres, choose quasi-isomorphisms P˚ !M˚

and Q˚ ! N˚ from K-projective complexes and replace α by a morphism α′ : P˚ ! Q˚. Since
the mapping cone construction preserves quasi-isomorphisms (by the long exact cone sequence
and the five lemma), it suffices to show cofibpα′q » conepα′q. To this end, first note that the
composition P˚ ! Q˚ ! conepα′q˚ is nullhomotopic as a map of complexes. Any choice of
nullhomotopy defines a morphism cofibpα′q! conepα′q in DpRq. To see that this morphism is
an equivalence, we can appeal again to Corollary 6.16 and the Yoneda lemma: It’s enough to
show that

HomDpRq

`

conepα′q, T
˘

−! HomDpRqpQ,T q −! HomDpRqpP, T q

is a fibre sequence of animae for all T ∈ DpRq. Now we claim:
p⊠q Let φ : K˚ ! L˚ be any morphism of chain complexes and consider the canonical sequence

conepφqr−1s˚ −! K˚
φ
−! L˚

in ChpRq. Upon applying τ⩾0 : ChpRq! Ch⩾0pRq and the Dold–Kan correspondence, this
sequence is sent to a fibre sequence of animae.

Once we know (⊠), we’re done. Indeed, it’s straightforward to check that the sequence
HomDpRqpconepα′q˚, T˚q ! HomRpQ˚, T˚q ! HomRpP˚, T˚q is of the desired form. Then (⊠)
ensures that FChpRqpconepα′q˚, T˚q! FChpRqpQ˚, T˚q! FChpRqpP˚, T˚q is a fibre sequence; by
crash course 6.36, this is what we need.

Hnpconepαq˚q! Hn−1pM˚q on homology fit into a long exact sequence

· · · −! Hn+1
`

conepαq˚

˘ ∂
−! HnpM˚q −! HnpN˚q −! Hn

`

conepαq˚

˘ ∂
−! Hn−1pM˚q −! · · ·

called the cone sequence. In fact, this is nothing but the long exact homology sequence associated to the short
exact sequence of complexes 0! N˚ ! conepαq˚ !M r1s˚ ! 0.
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To prove (⊠), we can restrict ourselves to the case where φ : K˚ ! L˚ is degree-wise surjective.
Indeed, we can always replace K˚ by K˚ ‘ conepidL˚

: L˚ ! L˚qr−1s˚; this doesn’t change
anything since conepidL˚

q˚ ! 0 is a quasi-isomorphism, τ⩾0 preserves quasi-isomorphisms, and
Dold–Kan sends quasi-isomorphisms to homotopy equivalences of Kan complexes (because it
sends Hn to πn by crash course 6.35(b)). If φ : K˚ ! L˚ is surjective, a well-known fact from
homological algebra states that there is a quasi-isomorphism kerpφq˚ » conepφqr−1s˚.(6.12) So
it’s enough to show that kerpφq˚ ! K˚ ! L˚ is sent to a fibre sequence.

Since τ⩾0 : ChpRq! Ch⩾0pRq is a right adjoint, we see that τ⩾0 kerpφq˚ is still the kernel of
τ⩾0φ : τ⩾0K˚ ! τ⩾0L˚, but that map might not be surjective anymore in degree 0. So consider
impτ⩾0φq˚ ! τ⩾0L˚. Under the Dold–Kan correspondence, this map is sent to the inclusion of
a collection of path components. Indeed, impτ⩾0φq˚ ! τ⩾0L˚ is an isomorphism on Hn for all
n ⩾ 1 and injective on H0, so after Dold–Kan, we obtain an isomorphism on πn for all n ⩾ 1
and an injection on π0. Therefore, it’s enough to show that τ⩾0 kerpφq˚ ! τ⩾0K˚ ! impτ⩾0φq˚

is sent to a fibre sequence. But that’s a short exact sequence in Ch⩾0pRq, and so it’s sent to a
short exact sequence in sAb. As mentioned in crash course 6.35(a), surjections of simplicial
abelian groups are Kan fibrations. By model category fact 6.13, this means that the kernel, that
is, the fibre over 0 taken in simplicial sets, agrees with the homotopy fibre. So we’re done.

With all the preparatory stuff about DpRq out of the way, we can now finally get to the
actual subject of §6.5: Homology, cohomology, and Eilenberg–MacLane animae.

6.41. Construction. — For all integers n and all abelian groups A define a chain complex

Arns˚ := p· · ·! 0! 0! A! 0! 0! · · · q

with A in degree n and 0 everywhere else. Consider the functor Ab! Ch⩾0pZq! D⩾0pZq that
sends A to Ar0s. Since D⩾0pZq has all colimits, so has FunpAb,D⩾0pZqq by Lemma 6.12. Hence,
by Theorem 6.30, there exists a unique colimits-preserving functor An ! FunpAb,D⩾0pZqq

that sends ˚ ∈ An to the functor Ab! Ch⩾0pZq! D⩾0pZq discussed above. By “currying”,
we obtain a functor

Cp−,−q : An × Ab −! D⩾0pZq .

For every abelian group A, Cp−, Aq : An! D⩾0pZq is the unique colimits-preserving functor
that sends ˚ ∈ An to Ar0s as above. For an anima X, we call CpX,Aq the chains of X with
coefficients in A and we call rCpX,Aq := fibpCpX,Aq! Cp˚, Aqq the reduced chains of X with
coefficients in A (using the fibre construction from Definition 6.39). For all n ⩾ 0, we let

HnpX,Aq := Hn

`

CpX,Aq
˘

, rHnpX,Aq := Hn

`

rCpX,Aq
˘

denote the nth homology of X with coefficients in A and the nth reduced homology of X with
coefficients in A; here Hn : D⩾0pZq! Ab is the functor from crash course 6.34. Finally,

HnpX,Aq := π0 HomD⩾0pZq

`

CpX,Zq, Arns
˘

, rHnpX,Aq := π0 HomD⩾0pZq

`

rCpX,Zq, Arns
˘

(6.12)To see this, the first step is to construct a morphism kerpφq˚ ! conepφqr−1s˚: This is straightforward
from the construction of conepφqr−1s˚. Alternatively, we can invoke a universal property: It can be shown
that maps T˚ ! conepφqr−1s˚ are in bijection with pairs pα, ηq, where α : T˚ ! K˚ is a morphism and η is
a nullhomotopy of the composition φ ◦ α : T˚ ! L˚. Since kerpφq˚ ! L˚ is zero on the nose, we can just
choose the trivial nullhomotopy. To show that the map kerpφq˚ ! conepφqr−1s˚ is a quasi-isomorphism, it’s
straightforward to check that this map induces a morphism between the long exact homology sequence associated
to 0! kerpφq˚ ! K˚ ! L˚ ! 0 and the cone sequence for conepφq˚. Then the five lemma does the rest.
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denote the nth cohomology of X with coefficients in A and the nth reduced cohomology of X
with coefficients in A. We’ll verify in Lemma 6.42 below that this definition of homology and
cohomology is compatible with the one you are familiar with.

But before we do that, let’s give yet another unfamiliar formulation of a familiar definition!
By Theorem 6.30, Cp−,Zq : An ! D⩾0pZq automatically acquires a right adjoint, which we
denote K: D⩾0pZq! An. For M ∈ D⩾0pZq we call KpMq the generalised Eilenberg–MacLane
anima of M . In the special case M » Arns we say that KpA,nq := KpArnsq is the Eilenberg–
MacLane anima of type pA,nq. Again, we’ll justify in Theorem 6.44 below that this recovers
the definition you’re familiar with.

6.42. Lemma. — Let A be an arbitrary abelian group.
paq The functors H˚p−, Aq and rH˚p−, Aq from Construction 6.41 satisfy the Eilenberg–Steenrod

axioms. In particular, they are homotopy invariants; if f : Y ! X is a morphism of
animae with cofibre X/Y := cofibpfq, then there is a long exact sequence

· · · −! HnpY,Aq −! HnpX,Aq −! rHnpX/Y,Aq
∂
−! Hn−1pY,Aq −! · · ·

(so rH˚pX/Y,Aq plays the role of the relative homology H˚pX,Y,Aq); and H˚p−, Aq sends
disjoint unions to direct sums. Similar assertions hold for rH˚p−, Aq. Furthermore, the
suspension isomorphism is satisfied and pushouts of animae yield long exact Mayer–Vietoris
sequences.

pbq Let X be a Kan complex with geometric realisation |X| ∈ Top. Let Csing
˚ p|X|, Aq denote

the singular chain complex of |X| with coefficients in A. Then there is a natural quasi-
somorphism

CpX,Aq
»
−! Csing

˚

`

|X|,Z
˘

.

In particular, we get H˚pX,Aq „= Hsing
˚ p|X|, Aq, as well as similar isomorphisms for reduced

homology and for cohomology (both unreduced and reduced).

Proof sketch. We begin with (a). Homotopy invariance follows from the definition of An. The
other Eilenberg–Steenrod axioms all follow from the fact that Cp−, Aq : An! D⩾0pZq preserves
colimits. To demonstrate these kinds of arguments, we’ll show the long exact sequence for
H˚p−, Aq; the disjoint union axiom as well as the Eilenberg–Steenrod axioms for rH˚p−, Aq will
be left to you. We start with the following diagram:

CpY,Aq Cp˚, Aq 0

CpX,Aq CpX/Y,Aq rCpX/Y,Aq

≓ ≓

The left square is a pushout since Cp−, Aq preserves pushouts. To obtain the pushout square on
the right, observe that X/Y is canonically a pointed anima via ˚ » Y/Y ! X/Y . In general,
for any pointed anima pZ, zq ∈ An˚/, the canonical morphism Z ! ˚ has a preferred section
given by tzu! Z. Thus CpZ,Zq! Cp˚,Zq has a section and we obtain

CpZ,Zq » rCpZ,Zq ‘ C
`

tzu,Z
˘

.

Hence the reduced chains rCpZ,Zq from Construction 6.41 can also be written as the cofibre
rCpZ,Zq » cofibpCptzu,Zq! CpZ,Zqq, functorially in pZ, zq. This explains the right square in
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the diagram above. Hence CpY,Aq! CpX,Aq! rCpX/Y,Aq is a cofibre sequence in D⩾0pZq

and thus in DpZq. By Lemma 6.40(b), cofibre sequences in DpZq can be represented by cone
sequences, so the desired long exact sequence is simply the cone sequence.

The suspension isomorphism and the Mayer–Vietoris sequence are formal consequences of
the Eilenberg–Steenrod axioms. Alternatively, they can be checked by hand. For example, for
Mayer–Vietoris, use that Cp−, Aq preserves pushouts and then apply the characterisation of
pushouts in DpZq from Lemma 6.40(b).

For (b), let’s first describe how to get a functor Csingp| − |, Aq : An ! D⩾0pZq. By Theo-
rem 4.13 and Lemma 4.11, it’s enough to check that Csing

˚ p| − |, Aq : Kan ! Ch⩾0pZq sends
homotopy equivalences to quasi-isomorphisms, which is obviously true. So we get our desired
functor. We know from Lemma 6.31 and the Kan extension formula that Cp−, Aq : An! D⩾0pZq

is the left Kan extension of its restriction to t˚u ⊆ An. By the universal property of Kan
extensions, the equivalence Cp˚, Aq » Ar0s » Csingp|˚|, Aq extends to a natural transformation

Cp−, Aq =⇒ Csing`| − |, A
˘

.

Whether this is an equivalence can be checked pointwise and on homology groups. Now we can
use the well-known fact that any unreduced homology theory h˚ with h0p˚q „= A and hnp˚q „= 0
for n ⩾ 1 must necessarily coincide with singular homology with coefficients in A. See rHat02,
Theorem 4.59s. Alternatively, we can directly show that Csingp| − |, Aq preserves colimits. Using
Lemma 6.40, this is straightforward (preservation of coproducts is trivial and preservation of
pushouts is, essentially, the Mayer–Vietoris sequence).

The isomorphism H˚pX,Aq „= Hsing
˚ p|X|, Aq is an immediate consequence, as is its variant

for reduced homology. For cohomology, we can argue as follows: We already know that
CpX,Zq » Csingp|X|,Zq. The chain complex Csing

˚ p|X|,Zq is K-projective because it is degree-
wise free over Z and bounded below. Using the computation from crash course 6.36, we
deduce

π0 HomD⩾0pZq

`

Csing`|X|,Z
˘

, Arns
˘

„= H0 HomZ
`

Csing
˚

`

|X|,Z
˘

, Arns
˘

Now HomZpCsing
˚ p|X|,Zq, Aq „= C−˚

singp|X|, Aq is the cochain complex that computes singular
cohomology of |X|, placed in negative degrees (so that it becomes a chain complex). Taking
the shifts into account, we get HnpX,Aq „= Hn

singp|X|, Aq, as claimed. The same argument also
shows the assertion about reduced cohomology.

6.43. Remark. — Let’s take a moment to appreciate the beauty of Lemma 6.42(a). With our
definition of homology, the Eilenberg–Steenrod axioms and all the usual properties of homology
are completely formal. The only input we need is of algebraic nature: namely, the description of
colimits in DpZq from Lemma 6.40. Now compare that to the classical construction of singular
homology: To prove the Mayer–Vietoris sequence (or equivalently excision), one has to take
sufficiently fine barycentric subdivisions, apply Lebesgue’s covering theorem, and construct
a bunch of chain homotopies by hand (see rHat02, Proposition 2.21s for such an argument).
Blargh! I find our approach much more enlightening and much less technical.(6.13) In fact, I’d
argue that Construction 6.41 is the better definition of homology (and an even better one is
Corollary 8.2)!
(6.13)The careful traditionalist will—rightfully—object that our theory doesn’t really avoid barycentric subdivision,
it just moves it to the proof of Theorem 3.26, conveniently hidden in a black box. Sure, but that doesn’t
undermine my point. Barycentric subdivision is a technical tool to compare animae to CW complexes—that’s its
natural place in the theory. Beyond that, it can be avoided.
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Although our definition is very abstract, for a given anima X, it’s often easy to write
down an explicit complex that computes CpX,Aq. For example, assume we’re given a “CW
decomposition” of X; that is, a way to write X as a sequence of pushouts along Sn ! ˚ (the
n-disk is contractible, so we may as well use ˚ instead). Then, CpX,Aq can be written as a
similar sequence of pushouts in D⩾0pZq. Since we understand CpSn, Aq » Ar0s ‘Arns as well
as Cp˚, Aq » Ar0s and since we know how to compute pushouts in D⩾0pZq by Lemma 6.40(b),
we can compute CpX,Aq. If you think about this, the complex we end up with is precisely
the cellular complex of X, so we’ve just proved that homology agrees with cellular homology.
Combining this with the classical fact that cellular and singular homology agree, we get an
alternative proof of Lemma 6.42(b).

We finish this subsection by proving the classical Eilenberg–MacLane theorem. As we’ll see,
once again, the proof is entirely formal.
6.44. Theorem (“Eilenberg–MacLane animae represent cohomology”). — For every abelian
group A and all n ⩾ 0, the Eilenberg–MacLane anima KpA,nq from Construction 6.41 satisfies
πn KpA,nq „= A and πi KpA,nq „= 0 for i ̸= n. This condition determines KpA,nq uniquely
up to homotopy equivalence. Furthermore, KpA,nq represents cohomology with coefficients
in A (both unreduced and reduced) in the sense that the functors Hnp−, Aq : An ! Ab and
rHnp−, Aq : An˚/ ! Ab are given by
“

−,KpA,nq
‰

:= π0 HomAn
`

−,KpA,nq
˘

and
“

−,KpA,nq
‰

˚
:= π0 HomAn˚/

`

−,KpA,nq
˘

,

respectively.
Proof. For every anima X and every M˚ ∈ Ch⩾0pZq, the adjunction Cp−,Zq : An ! D⩾0pZq : K
from Construction 6.41 shows

HomAn
`

X,KpMq
˘

„= HomD⩾0pZq

`

CpX,Zq,M
˘

.

In the case M˚ » Arns˚, we immediately obtain π0 HomAnpX,KpA,nqq » HnpX,Aq. This shows
that r−,KpA,nqs „= Hnp−, Aq. The assertion about reduced cohomology follows analogously if
we can show that the adjunction Cp−,Zq : An ! D⩾0pZq :K lifts to an adjunction

rCp−,Zq : An˚/  −−! D⩾0pZq :K .

In Lemma 6.45 below, we’ll show a general fact about passing adjunctions to slice ∞-categories.
Let’s explain how this applies in our situation: Since K is a right adjoint, it preserves terminal
objects, whence Kp0q » ˚. But 0 is also an initial object in D⩾0pZq. Hence D⩾0pZq » D⩾0pZq0/
and so the induced functor K: D⩾0pZq » D⩾0pZq0/ ! AnKp0q/ » An˚/ on slice ∞-categories is
indeed of the form studied in Lemma 6.45. We’ve seen in the proof of Lemma 6.42(a) that for
every pointed anima pX,xq one has rCpX,Zq » cofibpCptxu,Zq! CpX,Zqq, so rCp−,Zq agrees
with the left adjoint constructed in Lemma 6.45.

To compute the homotopy groups of KpA,nq, let Si ∈ An be the i-sphere.(6.14) Plugging in
pSi, ˚q for any choice of basepoint yields

πi KpA,nq „= π0 HomAn˚/

`

pSi, ˚q,KpA,nq
˘

„= rHnpSi, Aq .

(6.14)There are many possible constructions for Si. The most conceptual way would be to define Si := Σi
p˚ ˚q

as the i-fold suspension of two points, using the upcoming definition Definition 7.1. But there are also many
possible simplicial models. For example, if ∂Di+1 ⊆ Di+1 is the boundary of the topological pi+1q-disk, we could
take Sing ∂Di+1 as our model for Si. Alternatively, we could choose anodyne maps from □i/∂□i or ∆i/∂∆i or
∂∆i+1 into Kan complexes. All constructions you could possibly come up with will be homotopy equivalent, so
you can just choose your favourite option.
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By Lemma 6.42, one has rHnpSn, Aq „= A and rHnpSi, Aq „= 0 for i ≠ n, and the desired
description of π˚ KpA,nq follows. By the usual argument from topology, KpA,nq is uniquely
determined by this property up to homotopy equivalence.

The following lemma was used in the proof:

6.45. Lemma. — Let L : C  ! D :R be an adjunction of ∞-categories and let y ∈ D. If for
every morphism Rpyq! x in C the pushout

LRpyq Lpxq

y y ⊔LRpyq Lpxq

cy ≓

exists in D, then the functor R : Dy/ ! CRpyq/ on slice ∞-categories still has a left adjoint
Ly : CRpyq/ ! Dy/. On objects, Ly is given by LypRpyq! xq » py ! y⊔LRpyqLpxqq, constructed
via the pushout square above. Moreover, the pushout square can be made functorial in an obvious
way and this recovers Ly as a functor (not only pointwise).

Proof sketch. You can directly verify HomDy/
pLypRpyq! xq,−q » HomCRpyq/

pRpyq! x,Rp−qq.
To do so, plug in Corollary 6.16, Corollary 5.15, and the given adjunction L ⊣ R, then perform
a formal manipulation of pullbacks. Since adjoints can be constructed pointwise (Lemma 6.2),
this proves the existence of Ly. With a little more care, one can make the pullback manipulation
functorial in Rpyq! x as well, and then the claimed description of Ly follows.
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Appendix to §6. Presentable ∞-categories

Suppose C is an ∞-category with all colimits and let F : C ! D be a colimits-preserving
functor of ∞-categories. Then the only thing preventing F from having a right adjoint is
set theory. Indeed, the values of a hypothetical right adjoint G : D ! C would be given by
Gpyq » colimpC/y ! Cq for all y ∈ D (as we’ll see in the proof of Theorem 6.66(a)), except that
this colimit usually doesn’t exist, even though C has all colimits. The problem ist that C/y is
usually not an essentially small ∞-category in the sense of Definition 6.46(b) below. So far, we
have ignored these smallness issues. Still, §§6.1–6.4 can be made set-theoretically sound. As a
rule of thumb, whenever a limit or colimit is considered, the indexing ∞-category should be
assumed small (or at least admit a final/cofinal functor from an essentially small ∞-category)
and whenever we consider PShpCq, we should assume that C is essentially small. The only time
this gets hairy is in the proof of Lemma 6.27, where we should allow D to be large, but also
consider PShpDq. Nevertheless, this can be fixed too.(6.15)

However, a more thorough analysis is needed to save our adjoint functor argument. In
fact, ∞-categories C with all colimits are very seldomly essentially small, and so neither is C/y.
However, often there exists an essentially small sub-∞-category C0 ⊆ C that generates C under
colimits, and in this case one can replace C/y by a cofinal essentially small sub-∞-category,
so that the required colimits do exist. The theory of accessible and presentable ∞-categories
makes these ideas precise and allows to prove an incredibly powerful adjoint functor theorem.

In §§6.6–6.9, we’ll give the necessary definitions and prove Lurie’s adjoint functor theorem
(Theorem 6.66). After that, we’ll discuss some supplements in §6.10. Naturally, this means
that §§6.6–6.10 will be very technical. If you’re mainly interested in spectra and willing to take
the adjoint functor theorem on faith, you can safely skip ahead to §7 at this point. If instead
you’re looking for a much more detailed exposition, you should consult rL-HTT, §5s.

§6.6. Essentially small and locally small ∞-categories

First we’ll explain how to put cardinality bounds on ∞-categories.

6.46. Definition. — Let κ be a regular cardinal and let C be an ∞-category.
paq If κ = ℵ0, then C is called essentially ℵ0-small if it is contained in the full sub-∞-category

of Cat∞ generated under pushouts by ∅ and ∆n for all n ⩾ 0. If κ is uncountable, then
C is called essentially κ-small if π0 core C as well as π0 HomCpx, yq and πnpHomCpx, yq, αq

are sets of cardinality < κ for all x, y ∈ C, all α : x! y, and all n ⩾ 1.
pbq C is called essentially small if it is essentially κ-small for some regular cardinal κ, and

large otherwise. C is called locally small if HomCpx, yq is essentially small for all x, y ∈ C.
pcq A colimit or a limit over a functor F : I ! C is called κ-small if I is essentially κ-small.

Instead of ℵ0-small, we often say that a limit or colimit is finite.

6.47. Remark. — If C is a small ∞-category and D is locally small, then FunpC,Dq is again
locally small, as can be seen by Corollary 6.25. In particular, PShpCq and the ∞-categories
IndκpCq from Construction 6.59 below will be locally small.

(6.15)For example, by using universes, but Fabian proposed a trick to get away with ZFC: Instead of PShpDq,
consider the ∞-category of right fibrations U ! D, for which U admits a cofinal functor from an essentially
small ∞-category. This ∞-category contains D/y ! D for all y ∈ D, so all Yoneda arguments go through.
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For practical applications, it will, unfortunately, be necessary to translate our nice model
independent Definition 6.46(a) into the language of simplicial sets.

6.48. Lemma. — Let κ be an uncountable regular cardinal and let C be an ∞-category. Then
the following are equivalent:
paq C is essentially κ-small.
pbq C is equivalent to a quasi-category with < κ simplices across all dimensions.
pcq There exists a simplicial set K with < κ simplices across all dimensions and a Joyal

equivalence K ! C (that is, a weak equivalence in the Joyal model structure from Exam-
ple 3.29).

Furthermore, if K is a finite simplicial set (that is, a simplicial set with only finitely many
non-degenerate simplices) and K ! C is a Joyal equivalence, then C is ℵ0-small.

Proof sketch. The implications (b) ⇒ (a) and (b) ⇒ (c) are trivial. For (c) ⇒ (b) let K ! C′

be the inner anodyne map into a quasi-category provided by the proof of Lemma 3.12. Then
C′ has again < κ simplices across all dimensions, because we’re attaching < κ new simplices
countably many times. For the additional assertion, use induction on the dimension and
write K as a sequence of pushouts against

∐
∂∆n !

∐
∆n, where the disjoint union is finite.

Replacing everything by quasi-categories and using model category fact 6.13, we conclude that
C is contained in the full sub-∞-category of Cat∞ generated under pushouts by ∅ and ∆n for
all n ⩾ 0, as desired.

It remains to show (a) ⇒ (b). We build a sub-simplicial set C′ ⊆ C as follows: Start with
C′ = ∅. Choose < κ representatives for every equivalence class in π0 corepCq and add them
to C′. For all x, y ∈ C′ and every equivalence class in π0 HomCpx, yq, we add a representative
α : x ! y. Furthermore, for every n ⩾ 1 and every class in πnpHomCpx, yq, αq, we choose a
representative ∆n/∂∆n ! HomCpx, yq and add the simplices in the image of the corresponding
map ∆n/∂∆n × ∆1 ! C to C′. Then C′ still has < κ simplices. Mimicking the proof of
Lemma 3.12, we can add < κ further simplices to C′ to ensure that C′ is a quasi-category.
By construction, C′ ! C is essentially surjective and the map HomC′px, yq! HomCpx, yq is a
surjection on all πn for all x, y ∈ C′. To make it injective, for every class in the kernel, choose
a homotopy ∆n/∂∆n × ∆1 ! HomCpx, yq to constα. This homotopy corresponds to a map
p∆n/∂∆n × ∆1q × ∆1 ! C and we add its image to C′. Then we add < κ simplices to make
C′ into a quasi-category again. Clearly, C′ ! C is still essentially surjective; furthermore, all
elements in the previous kernel of πnpHomC′px, yq, αq ! πnpHomCpx, yq, αq have been killed
now. But there could be new ones. So we simply repeat this process countably many times.
Then C′ ! C is fully faithful too and thus an equivalence by Theorem 4.6.

6.49. Remark. — If κ is an uncountable regular cardinal, then pushouts or pullbacks
of essentially κ-small ∞-categories are essentially κ-small again. Indeed, this follows from
Lemma 6.48(b) together with model category facts 5.12 and 6.13 and a cardinality bound on
Lemma 3.12: A functor between quasi-categories with < κ simplices across all dimensions can
be factored into a cofibration followed by a trivial fibration or into a Joyal equivalence followed
by an isofibration in such a way that the new quasi-category in the middle has again < κ
simplices across all dimensions. Combining this observation with Lemma 6.50 below, we see
that the full sub-∞-category Cat<κ∞ of essentially κ-small ∞-categories is closed under κ-small
limits and colimits.
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In the case κ = ℵ0 it’s obvious that ℵ0-small ∞-categories are closed under pushouts and
thus under finite colimits by Lemma 6.50 below. The same can be shown for finite products,
but I don’t know if it works for pullbacks too.

6.50. Lemma. — Let κ be a regular cardinal. An ∞-category C has all κ-small colimits
if and only if C has pushouts and κ-small coproducts. A functor F : C ! D of ∞-categories
preserves colimits if and only if it preserves pushouts and κ-small coproducts. A dual assertion
holds for limits.

Proof sketch. Repeat the proof of Lemma 6.37 and use Lemma 6.48 together with model
category fact 6.13 to see that pushouts of κ-small ∞-categories are still κ-small.

§6.7. Filtered colimits

In this subsection, we’ll study filtered colimits in ∞-categories and prove a version of the
well-known fact that filtered colimits commute with finite limits (Theorem 6.54).

6.51. Construction. — Let I be an ∞-category. We define the cone I◁ over I and the
cocone I▷ under I as the following pushouts in Cat∞:

I × t0u I × ∆1

˚ I◁
≓ and

I × t1u I × ∆1

˚ I▷
≓

It’s tempting to use the procedure from model category fact 6.13 to compute these pushouts
explicitly, but this is a little tricky. Steps (a), (b), and (c) are easy though: I × t0u! I × ∆1

and I × t1u ! I × ∆1 are already cofibrations, so we can simply take the pushout on the
nose. The tricky step, however, is (d), in which one has to replace the pushout in sSet by a
quasi-category. One can show that the joins t0u ⋆ I and I ⋆ t1u, which we didn’t introduce, are
such replacements; see rL-HTT, Proposition 4.1.2.1s or rLan21, Proposition 2.5.19s. We won’t
need this explicit description and work with the abstract construction exclusively.

Note that ˚! I◁ is an initial object and ˚! I▷ is a terminal object. This is obvious in
the simplicial models, but there’s also a model-independent argument: We must show that
˚ ! I◁ is left adjoint to the unique functor I◁ ! ˚. This can be done via Lemma 6.5 by
constructing the unit and counit by hand. The unit is clear, as there are not that many
functors from ˚ to itself (in fact, there’s only one). For the counit, we must construct a natural
transformation c : I◁ × ∆1 ! I◁ from const ˚ to idI◁ . Using that − × ∆1 : Cat∞ ! Cat∞
commutes with pushouts (since Funp∆1,−q is a right adjoint by Example 6.3(b)), this boils
down to constructing a natural transformation ∆1 × ∆1 ! ∆1 from const 0 to id∆1 , which is
easy. In the same way, verifying the triangle identities reduces to a question about ∆1. In
particular, we deduce |I◁| » ˚ and |I▷| » ˚, as ∞-categories with an initial or terminal object
are always weakly constractible.

As in ordinary category theory, cones and cocones are closely related to limits and colimits,
respectively. Concretely, if F : I ! C is a functor and y ∈ C is an object, then an easy
calculation using Corollary 6.17 shows

tF u ×HomCat∞ pI,Cq HomCat∞pI▷, Cq ×HomCat∞ p˚,Cq tyu » HomFunpI,CqpF, const yq .
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Informally, an extension of F to a functor F ▷ : I▷ ! C that sends the tip ˚ ∈ C▷ to y is the same
as a natural transformation F ⇒ const y. If F admits a colimit, such a natural transformation
is the same as a morphsm colimi∈I F piq! y, and the right-hand side above is equivalent to
HomCpcolimi∈I F piq, yq.

6.52. Definition. — Let κ be a regular cardinal and let J , C be ∞-categories.
paq J is called κ-filtered if every functor I ! J from an essentially κ-small ∞-category

extends to a functor I▷ ! J from the cocone under C, or in other words, if the restriction
FunpI▷,J q! FunpI,J q is essentially surjective. In the case κ = ℵ0, we usually just say
J is filtered.

pbq A colimit over a functor F : J ! C is called κ-filtered if J is κ-filtered, and filtered if J is
filtered.

pcq An object x ∈ C is called κ-compact or compact if HomCpx,−q : C ! An commutes with
κ-filtered or filtered colimits, respectively.

6.53. Remark. — We’ll explain why Lurie’s definition of κ-filteredness in rL-HTT, Defini-
tion 5.3.1.7s is equivalent to ours. Let J be a κ-filtered quasi-category as in Definition 6.52(a).
Furthermore, let I be an essentially κ-small quasi-category and choose the simplicial model
I ⋆ t1u for I▷ (as Lurie does). Then any functor I ! J can not only be extended to I▷ ! J
up to equivalence, but even on the nose. The reason is that I ! I▷ is a cofibration and
thus core FpI▷,J q ! core FpI,J q has lifting against t0u ! ∆1 by claim (⊠) in the proof
of Theorem 4.6. Then Lemma 6.48 easily implies that Lurie’s definition of κ-filteredness is
equivalent to ours in the case where κ is uncountable.

If κ = ℵ0, then Lemma 6.48 shows that any filtered ∞-category J in the sense of Defini-
tion 6.52(a) is also filtered in Lurie’s sense. The converse is true as well, but not as obvious
(at least to me), since I don’t know if the converse of the additional assertion in Lemma 6.48
is true (I’d guess it’s not). So here’s a different argument: If J is filtered in Lurie’s sense,
then colim: FunpJ ,Anq! An preserves finite limits (by rL-HTT, Proposition 5.3.3.3s or by
observing that the proof of Theorem 6.54 still goes through). Hence Theorem 6.54, which we’ll
prove next, implies that J is filtered in our sense.

6.54. Theorem. — Let κ be a regular cardinal. Then an ∞-category is κ-filtered if and only
if the functor colim: FunpJ ,Anq! An preserves κ-small limits.

Before we can prove Theorem 6.54, we need to send four more lemmas in advance.

6.55. Lemma. — Let κ be a regular cardinal and let J be a κ-filtered ∞-category. Then
|J | » ˚. Furthermore, for every j ∈ J the slice Jj/ is κ-filtered again and Jj/ ! J is cofinal.

Proof sketch. To see |J | » ˚, unfortunately, we need to use simplicial methods. It’s enough to
show that every map σ : ∂∆n ! |J | is nullhomotopic, because then the same argument as in the
proof of Lemma 3.24 shows that |J |! ˚ is a trivial fibration. We’ll show that for every σ there
is a functor α : I ! J from ℵ0-small ∞-category I such that σ factors through |α| : |I|! |J |.
This will be enough since then σ also factors through ˚ » |I▷|! |J | by filteredness of J . To
construct α, recall that J ! |J | can be constructed as an anodyne map into a Kan complex
via Lemma 3.12. Accordingly, as simplicial sets, |J | „= colimi⩾0 Ji, where J0 = J and Ji+1 is
obtained from Ji by attaching solutions to horn filling problems. All the finitely many simplices
in the image of σ : ∂∆n ! |J | must already be contained in J or occur in Ji as a solution
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to some horn filling problem. If the latter is the case, all the finitely many simplices involved
in that horn filling problem must already occur in J or in some Jk for k < i. Continuing in
this way, we can trace back σ to a finite number of simplices in J . Completing these finitely
many simplices to a sub-quasi-category I ⊆ J as in the proof of Lemma 6.48 yields the desired
functor α : I ! J .

For the other assertions, let I ! Jj/ be a map from an essentially κ-small ∞-category. By
unravelling the respective universal properties, such a map is equivalent to a map I◁ ! J
sending the tip of the cone to j. Since I◁ is still essentially κ-small, we get an extension
pI◁q▷ ! J . Since pI◁q▷ » pI▷q◁, this defines a map I▷ ! Jj/, proving that Jj/ is κ-
filtered. An analogous argument shows that Jj/ ×J Jj′/ is κ-filtered for every j′ ∈ J . Hence
|Jj/ ×J Jj′/| » ˚ by the first part. Thus Jj/ ! J is cofinal by Theorem 6.18(c).

6.56. Lemma. — Let D be an ∞-category and y ∈ D an object.
paq Dy/ ! D preserves and detects arbitrary limits. That is, a diagram α : I ! Dy/ has a

limit in Dy/ if and only if the underlying diagram α : I ! Dy/ ! D has a limit in D, in
which case these limits coincide in D.

pbq Dy/ ! D preserves and detects I-shaped colimits if |I| » ˚. In particular, this applies to
pushouts (since |Λ2

0| » ˚) and filtered colimits (by Lemma 6.55).
pcq In general, let α : I ! Dy/ be a diagram in Dy/ and let α : I ! Dy/ ! D be the underlying

diagram in D. If the colimits colimi∈I αpiq and colimi∈I y as well as the pushout

colim
i∈I

y colim
i∈I

αpiq

y c

≓

exist in D, then py ! cq ∈ Dy/ is the colimit of α : I ! Dy/.

Proof sketch. For (a), first consider the case where D has all limits. The functor α : I ! Dy/

defines a natural transformation const y ⇒ α, hence a morphism y ! limi∈I αpiq. We claim
that py ! limi∈I αpiqq is the limit of α. Indeed, using Corollary 5.15 and the fact that limits
commute with limits by the dual of Lemma 6.38, we immediately verify the condition from
Corollary 6.16. This concludes the case where D has all limits. The general case can be reduced
to this special case by considering a fully faithful limits-preserving functor i : D ! D′ into an
∞-category with all limits; for example,よD : D ! FunpDop,Anq does it by Corollary 6.17.

Assertion (c) follows from Lemma 6.45, using FunpI,Dy/q » FunpI,Dqconst y/. To prove (b),
first assume that D has all colimits. Then the assumptions from (c) are satisfied and colimi∈I αpiq
exists. If |I| » ˚, then Lemma 6.57 below implies that the canonical morphism colimi∈I y ! y
is an equivalence. Hence the pushout from (c) becomes an equivalence colimi∈I αpiq » c. This
proves (b) in the case where D has all colimits. For the general case, choose a fully faithful
colimits-preserving functor i : D ! D′ into an ∞-category D with all colimits; for example, the
mutilated Yoneda embedding pよDopqop : pDopqop ! FunpD,Anqop does it by Corollary 6.17.

6.57. Lemma. — Let D be an ∞-category, y ∈ D an object, and I be an ∞-category
satisfying |I| » ˚. Then colimi∈I y » y; in particular, this colimit always exists.

Proof. Clearly, const y : I ! D factors through I ! |I|. This functor is cofinal by Exam-
ple 6.20(c), and since |I| » ˚, it follows that the colimit is indeed given by y.
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The following lemma is the crucial step in the proof of Theorem 6.54:

6.58. Lemma. — The functor π0 : An! Set commutes with products and all colimits. The
functors π1 : An˚/ ! Grp, and πn : An˚/ ! Ab for all n ⩾ 2 commute with products and
filtered colimits.

Proof sketch. Since π0 : An! Set is left adjoint to the inclusion Set ⊆ An, Lemma 6.11 shows
that π0 preserves colimits. By a simple inspection π0 also preserves products. This immediately
implies that πn preserves products for all n ⩾ 1, since πnpX,xq „= π0 HomAn˚/

ppSn, ˚q, pX,xqq

and HomAn˚/
ppSn, ˚q,−q : An˚/ ! An preserves limits by Corollary 6.17.

The assertion about πn needs simplicial methods (and two black boxes), unfortunately. Let
J be a filtered ∞-category. For every ordinary category C, we have FunpJ , Cq » FunphopJ q, Cq

by Lemma 2.14, and so J -shaped colimits in C agree with hopJ q-shaped colimits. It’s straight-
forward to see that hopJ q is filtered in the usual sense. So for filtered colimits in an ordinary
category we can replace the indexing diagram by an ordinary filtered category. But a stronger
assertion is true, which we’ll need later:
p■1q For every filtered ∞-category there exists a directed partially ordered set J and a cofinal

functor J ! J .
For a proof of (■1) see rL-HTT, Proposition 5.3.1.18s or rL-Ker, Tag 02QAs (the Kerodon
proof is relatively short and only uses methods that we have already available).

Next, observe that π1 : Kan˚/ ! Grp and πn : Kan˚/ ! Ab for n ⩾ 2 commute with filtered
colimits in the ordinary category Kan˚/. This follows essentially from the fact that □n and
∂□n are finite simplicial sets, using an argument as near the end of the proof of Lemma 3.12.
It follows that for every filtered ∞-category J , the functor colim: FunpJ ,Kanq! Kan sends
pointwise homotopy equivalences to homotopy equivalences. Indeed, let Xp−q ⇒ X ′

p−q
be a

natural transformation in FunpJ ,Kanq such that Xj ! X ′
j is a homotopy equivalence for all

j ∈ J . We can check on homotopy groups whether colimj∈J Xj ! colimj∈J Xj is a homotopy
equivalence. By the argument above, we get a bijection on π0. Now let x ∈ π0pcolimj∈J Xjq

be a point. Since π0 commutes with colimits, we must have x ∈ π0pXj0q for some j0 ∈ J .
By Lemma 6.55, we may replace J by Jj0/, so we may assume j0 is initial in J . Then
txu ! Xj0 ! Xj for all j ∈ J turns Xp−q into a functor pXp−q, xq : J ! Kan˚/. The same
works for X ′

p−q
. Since Xp−q ⇒ X ′

p−q
is a pointwise homotopy equivalence and πn commutes with

filtered colimits in Kan˚/, we conclude that πnpcolimj∈J Xj , xq „= πnpcolimj∈J X ′
j , xq. This

finishes the proof that colim: FunpJ ,Kanq! Kan sends pointwise homotopy equivalences to
homotopy equivalences. At this point, we need the second black box:
p■2q If J is a directed partially ordered set, then there is an equivalence of ∞-categories

FunpJ,Kanq
“

tpointwise homotopy equivalencesu−1‰ »
−! FunpJ,Anq .

The proof of (■2) is similar to that of Theorem 4.13: First, one defines a simplicial model
structure on FunpJ, sSetq in such a way that N∆ppFunpJ, sSetq∆qcfq » FunpJ,Anq. In the proof
of rL-HTT, Proposition 5.3.3.3s, Lurie explains how to do this. Then one uses Remarks 4.14
and 4.15 to identify the simplicial nerve N∆pFunpJ, sSetqcf

∆q with the localisation above.
Now let p : Kan ! An and pJ : FunpJ,Kanq ! FunpJ,Anq denote the canonical func-

tors. By Theorem 4.13 and (■2), both p and pJ are localisations. As we’ve seen above,
colim: FunpJ,Kanq! Kan sends pointwise homotopy equivalences to homotopy equivalences.
Hence p◦colim: FunpJ,Kanq! An factors uniquely through the localisation pJ by Lemma 4.11.
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Let c : FunpJ,Anq! An be the induced functor; we claim that c is simply the colimit functor.
To this end, consider const : Kan ! FunpJ,Kanq; since it sends homotopy equivalences to
pointwise homotopy equivalences, the same argument as above shows that pJ ◦ const factors
uniquely through the localisation p. That factorisation is necessarily const : An! FunpJ,Anq.
It’s straightforward to verify that the adjunction colim: FunpJ,Kanq ! Kan : const descends
to an adjunction c : FunpJ,Anq ! An : const on the localisations. Indeed, one can show using
Lemma 4.11 that the unit and counit transformations as well as the triangle identities get
inherited, so we may appeal to Lemma 6.5. This shows that c is left adjoint to const, hence it
must be the colimit functor, as claimed.

Finally, we can finish the proof. Let pXp−q, xp−qq : J ! An˚/ be a functor from a filtered
∞-category into pointed animae. By (■1), we may assume that J » J is a directed partially
ordered set. By Lemma 6.55, we may assume that J contains an initial object j0. Then for every
pXj , xjq, the point txju ! Xj agrees with txj0u ! Xj0 ! Xj . Since An˚/ ! An preserves
filtered colimits by Lemma 6.56, it follows that the pointed anima colimj∈JpXj , xjq is given
by the unpointed colimit colimj∈J Xj together with the point xj0 ! Xj0 ! colimj∈J Xj . By
(■2), FunpJ,Kanq! FunpJ,Anq is essentially surjective. So we may assume that Xp−q comes
from a functor Xp−q : J ! Kan. As argued above, we may then as well take the colimit in Kan
instead of An. So the fact that πn : An˚/ ! Set preserves filtered colimits reduces to the same
assertion about πn : Kan˚/ ! Set, which we already know.

Proof of Theorem 6.54. First assume J is κ-filtered. By Lemma 6.50, it’s enough to show that
colim: FunpJ ,Anq! An preserves pullbacks and κ-small products. Using Lemma 3.19 and
the five lemma (plus Remark 3.20), we can further reduce pullbacks to fibre sequences (in the
sense of Definition 6.39).

Let’s do κ-small products first. We have to show that for every set I of cardinality < κ,
every κ-filtered ∞-category J , and every functor Xp−,−q : I × J ! An, the natural map

colim
j∈J

∏
i∈I

Xi,j −!
∏
i∈I

colim
j∈J

Xi,j

is an equivalence. This can be checked on homotopy groups. We get a bijection on π0,
since π0 : An ! Set preserves products and colimits and in Set, κ-filtered colimits commute
with κ-small products. For higher homotopy groups, fix some x ∈ π0

`

colimj∈J
∏
i∈I Xi,j

˘

.
Since π0 commutes with colimits, we must have x ∈ π0

`∏
i∈I Xi,j0

˘

for some j0 ∈ J . By
Lemma 6.55, we may replace J by Jj0/ to assume that j0 is initial in J . In this case, the
composition txu!

∏
i∈I Xi,j0 ! Xi,j0 ! Xi,j for all pi, jq ∈ I × J turns Xp−,−q into a functor

Xp−,−q : I × J ! An˚/. Then πn
`

colimj∈J
∏
i∈I Xi,j , x

˘

„= πn
`∏

i∈I colimj∈J Xi,j , x
˘

follows
from Lemma 6.58 and the fact that κ-filtered colimits in Grp or Ab commute with κ-small
products.

The case of fibre sequences is similar. Let Fp−q ⇒ Xp−q ⇒ Yp−q be a fibre sequence in
FunpJ ,Anq; by Lemma 6.12, this is equivalent to Fj ! Xj ! Yj being a fibre sequences for
every j ∈ J . We must show that

colim
j∈J

Fj −! fib
´

colim
j∈J

Xj ! colim
j∈J

Yj

¯

is an equivalence. This follows from a comparison of long exact sequences, using Lemma 3.19
and the five lemma together with the fact that filtered colimits preserve exact sequences. This
finishes the proof that colim: FunpJ ,Anq! An preserves κ-small limits.
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Conversely, assume this is the case; we must show that J is κ-filtered. Let α : I ! J be a
functor from a essentially κ-small ∞-category. Consider the composition

Iop αop
−−! J op よJ op

−−−! FunpJ ,Anq .

Since FunpJ ,Anq has all limits by Lemma 6.12, we can put E := limpIop ! FunpJ ,Anqq and
extend the functor above to a limit cone pαopq◁ : pIopq◁ ! FunpJ ,Anq. Suppose there is an
object j ∈ J op together with a natural transformation η : HomJ pj,−q ⇒ E in FunpJ ,Anq.
We may view pαopq◁ as a natural transformation constE ⇒よJ op ◦ αop. Composing with
const η : const HomJ pj,−q ⇒ constE yields another natural transformation, which we may
again view as a functor pβopq◁ : pIopq◁ ! FunpJ ,Anq. Then pβopq◁ lands in the essential image
ofよJ op . Since the Yoneda embedding is fully faithful by Corollary 5.27, we obtain a functor
β▷ : I▷ ! J , as desired.

So assume on the contrary that there exists no η : HomJ pj,−q ⇒ E as above. By Yoneda’s
lemma, Theorem 5.19, this implies Epjq » ∅ for all j ∈ J . Since initial objects are pre-
served under arbitrary colimits, colimj∈J Epjq » ∅. On the other hand, Lemma 6.14 implies
colimj∈J HomJ pj0, jq » |Jj0/| » ˚ for every j0 ∈ J . Since colim: FunpJ ,Anq! An preserves
κ-small limits by assumption, it follows that colimj∈J Epjq » limi∈Iop ˚ » ˚, as terminal objects
are preserved under arbitrary limits. Since ∅ »̸ ˚, we get a contradiction.

§6.8. Accessible and presentable ∞-categories

We can now introduce a class of large ∞-categories that are generated by a small sub-∞-category.

6.59. Construction. — Let κ be a regular cardinal and let C be an essentially small ∞-
category. We let IndκpCq ⊆ PShpCq be the full sub-∞-category spanned by those presheaves
E : Cop ! An for which the unstraightening UnprightqpEq is κ-filtered. In the case κ = ℵ0, we
often write IndpCq := Indℵ0pCq.

Note that the Yoneda embeddingよC : C ! PShpCq factors through IndκpCq. Indeed, for
every x ∈ C, the unstraightening of HomCp−, xq : Cop ! C is the right fibration C/x ! C by
the dual of Example 5.5(b). Now C/x has a terminal object idx : x! x, hence it is κ-filtered
for any κ. Indeed, composing any functor I ! C/x with idC/x

⇒ const idx yields an extension
I▷ ! C/x, as desired. Alternatively, we could have used Theorem 6.54: Since C/x has a terminal
object, every colimit over C/x is just given by evaluating at that object. Therefore, it follows
from Lemma 6.12 that colim: FunpC/x,Anq! An preserves arbitrary limits. We’ll denote the
factorisation ofよC by

よκ
C : C −! IndκpCq .

If no confusion can occur, we’ll usually drop the superscript and just writeよC .
More generally, we have UnprightqpEq » C/E for all E ∈ PShpCq, so E is contained in IndκpCq if

and only if C/E is filtered. Indeed, the right fibration PShpCq/E ! PShpCq is the unstraightening
of HomPShpCqp−, Eq : PShpCqop ! An. By Yoneda’s lemma (combined with 5.30), we have an
equivalence E » HomPShpCqpよCp−q, Eq of presheaves. Hence the unstraightening of E is the
pullback of PShpCq/E ! PShpCq alongよC : C ! PShpCq, which is C/E .

6.60. Definition. — Let κ be a regular cardinal. A (not necessarily essentially small)
∞-category C is κ-accessible if C » IndκpC0q for some small ∞-category C0. We call C accessible
if it is κ-accessible for some regular cardinal κ. We call C presentable if it is accessible and has
all colimits.
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6.61. Lemma. — Let κ be a regular cardinal and let C be a small ∞-category.
paq A presheaf E ∈ PShpCq belongs to IndκpCq if and only if E can be written as a κ-filtered

colimit of representable presheaves. Furthermore, IndκpCq ⊆ PShpCq is closed under
κ-filtered colimits.

pbq If C has κ-small colimits, then a presheaf E ∈ PShpCq belongs to IndκpCq if and only if
E : Cop ! An preserves κ-small limits.

pcq If D is an ∞-category which has all κ-filtered colimits, then restriction along the Yoneda
embedding induces an equivalence

よ˚
C : Funκ9filt`IndκpCq,D

˘ »
−! FunpC,Dq .

Here Funκ9filtpIndκpCq,Dq ⊆ FunpIndκpCq,Dq is spanned by those functors that preserve
κ-filtered colimits.

Proof. We begin with (a). By Lemma 6.31, every presheaf E can be written as a colimit
of representables, with C/E as indexing ∞-category. If E ∈ IndκpCq, then C/E is κ-filtered
by Construction 6.59, hence E is a κ-filtered colimit of representables. Conversely, assume
E can be written as such a κ-filtered colimit, say, E » colimj∈J HomCp−, xjq. Since the
unstraightening Unprightq : PShpCq! RightpCq is an equivalence of ∞-categories, it preserves
colimits. Recall from Lemma 6.23(b) that the inclusion RightpCq ⊆ Cat∞/C has a left adjoint
c : Cat∞/C ! RightpCq. Furthermore, by the dual of Lemma 6.56, Cat∞/C ! Cat∞ preserves
colimits. Hence a colimit in RightpCq is computed by taking the colimit in Cat∞ and then
applying c. Therefore

UnprightqpEq » c
´

colim
j∈J

C/xj

¯

.

Now a κ-filtered colimit of κ-filtered ∞-categories is κ-filtered again, which follows by combining
Lemma 6.38(b) with the characterisation of κ-filteredness from Theorem 6.54. So colimj∈J C/xj

is κ-filtered. By Theorem 6.54 again it’s clear that being κ-filtered is preserved under cofinal
functors. Since colimj∈J C/xj

! cpcolimj∈J C/xj
q is cofinal by Lemma 6.23(b), we’ve shown

that UnprightqpEq is κ-filtered, as desired. The same argument shows that IndκpCq ⊆ PShpCq is
closed under κ-filtered colimits.

For (b), let’s temporarily denote PShκpCq ⊆ PShpCq the full sub-∞-category of presheaves
E : Cop ! An that preserve κ-small limits. Every representable presheaf preserves all limits
by Corollary 6.17, in particular, κ-small ones. By Theorem 6.54, PShκpCq ⊆ PShpCq is stable
under κ-filtered colimits. By (a), every E ∈ IndκpCq is a κ-filtered colimit of representables,
hence E ∈ PShκpCq. Conversely, assume E ∈ PShκpCq. To show that C/E is κ-filtered, we
claim:
p⊠q The restricted Yoneda embeddingよC : C ! PShκpCq preserves κ-small colimits.(6.16)

If α : I ! C/E is any functor from an essentially κ-small ∞-category, and α : I ! C/E ! C
denotes the composition of α with the projection to C, then x := colimpα : I ! Cq exists by
assumption on C. Now α corresponds to a natural transformation η :よC ◦ α ⇒ constE in
FunpI,PShpCqq. If (⊠) holds, then we can use the universal property of colimits to show that
(6.16)Note that this is completely false for the unrestricted Yoneda embedding: よC : C ! PShpCq preserves
limits (by Corollary 6.17), but not colimits. That is why, whenever we want to choose a fully faithful colimits-
preserving functor i : C ! C′ into an ∞-category with all colimits, we have to take the awkward construction
pよCop q

op : pCop
q

op ! PShpCop
q

op.
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η factors uniquely throughよC ◦ α ⇒ constよCpxq. SinceよC is fully faithful, this yields an
extension α▷ : I ! C/E , as desired.

To prove (⊠), let xp−q : I ! C be a functor from an essentially κ-small ∞-category C and
let E ∈ PShκpCq. Then HomPShpCqpよCpcolimi∈I xiq, Eq » Epcolimi∈I xiq by Yoneda’s lemma.
Since E preserves κ-small limits (and limits in Cop correspond to colimits in C), we can use
Yoneda’s lemma again to see

E
´

colim
i∈I

xi

¯

» lim
i∈I

Epxiq » lim
i∈I

HomPShpCq

`

よCpxiq, E
˘

.

Using Corollary 6.16, this proves (⊠).
To prove (c), we can more or less copy the proof of Theorem 6.30: Let F : C ! D be

any functor. Since D has filtered colimits and C/E is filtered for every E ∈ IndκpCq, the Kan
extension Lanよκ

C
F : IndκpCq! D exists by Lemma 6.27. We must show that the Kan extension

Lanよκ
C
F preserves κ-filtered colimits. Let’s first assume that D has all colimits. Consider the

Kan extension LanよC
F : PShpCq! D. For formal reasons, LanよC

F is the left Kan extension
of Lanよκ

C
F along IndκpCq ⊆ PShpCq. Since the latter is fully faithful, Corollary 6.29 shows

Lanよκ
C
F » pLanよC

F q|IndκpCq. Now LanよC
F : PShpCq! D preserves colimits by Lemma 6.32

and IndκpCq ⊆ PShpCq preserves κ-filtered colimits by (a), so Lanよκ
C
F preserves κ-filtered

colimits, as desired. This concludes the case where D has all colimits. The general case can
be reduced to this as follows: As in the proof of Lemma 6.56, we can choose a fully faithful
colimits-preserving functor i : D ! D′ into an ∞-category with all colimits. The formula
from Lemma 6.27 combined with Theorem 4.5 show that the canonical natural transformation
Lanよκ

C
pi ◦ F q ⇒ i ◦ Lanよκ

C
F is an equivalence, and so it suffices that Lanよκ

C
pi ◦ F q preserves

κ-filtered colimits, which we did above.
So the Kan extension functor Lanよκ

C
: FunpC,Dq! FunpIndκpCq,Dq lands in the full sub-

∞-category FunκpIndκpCq,Dq. Therefore, we obtain an adjunction

LanよC
: FunpC,Dq −−! Funκ9filt`IndκpCq,D

˘

:よ˚
C

By the same arguments as in the proof of Theorem 6.30, the unit u : idFunpC,Dq ⇒よ˚
C ◦ LanよC

is an equivalence andよ˚
C is conservative, hence the adjunction above is a pair of inverse

equivalences by Lemma 6.33.

It’s surprisingly common for an ∞-category to be accessible.

6.62. Lemma. — Let κ be a regular cardinal and let D be a locally small ∞-category. Then
the following are equivalent:
paq D is of the form D » IndκpCq for some essentially small ∞-category C.
pbq D admits κ-filtered colimits and there exists a set S of κ-compact objects such that every

object from D can be written as a κ-filtered colimit of objects from S.
In this case automatically D » IndκpDκq, where Dκ ⊆ D is the full sub-∞-category spanned by
the κ-compact objects. Furthermore, if D has κ-small colimits, then there is another equivalent
condition:
pcq D admits κ-filtered colimits and has a set of κ-compact generators; that is, a set S ⊆ D

of κ-compact objects such that HomDps,−q : D ! An, s ∈ S, are jointly conservative.
In the case where D has κ-small colimits and (c) holds, D is automatically presentable.
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Proof. Assume (a) is true. Then D has κ-filtered colimits by Lemma 6.61(a). We claim that
S := tよCpxq | x ∈ Cu generates D under κ-filtered colimits and forms a set of compact generators
in the sense of (c). The first assertion is Lemma 6.61(a). For the second assertion, Yoneda’s
lemma says HomPShpCqpよCpxq, Eq » Epxq for every E ∈ IndκpCq. Hence HomPShpCqpよCpxq,−q

for x ∈ C are jointly conservative by Theorem 4.5. Furthermore,よCpxq is κ-compact since
colimits in presheaf ∞-categories are computed pointwise by Lemma 6.12 and IndκpCq ⊆ PShpCq

preserves κ-filtered colimits by Lemma 6.61(a). This proves (a) ⇒ (b) and (a) ⇒ (c) (even
without the assumption that D has κ-small colimits).

Now assume (b). Let’s first sketch why Dκ is essentially small. We’ll show that every
x ∈ Dκ is a retract of some s ∈ S and then leave it to you to verify that S can’t have “too
many” retracts in the locally small ∞-category D. Write x » colimj∈J sj for some sj ∈ S
and some κ-filtered ∞-category J . Since x is κ-compact and π0 commutes with colimits by
Lemma 6.58, we get colimj∈J π0 HomCpx, sjq „= π0 HomDpx, xq. Choosing a preimage of idx
yields a morphism x! sj for some j ∈ J , which exhibits x as a retract of sj , as desired.

By Lemma 6.61(c), the inclusion Dκ ⊆ D extends uniquely to a functor Lκ : IndκpDκq! D
that preserves κ-filtered colimits. Let’s first construct a right adjoint Rκ. To this end, choose a
fully faithful colimits-preserving functor i : D ! D′ into an ∞-category D′ with all colimits; this
can be done as in the proof of Lemma 6.61(c). Furthermore, i◦Lκ extends uniquely to a colimits-
preserving functor L : PShpDκq! D′, which has a right adjoint R by Theorem 6.30. We claim
that R ◦ i : D ! PShpDq lands in IndκpDκq. Indeed, let y ∈ D and write y » colimj∈J xj
where J is κ-filtered and xj ∈ Dκ; we could even choose xj ∈ S. By the formula from
Lemma 6.32, Rpipyqq is the presheaf HomDp−, colimj∈J xjq : pDκqop ! An. By definition of
Dκ, this presheaf agrees with colimj∈J HomDp−, xjq. Hence Rpipyqq is a κ-filtered colimit of
representable presheaves and thus contained in IndκpDκq by Lemma 6.61(a). Thus, putting
Rκ := R ◦ i, we obtain the desired adjunction Lκ : IndκpDκq ! D :Rκ. Moreover, our argument
shows that Rκ commutes with κ-filtered colimits of objects from Dκ. By inspection, the counit
c : Lκ ◦ Rκ ⇒ idD is an equivalence for objects from Dκ. Since both sides commute with
κ-filtered colimits of objects from Dκ and every object of D can be written as such a colimit,
we see that c is an equivalence. An analogous argument shows that u : idIndκpDκq ⇒ Rκ ◦ Lκ is
an equivalence. This proves (b) ⇒ (a).

It remains to show (c) ⇒ (a). First observe that if D has κ-small and κ-filtered colimits,
then D has all colimits. Indeed, according to Lemma 6.37, we only need to check that D has
arbitrary coproducts. This follows from the following claim:
p⊠q Let T be a discrete set and let PκpT q ⊆ PpT q be the partially ordered set of all subsets

S ⊆ T of cardinality |S| < κ. Then PκpT q is κ-filtered and for every collection pxtqt∈T of
objects of D we have

colim
S∈PκpT q

∐
s∈S

xs
»
−!

∐
t∈T

xt .

Using Lemma 2.14, κ-filteredness of PκpT q reduces to a question about ordinary categories,
which is easy. Now consider the tautological functor U : PκpT q! Set sending S 7! S and let
U be its unstraightening, which is an ordinary category and easy to describe.(6.17) Namely, U
is the category of pairs pS, sq, where S ⊆ T is a subset and s ∈ S is an element. Morphisms
can be described as follows: Fix pS, sq and pS′, s′q. If S ⊆ S′ and s = s′, there exists a
(6.17)Here we use that for functors into Set or Grpdp2q, Lurie’s unstraightening recovers the Grothendieck
construction from classical category theory. We’ve seen something similar in 5.7; in particular, compare the
description of the unstraightening of U : Pκ

pT q! Set to the unstraightening of rS/Gs : pSch/Sq
op ! Grpdp2q.
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unique morphism pS, sq ! pS′, s′q in U ; otherwise HomU ppS, sq, pS′, s′qq = ∅. There is a
tautological natural transformation U ⇒ constT , which induces a functor U ! PκpT q × T
on unstraightenings. Note that U ! PκpT q × T ! T is cofinal. Indeed, for every t ∈ T ,
the slice U ×T Tt/ can be identified with the sub-partially ordered set Pκ

t pT q ⊆ PκpT q of
those S such that t ∈ S. Then Pκ

t pT q has an initial object, namely ttu, and so |Pκ
t pT q| » ˚,

whence Theorem 6.18(c) is satisfied. Thus, if T ! D corresponds to the collection pxtqt∈T ,
then colimpT ! Dq » colimpU ! T ! Dq. Using Lemma 6.38(a), the right-hand side can be
identified with colimS∈PκpT q

∐
s∈S xs. This finishes the proof of (⊠)

Now let S ⊆ D be a set of κ-compact generators and let C ⊆ D be the full sub-∞-category
generated by S under κ-small colimits. Since D is locally small, one can verify that C is
essentially small (there are “not too many” κ-small diagrams); we leave this to you. Since
D has all colimits, we can apply Theorem 6.30 to see that C ⊆ D extends uniquely to a
colimits-preserving functor L : PShpCq ! D, which has a right adjoint R. Observe that R
factors through IndκpCq. Indeed, according to Lemma 6.32, for every y ∈ D, the presheaf Rpyq

is given by HomDp−, yq : Cop ! An. This functor preserves arbitrary limits by Corollary 6.17,
in particular, κ-small ones, and so Lemma 6.61(b) implies Rpyq ∈ IndκpCq. Restricting L, we
thus obtain an adjunction L : IndκpCq  ! D :R. Observe that R preserves κ-filtered colimits.
Indeed, let yp−q : J ! D be a functor from a κ-filtered ∞-category. By Theorem 4.5 and
Lemma 6.12, it suffices to show that colimj∈J HomDpx, yjq ! HomDpx, colimj∈J yjq is an
equivalence for all x ∈ C. But Theorem 6.54 easily implies that κ-compact objects are closed
under κ-small colimits and so x must be κ-compact, whence we get an equivalence as desired.
Now we can apply the same argument as in the proof of (b) ⇒ (a) to show that the unit
u : idIndκpCq ⇒ R ◦ L is an equivalence. Furthermore, R is conservative. Indeed, if α : y ! z in
D induces an equivalence α˚ : HomDp−, yq ⇒ HomDp−, zq of presheaves, then, in particular,
α˚ : HomDps, yq! HomDps, zq must be an equivalence for all s ∈ S. But HomDps,−q : D ! An
for s ∈ S are jointly conservative by assumption. Now Lemma 6.33(b) finishes the proof of the
implication (c) ⇒ (a).

This finishes our discussion of accessibility. Next, we’ll characterise presentable ∞-categories.

6.63. Lemma. — For a locally small ∞-category D, the following are equivalent:
paq D is presentable.
pbq D is κ-accessible and has κ-small colimits for some regular cardinal κ.
pcq There exists an essentially small ∞-category C and an adjunction L : PShpCq  ! D :R

such that R is fully faithful and preserves κ-filtered colimits for some regular cardinal κ.
pdq D is of the form D » IndκpCq for some essentially small ∞-category C which has κ-small

colimits.
In this case, Dκ automatically has all κ-small colimits (so that we may choose C » Dκ in (d)
by Lemma 6.62).

Proof. The implication (a) ⇒ (b) is trivial and (a) ⇒ (c) follows from the proof of Lemma 6.62.
For (b) ⇒ (d), we use Lemma 6.62 to see that D » IndκpDκq. It follows easily from Theorem 6.54
and Corollary 6.17 that κ-compact objects are closed under κ-small colimits. Therefore, if D
has all κ-small colimits, then so has Dκ. This proves (b) ⇒ (d).

For (c) ⇒ (a), first note that D has all colimits. Indeed, given a diagram α : I ! D, we can
form the colimit c » colimi∈I Rpαpiqq in PShpCq. Since L preserves colimits by Lemma 6.11
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and L ◦ R » idD by the dual of Lemma 6.33(a), we see that Lpcq » colimi∈I αpiq, as desired.
Now consider the objects LpよCpxqq, where x runs through a set of representatives for every
equivalence class in C. Then HomDpLpよCpxqq,−q » HomPShpCqpよCpxq, Rp−qq. By Yoneda’s
lemma, HomPShpCqpよCpxq,−q : PShpCq ! An are jointly conservative, and they preserve all
colimits by Lemma 6.12. Since R is fully faithful and preserves κ-filtered colimits, it follows
that HomDpLpよCpxqq,−q : D ! An are jointly conservative and preserve κ-filtered colimits.
So the set tLpよCpxqqu satisfies the conditions from Lemma 6.62(c) and it follows that D is
presentable. This proves (c) ⇒ (a)

It remains to show (d) ⇒ (a). We need to show that IndκpCq has all colimits. We know
from Lemma 6.61(a) that IndκpCq has κ-filtered colimits, so by claim (⊠) in the proof of
Lemma 6.62, it’s enough to show that IndκpCq has κ-small colimits. By Lemma 6.50, it’s enough
to construct pushouts and κ-small coproducts. Also, we’ve seen in the proof of Lemma 6.61
thatよC : C ! IndκpCq preserves κ-small colimits. Since C itself has all κ-small colimits by
assumption, we see that IndκpCq has κ-small colimits of representable presheaves.

Let’s first construct the coproduct
∐
s∈S ys for a discrete set S of cardinality |S| < κ and

ys ∈ IndκpCq. Write ys » colimj∈Js xj,s for some filtered ∞-category Js and representable
presheaves xj,s. Observe that arbitrary products of κ-filtered ∞-categories is κ-filtered again.
Furthermore, if I is any κ-filtered ∞-category, then colimi∈I ys » ys by Lemma 6.57 and
Lemma 6.55. Hence colimpi,jq∈I×Js

xj,s » ys by Lemma 6.38. So we may replace Js by I × Js
for any κ-filtered I. In particular, we may replace Js by J :=

∏
s∈S Js and thus we may assume

that the diagrams Js coincide for all s ∈ S. Then Lemma 6.38 shows

colim
j∈J

∐
s∈S

xj,s »
∐
s∈S

colim
j∈J

xj,s »
∐
s∈S

ys ,

provided any of these colimits exists. But
∐
s∈S xj,s exists for all j ∈ J because IndκpCq has

κ-small coproducts of representable presheaves, and then colimj∈J
∐
s∈S xj,s exists because

IndκpCq has all κ-filtered colimits. This shows that IndκpCq has κ-small coproducts.
It remains to construct pushouts. Fix a span y  x! z. Let’s first construct the pushout

in the case where x is representable. Write y » colimj∈J yj and z » colimk∈K zk, where J
and K are κ-filtered and yj , zk are representable presheaves. Since x is representable and thus
κ-compact, Lemma 6.58 implies π0 HomIndκpCqpx, yq » colimj∈J π0 HomIndκpCqpx, yjq. Hence
x ! y factors through x ! yj0 for some j0 ∈ J . By Lemma 6.55, we can replace J by Jj0/
and thus assume that J contains an initial element j0 such that x! y is induced by a map
x! yj0 . The same argument applies to x! z. Furthermore, as above, we can replace J and
K by J × K and thus assume J = K. Finally, we have colimj∈J x » x by Lemma 6.57 and
Lemma 6.55. Hence, using Lemma 6.38, we can construct the desired pushout as

colim
j∈J

pyj ⊔x zjq » colim
j∈J

yj ⊔colimj∈J x colim
j∈J

zj » y ⊔x z .

Here yj⊔xzj exists since IndκpCq has pushouts of representable presheaves, as we’ve noted above,
and then colimj∈J pyj ⊔x zjq exists because IndκpCq has κ-filtered colimits. This finishes the
case where x is representable. In the general case, write x » colimj∈J xj , where J is κ-filtered
and xj are representable presheaves. By an argument we’ve seen several times, y » colimj∈J y
and z » colimj∈J z. Then

colim
j∈J

py ⊔xj zq » colim
j∈J

y ⊔colimj∈J xj colim
j∈J

z » y ⊔x z .
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Here the pushouts y ⊔xj z exist by the representable case and then colimj∈J py ⊔xj zq exists
because IndκpCq has κ-filtered colimits. This finishes the proof that IndκpCq has pushouts.

6.64. Corollary. — The ∞-categories An and Cat∞ are presentable.

Proof sketch. It’s clear that An and Cat∞ are locally small and they have all colimits by
Lemma 6.14. So it suffices to check that both are accessible. In fact, we’ll show that both
are ℵ0-accessible, by verifying the condition from Lemma 6.62(c). For An, it’s clear that ˚

is a compact generator as HomAnp˚, Xq » X for all X ∈ An. For Cat∞, we claim that the
∞-categories ˚ and ∆1 are compact generators.

Let’s first argue that HomCat∞p˚,−q and HomCat∞p∆1,−q are jointly conservative. To this
end, recall from Theorem 2.24 that HomCat∞p˚, Cq » corepCq and HomCat∞p∆1, Cq » core ArpCq

for every ∞-category C. Now if F : C ! D is a functor such that corepF q : corepCq! corepDq

is an equivalence, then F is essentially surjective. If furthermore core ArpCq! core ArpDq is
an equivalence, then F is fully faithful. Indeed, for all x, y ∈ C we can write HomCpx, yq as a
pullback of core ArpCq! corepCq×corepCq by 2.11 plus the fact that core : Cat∞ ! An preserves
pullbacks, since it is a right adjoint by Example 6.3(a).(6.18) This proves that HomCat∞p˚,−q

and HomCat∞p∆1,−q are jointly conservative.
We’ll only sketch the argument why ˚ and ∆1 are compact in Cat∞. The crucial observation

is that equivalences of quasi-categories are preserved under filtered colimits in the ordinary
category QCat. Indeed, QCat ⊆ sSet is closed under filtered colimits, because Λn

i and ∆n

are finite simplicial sets and so every horn filling problem in a filtered colimit can be solved
at some finite stage. So filtered colimits in QCat can be computed in sSet instead. Then
it’s straightforward to check that a filtered colimit of fully faithful and essentially surjective
maps of quasi-categories is again fully faithful and essentially surjective. Now we can use
the same arguments as in the proof of Lemma 6.58 (including the black box (■1) and an
analogue of (■2)) to see that filtered colimits in Cat∞ can be computed as ordinary filtered
colimits in QCat. So it remains to show that colimj∈J core Fp˚, Cjq „= core Fp˚, colimj∈J Cjq
and colimj∈J Fp∆1, Cjq „= core Fp∆1, colimj∈J Cjq holds for every filtered category J and every
diagram Cp−q : J ! QCat. This is straightforward.

6.65. Corollary. — If D is a presentable ∞-category, then for every y ∈ D the slice
∞-categories Dy/ and D/y are presentable again. Furthermore, if C is an essentially small ∞-
category, then FunpC,Dq is presentable. In particular, PShpCq and FunpC,Cat∞q are presentable.

The same results are true for accessible ∞-categories, but this requires significantly more
effort. In practice, the results about presentable ∞-categories are usually sufficient and so we
refer to rL-HTT, §5.4s for the accessible case.

Proof of Corollary 6.65. It follows from Lemma 6.56 and its dual that if D has all colimits,
then Dy/ and D/y have all colimits again. Lemma 6.12 shows the same for FunpC,Dq. So it’s
enough to check accessibility in each case.

By Lemma 6.62(c), we can choose a set S of κ-compact generators for D. Since D has
coproducts, one easily verifies via Lemma 6.2 that Dy/ ! D has a left adjoint, sending
z ∈ D to py ! y ⊔ zq ∈ Dy/. Then HomDy/

py ! y ⊔ s, y ! zq » HomDps, zq and so
HomDy/

py ! y ⊔ s,−q : Dy/ ! An for s ∈ S are jointly conservative. Using the adjunction

(6.18)We’re also implicitly using that the pullback diagram from 2.11, which lived in simplicial sets, is also a
pullback of ∞-categories. See model category fact 6.13.
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property plus the fact that Dy/ ! D preserves κ-filtered colimits by Lemma 6.56(b), we see
that every py ! y ⊔ sq is κ-compact again. So Dy/ satisfies the condition from Lemma 6.62(c)
and is therefore accessible.

For FunpC,Dq, consider the functors Fx,s := Lantxu!Cpconst sq : C ! D, where s ∈ S and
x runs through a set of representatives of the equivalence classes of objects in C. These
Kan extensions exist by Lemma 6.27 since D has all colimits. The universal property of
Kan extensions shows HomFunpC,DqpFx,s, Gq » HomFunptxu, Cqpconst s,G|txuq » HomDps,Gpxqq

for every functor G ∈ FunpC,Dq. Since colimits in functor categories are computed point-
wise by Lemma 6.12 and s is κ-compact by assumption, it follows that Fx,s is κ-compact.
Since equivalences of functors can be detected pointwise by Theorem 4.5, it follows that
HomFunpC,DqpFx,s,−q : FunpC,Dq! An for s ∈ S and x running through all equivalence classes
in C are jointly conservative. So FunpC,Dq satisfies the condition from Lemma 6.62(c) and is
therefore accessible.

For D/y, we will instead verify the condition from Lemma 6.62(b). First observe that Dκ
/y is

essentially small. Indeed, Dκ
/y » Dκ ×D D/y ! D/y is fully faithful, hence Dκ

/y is locally small,
because D/y is locally small by the assumption on D and Corollary 5.15. So its enough to
show that π0 corepDκ

/yq is a set. This follows from Dκ being essentially small (as we’ve seen
in the proof of Lemma 6.62) and D being locally small, so that there can’t be “too many”
equivalence classes of morphisms z ! y where z ∈ Dκ. Since D/y ! D preserves arbitrary
colimits by the dual of Lemma 6.56(a) and κ-filtered colimits are preserved under pullbacks
by Theorem 6.54, we can use Corollary 5.15 to show that the objects in Dκ

/y are κ-compact
in D/y. It remains to show that they generate D/y under κ-filtered colimits. Pick some
pz ! yq ∈ D/y and write z » colimj∈J zj for some κ-filtered ∞-category J and some diagram
zp−q : J ! Dκ. Composing the colimit transformation u : zp−q ⇒ const z with const z ⇒ const y
yields a transformation zp−q ⇒ const y, which in turn defines a functor pzp−q ! yq : J ! D/y.
Then pz ! yq » colimj∈J pzj ! yq in D/y, as desired.

§6.9. The adjoint functor theorem

Finally, we can state and prove the adjoint functor theorem. The original version is of course
Lurie’s rL-HTT, Corollary 5.5.2.9s. Our version is slightly more general and is taken from
Markus Land’s book rLan21, Theorems 5.2.2 and 5.2.14s, who in turn took them from rNRS20s.

6.66. Theorem (Adjoint functor theorem). Let F : C ! D be a functor between locally
small ∞-categories.
paq Assume that C and D have all colimits and C is generated under colimits by an essentially

small sub-∞-category C0 ⊆ C. Then F admits a right adjoint G : D ! C if and only if F
preserves colimits.

pbq Assume that C and D have all limits, that C is accessible, and that for every object y ∈ D
there exists a regular cardinal κy such that y is κy-compact. If there exists a regular
cardinal κ such that F preserves limits as well as κ-filtered colimits, then F admits a left
adjoint G : D ! C. The converse is true as well provided that D is accessible too.

Furthermore, in both (a) and (b), the conditions on C and D are automatically satisfied if C
and D are presentable.

Before we embark on the proof of Theorem 6.66, we’ll draw a somewhat surprising corollary
and discuss a useful supplement.
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6.67. Corollary. — Let C be a locally small ∞-category.
paq If C has all colimits and is generated under colimits by an essentially small sub-∞-category

C0 ⊆ C, then C has all limits too. In particular, presentable ∞-categories have all limits.
pbq If C is accessible and has all limits, then C has all colimits too. In particular, C is

presentable.

Proof. Let I be an essentially small ∞-category. Then FunpI, Cq is locally small by Remark 6.47.
It follows from Lemma 6.12 that const : C ! FunpI, Cq preserves all limits and colimits. In
the situation of (a), we may apply Theorem 6.66(a) to see that const has a right adjoint
limI : FunpI, Cq! C, as desired.

In the situation of (b), we only need to check that every element of FunpI, Cq is τ -
compact for some sufficiently large regular cardinal τ , for then const will have a left adjoint
colimI : FunpI, Cq ! C by Theorem 6.66(b). Say C is κ-compact. Then every x ∈ C can be
written as a colimit of κ-compact objects by Lemma 6.62(b). If κx is larger than κ and the
cardinality of the indexing diagram, then x will be κx-compact, because κx-compact objects
are closed under κx-small colimits (we’ve seen this argument several times in the proofs of
Lemmas 6.62 and 6.63). Now let α : I ! C be a functor. Let τα be a regular cardinal such
that TwArpCq is τα-small and τα ⩾ καpiq for every i ∈ I. Using that τα-small limits commute
with τα-filtered colimits by Theorem 6.54 and that colimits in functor categories are computed
pointwise by Lemma 6.12, the formula from Corollary 6.25 shows that α is τα-compact.

A useful supplement to the adjoint functor theorem is the reflection theorem:

6.68. Theorem (Reflection theorem). — Let D be a presentable ∞-category and let C ⊆ D be
a full sub-∞-category such that C is closed under limits in D and there exists a regular cardinal
κ such that C is closed under κ-filtered colimits in D. Then the inclusion C ⊆ D has a left
adjoint and C is presentable too. ■

We won’t prove the reflection theorem. A proof for ordinary categories can be found in
Adamek and Rosicky’s book rAR94, Reflection Theorem 2.48s; the ∞-categorical version was
only recently proven in rRS22s.(6.19) The only thing one has to show is that in the given situation
C is automatically accessible. Indeed, if that’s true, then C is presentable by Corollary 6.67(b).
(6.19)Interestingly, the proof for ordinary categories can not entirely be carried over. The step that fails is related
to the following two important caveats:
paq Let C be an ∞-category and suppose there are morphisms α : x! y and β : y ! x satisfying β ◦ α » idx,

so that x is a retract of y. If C is an ordinary category, then x can be expressed as the equaliser (and also
as the coequaliser) of idy and α ◦ β. However, this doesn’t work in general ∞-categories—it already fails in
An, and even more spectacularly in the ∞-category of spectra. We can still express x in terms of y, for
example, as

x » colim
´

y
α◦β
−−! y

α◦β
−−! y

α◦β
−−! · · ·

¯

» lim
´

· · · α◦β
−−! y

α◦β
−−! y

α◦β
−−! y

¯

(to see this, just observe that these diagrams can be (co)finally replaced by constant x-valued diagrams).
But a finite limit or colimit will never suffice.

pbq There is a notion of monomorphism in ∞-categories (see rL-HTT, §5.5.6s) and these allow for manipulation
of equalisers as in ordinary categories. But the inclusion of a retract is usually not a monomorphism! Again,
this already fails in An—monomorphisms are inclusions of path components, but there are many more
retracts—and even more spectacularly in Sp, where there are no monomorphisms at all.

If you’d like to read up on the proof of the ∞-categorical reflection theorem, I’d suggest you first read the proof
for ordinary categories and identify where the above issues occur. Then check that all other arguments can be
carried over. Finally, check out rRS22s to see how the issues can be circumvented.
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Furthermore, Corollary 6.67(a) shows that Theorem 6.66(b) is applicable, producing the desired
left adjoint. But proving that C is automatically accessible is surprisingly hard (and rather
surprising altogether).

We start off the proof of Theorem 6.66 with two preparatory lemmas.

6.69. Lemma. — Let F : C ! D be a functor between ∞-categories and let y ∈ D be an
object. Then y admits a right adjoint object x ∈ C under F if and only if the slice ∞-category
C/y » C ×D D/y has a terminal object.

Proof sketch. Let x ∈ C be an object and c : F pxq ! y a morphism in C. Then x is a right
adjoint object to y under F , with counit c, if and only if the composition

HomCp−, xq
F=⇒ HomD

`

F p−q, F pxq
˘ c˚=⇒ HomD

`

F p−q, y
˘

is an equivalence of functors. By Theorem 4.5, this can be checked on objects. So choose x′ ∈ C.
To check that HomCpx, x′q! HomDpF px′q, yq, it’s enough by Theorem 3.18 to check that the
fibres over every α ∈ HomDpF px′q, yq are contractible. So fix some α : F px′q! y. Using the fact
that Hom animae in pullbacks of ∞-categories are the pullbacks of the respective Hom animae
(which we’ll prove in more generality in Lemma 6.76(a)), one easily computes that the fibre
HomCpx′, xq ×HomDpF px′q,yq tαu is equivalent to HomC/y

ppx′, α : F px′q ! yq, px, c : F pxq ! yqq.
So the fibres are all contractible if and only if px, c : F pxq! yq is a terminal object of C/y.

6.70. Lemma. — Let C be any (possibly large) ∞-category. Then C has a terminal object if
and only if idC : C ! C has a colimit, in which case the terminal object is that colimit.

Proof sketch. If y ∈ C is terminal, then tyu ! C is a right adjoint, hence cofinal by Exam-
ple 6.20(b). Hence colimpidC : C ! Cq » y; in particular, the colimit exists.

Conversely, assume the colimit exists, and let u : idC ⇒ const y be the natural transformation
exhibiting y has the colimit. We wish to prove that C  ! tyu is an adjunction. To this end, by
Lemma 6.5, it suffices to construct the unit and the counit as well as to verify the triangle
identities. We take u to be our unit. The counit as well as the first triangle identity come for free
since FunpC, tyuq » ˚ and Funptyu, tyuq » ˚. By a quick unravelling, the second triangle identity
comes down to proving that uy : y ! y is the identity on y. To this end, consider u as a functor
u : ∆1 × C ! C and consider the composition σ := u ◦ pid∆1 ×Cq : ∆1 × p∆1 × Cq! ∆1 × C ! C.
By “currying”, σ corresponds to a functor ∆1 × ∆1 ! FunpC, Cq, or in other words, to a
commutative square in FunpC, Cq. By a somewhat confusing unravelling, that commutative
square is

idC const y

const y const y

u

u /// constuy

idconst y

Thus, in the equivalence HomCpy, yq » HomCpcolimC idC , yq » HomFunpC,CqpidC , yq, both idy
and uy are mapped to u ∈ HomFunpC,CqpidC , yq. This proves idy » uy, as desired.

Proof sketch of Theorem 6.66(a). If F admits a right adjoint, then F preserves colimits by
Lemma 6.11. Conversely, assume F preserves colimits. Adjoints can be constructed pointwise
by Lemma 6.2, and thus by Lemma 6.69, it’s enough to show that the slice ∞-category
C/y » C ×D D/y has a terminal object for every y ∈ D. A straightforward generalisation of the
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arguments in the proof of Corollary 6.65 shows that C/y has again all (small) colimits and is
generated under colimits by its full sub-∞-category pC0q/y » C0 ×C C/y; this is the only time we
use that F preserves colimits. So we can replace C by C/y and are thus reduced to showing that
C has a terminal object.

By Lemma 6.70, we must show that idC : C ! C admits a colimit. Since C has all small
colimits, it will be enough to show that C admits a cofinal functor from a small ∞-category.
Note that this step requires some set-theoretic care, since it’s not so clear why Theorem 6.18
would be applicable to colimits with potentially large indexing ∞-categories. This problem can
be solved by considering universes, and with some more effort even in ZFC; we’ll ignore it in
the following.

Since C has all small colimits, the colimit t := colimpC0 ! Cq exists. For every x ∈ C there
exists a morphism x ! t. Indeed, since we assume C to be generated under colimits by C0,
we can write x as a colimit x » colimpI ! C0 ! Cq and then we can consider the morphism
x » colimpI ! C0 ! Cq! colimpC0 ! Cq » t using functoriality of colimits, see Lemma 6.28.
Now let T ⊆ C be the full sub-∞-category spanned by t (note that T is not just ttu, since
we include all non-identity endomorphisms of t as well). Since C is locally small, T must be
essentially small. We claim that T ! C is cofinal. To this end, we’ll show that T ×C Cx/ is
filtered; then Lemma 6.55 will show that the condition from Theorem 6.18(c) is satisfied. Let
α : I ! T ×C Cx/ be a functor from any small ∞-category. If α : I ! T ×C Cx/ ! C denotes
the underlying functor, then α is equivalently given by a natural transformation constx ⇒ α
such that α takes values in the full sub-∞-category T ⊆ C. Since C has small colimits,
x » colimi∈I αpiq exists in C. As observed above, there exists a morphism x! t. Composing
the colimit transformation α ⇒ constx with constx ⇒ t yields a natural transformation
α ⇒ const t, or equivalently, a functor α▷ : I▷ ! C. By construction, α▷ takes values in the full
sub-∞-category T ⊆ C. Composing with constx ⇒ α provides a functor α▷ : I▷ ! T ×C Cx/,
as desired. This finishes the proof that T ×C Cx/ is filtered.

Our proof of Theorem 6.66(b) will again be preceded by two preparatory lemmas.

6.71. Lemma (“Right adjoints preserve sufficiently filtered colimits”). — Let G : D ! C
be a functor between accessible ∞-categories. If G admits a left adjoint F , then G preserves
τ -filtered colimits for sufficiently large regular cardinals τ .

Proof. Choose regular cardinals κ and λ such that C is κ-accessible and D is λ-accessible. By
Lemma 6.62, we may identify C and D with IndκpCκq and IndλpDλq, respectively. First note
that for every y ∈ D there exists a regular cardinal λy such that y is λy-compact. Indeed,
we may write y has a colimit of λ-compact objects, and then it suffices to choose λy ⩾ λ
sufficiently large so that the indexing diagram of the colimit is λy-small. Since Cκ is essentially
small, as we’ve seen in the proof of Lemma 6.62, we may choose a regular cardinal τ ⩾ κ
such that F pxq is τ -compact for all x ∈ Cκ. We claim that G preserves τ -filtered colimits.
Since C » IndκpCκq ⊆ PShpCκq, the functors HomCpx,−q : C ! An for x ∈ Cκ are jointly
conservative and preserve κ-filtered and thus also τ -filtered colimits. So it’s enough to show
that HomCpx,Gp−qq preserves τ -filtered colimits. But HomCpx,Gp−qq » HomDpF pxq,−q and
F pxq is τ -compact by construction.

6.72. Lemma. — Let C be a κ-accessible ∞-category. Then C is also τ -accessible for every
sufficiently large regular cardinal τ .
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6.73. Remark. — It’s usually not true that a κ-accessible ∞-category C is τ -accessible
for all τ > κ. However, this works if C is presentable. Indeed, it’s immediately clear from
Lemma 6.62(c) that any set of κ-compact generators is also a set of τ -compact generators

Proof sketch of Lemma 6.72. By Lemma 6.62(b) will be enough to show that C is generated
under τ -filtered colimits by Cτ , where τ is a sufficiently large regular cardinal that will be
chosen at the end of the proof. Every x ∈ C can be written as x » colimj∈J xj , where J is
κ-filtered and xj ∈ Cκ. We’ll rewrite this as a τ -filtered colimit of τ -compact objects. First, by
(■1) in the proof of Lemma 6.58, we find a cofinal functor J ! J from a directed partially
ordered set J . Note that J is automatically a κ-filtered ∞-category by the criterion from
Theorem 6.54. We’ll show that J can be written as a colimit J » colimi∈I Ji in Cat∞, where
I is a τ -filtered directed partially ordered set and Ji ⊆ J are essentially τ -small κ-filtered
partially ordered subsets. If we can do this, we’re done. Indeed, by Lemma 6.38(b), we may
then write x » colimi∈I colimj∈Ji xj . Each colimj∈Ji xj exists, as C admits κ-filtered colimits by
Lemma 6.61(a). Furthermore, colimj∈Ji xj is τ -compact because each xj is κ-compact, hence
τ -compact, and τ -compact objects are stable under τ -small colimits by an easy application of
Theorem 6.54.

To write J as such a colimit, let Pτ pJq be the partially ordered set of subsets S ⊆ J of
cardinality |S| < τ . Note that Pτ pJq is τ -filtered as an ∞-category. Indeed, using Lemma 2.14,
it’s enough to show that Pτ pJq is τ -filtered as an ordinary category, which is true since we can
just take unions of < τ subsets of cardinality < τ . Each S ∈ Pτ pJq can be identified with the
full subcategory JrSs ⊆ J spanned by S and we have J » colimS∈Pτ pJq JrSs in Cat∞. One way
to prove this would be to use that filtered colimits in Cat∞ can be computed on the level of
simplicial sets (see the proof of Corollary 6.64); then the desired equivalence is straightforward.
For an alternative, model-independent argument, let U be the unstraightening of the functor
Pτ pJq! Cat∞ sending S 7! JrSs. Then U is an ordinary category and can be easily described
explicitly. The same argument as in the proof of claim (⊠) in the proof of Lemma 6.62
shows that U ! J is cofinal. By Lemma 6.14, colimS∈Pτ pJq JrSs is a localisation of U . Since
localisations are cofinal by Example 6.20(c), we conclude that colimS∈Pτ pJq JrSs! J is cofinal
too. This is not quite what we wanted, but it’s enough for our purposes. Now we claim:

p⊠q There exists a partially ordered subset I ⊆ Pτ pJq such that JrSs is κ-filtered for every
S ∈ I and such that the inclusion I ! Pτ pJq has a left adjoint L : Pτ pJq! I.

Since right adjoints are cofinal by Example 6.20(b), we also get J » colimS∈I JrSs. Further-
more, this cofinality implies that I is τ -filtered again, because it satisfies the criterion from
Theorem 6.54. So once we know (⊠), we’re done.

For every equivalence class of functors α : I ! J from an essentially κ-small ∞-category I,
choose an extension α▷ : I▷ ! J . Let S0 ∈ Pτ pJq. Let S1 ⊆ J be obtained from S0 by adjoining
the “tip of the cone” for every α▷ : I▷ ! J such that α : I ! J factors through JrS0s ! J .
If τ is larger than the set of equivalence classes of essentially κ-small ∞-categories, then S1
will have cardinality |S1| < τ again. By transfinite induction, we can repeat this construction
κ many times. The result is a subset Sκ ⊆ J such that |Sκ| < τ and JrSκs is κ-filtered. If
we put LpS0q := Sκ, then L : Pτ pJq! Pτ pJq is a functor satisfying L ◦ L = L (we really get
an equality, not just an equivalence). Thus, if I ⊆ Pτ pJq is the image of L, then an easy
argument shows that L : Pτ pJq! I is indeed left adjoint to the inclusion (bear in mind that
we’re working with ordinary categories here, so constructing functors and adjunctions can be
done by hand). Therefore, the conditions from (⊠) are satisfied.
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Proof sketch of Theorem 6.66(b). By the dual of Lemma 6.69, it’s enough to show that the slice
∞-category Cy/ » C ×D Dy/ has an initial object for all y ∈ D. By the dual of Lemma 6.70, this
is equivalent to showing that idCy/

: Cy/ ! Cy/ admits a limit. A straightforward generalisation
of Lemma 6.56(a) shows that Cy/ has all (small) limits; this argument crucially uses that F
preserves limits. So it will be enough to construct a final functor from an essentially small
∞-category into Cy/.

By assumption and Lemma 6.72 we may choose a sufficiently large regular cardinal κ such
that C is κ-accessible, F preserves κ-filtered colimits, and y is κ-compact. Let T ⊆ Cy/ be the
full sub-∞-category spanned by those px, α : y ! F pxqq where x is κ-compact. By an easy
argument, the likes of which we’ve seen several times by now, T is essentially small. We claim
that for every z ∈ Cy/ there is an element t ∈ T and a morphism t! z in Cy/. If we can show
this, then a similar argument as in the proof of (a) shows that T ! Cy/ is final. Indeed, we’ll
show that T ×Cy/

pCy/q/w is cofiltered for every w ∈ Cy/, which will imply finality by the dual
of Theorem 6.18(c) and the dual of Lemma 6.55. So let α : I ! T ×Cy/

pCy/q/w be a functor
from a small ∞-category I. Since Cy/ admits small limits, the underlying functor α : I ! Cy/
admits a limit z » limi∈I αpiq. Choosing a morphism t ! z for some t ∈ T , we get natural
transformations const t ⇒ const z ⇒ α. The composition const t ⇒ α induces an extension
α◁ : I◁ ! T ×Cy/

pCy/q/w of α, as desired.
It remains to show our claim that for every z ∈ Cy/ there exists a moprhism t! z for some

t ∈ T . Write z as a pair px, β : y ! F pxqq for some x ∈ C. Since C is κ-accessible, we can write
x as a κ-filtered colimit x » colimj∈J xj for some xj ∈ Cκ. Since F preserves κ-filtered colimits,
F pxq » colimj∈J F pxjq. Since y is κ-compact by assumption and π0 commutes with colimits
by Lemma 6.58, the canonical map

colim
j∈J

π0 HomD
`

y, F pxjq
˘ „=−! π0 HomD

`

y, F pxq
˘

is a bijection. Hence β : y ! F pxq factors over a map βj : y ! F pxjq for some j ∈ J . Then
xj ! colimj∈J xj » x induces a morphism pxj , βj : y ! F pxjqq ! px, β : y ! F pxqq in Cy/.
Since xj is κ-compact, we see that pxj , βj : y ! F pxjqq ∈ T . This proves that there exists a
morphism t! z for some t ∈ T and thus we’ve proved that F : C ! D has a left adjoint.

To prove the converse in the case where C and D are both accessible, just observe that if F
admits a left adjoint, then F preserves all limits by Lemma 6.11 and also all sufficiently filtered
colimits by Lemma 6.71. Finally, to show that the conditions in (a) and (b) are satisfied in
the case where C and D are presentable, the only non-obvious assertion is that for every y ∈ D
there exists a regular cardinal κy such that y is κy-compact. But we’ve seen this in the proof of
Lemma 6.71 already.

§6.10. Lurie’s magic ∞-category PrL

To finish this appendix to §6, we’ll introduce Lurie’s ∞-category PrL. At first, it’ll probably
not be obvious to you why this construction is so useful, but hopefully you’ll come to appreciate
it more and more. Without further ado, here’s the “definition”.

6.74. “Definition”. — The ∞-category of presentable ∞-categories and left adjoint functors
PrL is the non-full sub-∞-category of Cat∞ spanned by the presentable ∞-categories and the
left adjoint, or equivalently (by Theorem 6.66(a)), colimits-preserving functors.

As stated, “Definition” 6.74 doesn’t make sense: Cat∞ only contains small ∞-categories,
but presentable ∞-categories usually aren’t small. So to make “Definition” 6.74 work, we would
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need to assume two nested universes (of “small” and “large” sets) and define PrL as a non-full
sub-∞-category of the ∞-category Ĉat∞ of all large ∞-categories (which is neither small nor
large). But there’s an alternative construction of PrL that stays within ZFC; see 6.79 below.
For the moment, let’s work with universes and assume Ĉat∞ exists. Also note that PrL is not
even locally small: We have HomPrLpC,Dq » core FunLpC,Dq; this is usually not an essential
small anima.(6.20)

Let’s begin by studying limits and colimits in PrL. To this end, we also consider the
∞-category PrR of all presentable ∞-categories and right adjoint functors.

6.75. Lemma. — The ∞-categories PrL and PrR have all small limits and colimits. The
forgetful functors PrL ! Ĉat∞ and PrR ! Ĉat∞ preserve all small limits.

The proof needs a technical lemma that has already been referenced several times before.

6.76. Lemma. — Let Cp−q : I ! Cat∞ (or Cp−q : I ! Ĉat∞) be a diagram of ∞-categories.

paq For every pair of objects x, y ∈ limi∈I Ci and their images xi, yi ∈ Ci under the projections
pri : limi∈I Ci ! Ci there is a canonical equivalence

Homlimi∈I Cipx, yq
»
−! lim

i∈I
HomCipxi, yiq .

pbq Let F : J ! limi∈I Ci be a functor. Assume that all compositions pri ◦ F : J ! Ci admit
a colimit and that these colimits are preserved under Ci ! Cj for all morphisms i! j in
I. Then F admits a colimit and that colimit is preserved under pri : limi∈I Ci ! Ci for
all i ∈ I. A similar assertion is true for limits.

Proof. Let C be an ∞-category and x, y ∈ C. Using HomCat∞p−, Cq » core Funp−, Cq, we get a
pullback diagram

HomCpx, yq HomCat∞

`

∆1, C
˘

txu × tyu HomCat∞p˚ ˚, Cq

≒

in An. Now for every ∞-category D, the functor HomCat∞pD,−q : Cat∞ ! An preserves
arbitrary limits by Corollary 6.17. Applying this for D » ∆1 and D » ˚ ˚ and using that
pullbacks commute with limits by the dual of Lemma 6.38, we deduce (a).

For (b), we only have to show that the colimit cocones J ▷ ! Ci for all i ∈ I assemble
into a functor F ▷ : J ▷ ! limi∈I Ci. If we can do this, then (a) combined with Corollary 6.16
and the fact that limits commute with limits (by the dual of Lemma 6.38) will show that F ▷
is a colimit cocone. To construct F ▷, we’ll show a slightly stronger assertion: Consider the
slice-∞-category pCat∞qJ / and let pCat∞qcolim

J / be the non-full sub-∞-category spanned by
those objects pJ ! Cq that admit a colimit and those morphisms that preserve this colimit.
We wish to show that pCat∞qcolim

J / has all limits and that pCat∞qcolim
J / ! pCat∞qJ / preserves

all limits. By Lemma 6.37, it’s enough to check this for products and pullbacks. So we can

(6.20)However, FunL
pC,Dq is at least locally small. To see this, write C » IndκpCκ

q for some regular cardinal κ.
Using a similar argument as in Lemma 6.80(a), FunL

pC,Dq can be identified with the full sub-∞-category of
FunpCκ,Dq spanned by those functors that preserve κ-small colimits. This is clearly a locally small ∞-category.
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reduce the construction of F ▷ : J ▷ ! limi∈I Ci to the case where limi∈I Ci is a product or a
pullback.(6.21)

In the product case it’s clear how to construct F ▷ : J ▷ !
∏
i∈I Ci. So let’s consider a

pullback C0 ×C2 C1 of α0 : C0 ! C2 and α1 : C1 ! C2. Choose colimit cocones F ▷0 : J ▷ ! C0 and
F ▷1 : J ▷ ! C1. Choose a composition F ▷2 := α0 ◦ F ▷0 and a composition α1 ◦ F ▷1 . Then F ▷2 and
α1 ◦ F ▷1 are both colimit cocones of the given functor pr2 ◦ F : J ! C2. Since colimit cocones
are unique up to equivalence, there must be a natural equivalence η : F ▷2

»=⇒ α1 ◦ F ▷1 . Thus, we
obtain a commutative diagram

J ▷ J ▷ J ▷

C0 C2 C1

///F ▷
0 ///F ▷

2 F ▷
1

α0 α1

in Cat∞ (η is precisely what makes the right square commute). This diagram constitutes
a natural transformation const J ▷ ⇒ Cp−q in FunpΛ2

2, Cq, which induces the desired functor
J ▷ ! C0 ×C2 C2. As argued above, this is automatically a colimit cone.

Proof sketch of Lemma 6.75. The equivalence from Corollary 6.8(b) (applied to Ĉat∞ rather
than Cat∞) restricts to an equivalence PrL » pPrRqop. In particular, colimits in PrL are just
limits in PrR and vice versa. So it suffices to study limits in either case. By Lemma 6.37 we
can reduce to products and pullbacks.

We start with products. Let pCiqi∈I be an collection of ∞-categories and let C :=
∏
i∈I Ci.

We wish to show that if all Ci are presentable, then so is C, and then C satisfies the universal
property of the product in both PrL and PrR (compare this to footnote (6.21) below). If we can
show that C is accessible, then all the other desired properties follow easily from Lemma 6.76(b).
So let’s show that products of accessible ∞-categories are accessible again. By Lemma 6.72, we
can choose a sufficiently large regular cardinal κ such that κ > |I| and all Ci are κ-accessible.
If x = pxiqi∈I is an object of C such that each xi ∈ Ci is κ-compact, then x is κ-compact
too: Indeed, this follows from Lemma 6.76(a) and the fact that κ-filtered colimits commute
with I-indexed products in An by Theorem 6.54. Now let y = pyiqi∈I be another object of
C. For all i ∈ I, we can write yi » colimj∈Ji xipjq as a κ-filtered colimit of κ-compact objects.
By the same trick as in the proof of Lemma 6.63, we can replace each Ji by J :=

∏
i∈I Ji,

put xpjq := pxipjqqi∈I ∈ C and then y » colimj∈J xpjq is expressible as a κ-filtered colimit of
κ-compact objects by Lemma 6.76(b).

It remains to do pullbacks. Proving that pullbacks of accessible ∞-categories along functors
that preserve sufficiently filtered colimits stay accessible is not quite easy and we’ll refer
to rL-HTT, Proposition 5.4.6.6s. If C0 ! C2  C1 are functors in PrL or PrR, then they
preserve sufficiently filtered colimits (for PrR this needs Lemma 6.71) and so the pullback
D := C0 ×C2 C1 is accessible. In the case of PrL, Lemma 6.76(b) shows that C has all colimits, so
(6.21)After constructing F ▷ : J ▷ ! limi∈I Ci there’s still something to show before we can conclude that limi∈I Ci

(taken in Cat∞ or pCat∞qJ /, this doesn’t matter by the dual of Lemma 6.56(a)) is also the limit in pCat∞q
colim
J / .

The problem is that pCat∞q
colim
J / is only a non-full sub-∞-category of pCat∞qJ /. But this is easily fixed. Using

Lemma 4.9 and the universal property of limi∈I Ci in pCat∞qJ /, verifying the corresponding universal property
in pCat∞q

colim
J / reduces to a matching of path components. For example, in the case of a product, we have

to show that the projections pri :
∏

i∈I
Ci ! Ci preserve the colimit over J ; and furthermore, that a functor

D !
∏

i∈I
Ci in pCat∞qJ / preserves the colimit over J if and only if the same is true for each D ! Ci. A similar

assertion would be to show for pullbacks. But these are all straightforward.
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it is presentable, and that the projections pri : C ! Ci preserve all colimits, so they are functors
in PrL. The required universal property in PrL is then straightforward to verify. In the case of
PrR, Lemma 6.76(b) shows that C has all limits, hence it is presentable by Corollary 6.67(b),
and that the projections pri : C ! Ci preserve all limits and sufficiently filtered colimits, so they
are functors in PrR by Theorem 6.66(b). Again, the required universal property in PrR is then
straightforward to verify.

Let us now explain how to construct PrL in ZFC. To this end, we need to introduce a variant
of PrL. As we’ll see in Theorem 6.82, this variant has a truly mindblowing property, which
makes it quite interesting on its own.

6.77. Definition. — Let κ be a regular cardinal.
paq A presentable ∞-category is called κ-compactly generated if it is κ-accessible, that is, of the

form C » IndκpCκq, where Cκ ⊆ C is the full sub-∞-category spanned by the κ-compact
objects.

pbq We let PrL
κ be the non-full sub-∞-category of PrL spanned by the κ-compactly generated

∞-categories and those left adjoint functors that also preserve κ-compact objects.

6.78. Lemma. — A left adjoint functor F : C ! D between presentable ∞-categories preserves
κ-compact objects if the right adjoint G : D ! C preserves κ-filtered colimits. The converse is
true as well, provided C is κ-compactly generated.

Proof. Let x ∈ C be κ-compact and let yp−q : I ! D be a κ-filtered diagram. If G preserves
κ-filtered colimits, then

HomD

´

F pxq, colim
i∈I

yi

¯

» HomC

´

x, colim
i∈I

Gpyiq
¯

» colim
i∈I

HomC
`

x,Gpyiq
˘

» colim
i∈I

HomD
`

F pxq, yi
˘

,

proving that F pxq is κ-compact. Conversely, if F preserves κ-compact objects, then the same
calculation run backwards shows that the canonical morphism colimi∈I Gpyiq! Gpcolimi∈I yiq
becomes an equivalence after applying the functors HomCpx,−q : C ! An for every κ-compact
object x ∈ Cκ. These functors are jointly conservative if C is κ-compactly generated.

6.79. Constructing PrL in ZFC. — By Remark 6.73, we have an inclusion PrL
κ ⊆ PrL

λ

of non-full sub-∞-categories of PrL for all regular cardinals λ > κ. By Lemma 6.72, every
presentable ∞-category is κ-compactly generated for all sufficiently large regular cardinals κ.
Furthermore, by Lemma 6.78 and Lemma 6.71, every left adjoint functor F : C ! D between
presentable ∞-categories preserves κ-compact objects for sufficiently large κ. Therefore we can
write

PrL »
⋃
κ

PrL
κ ,

where the union is taken over all cardinals which are small with respect to our two nested
universes. The union can be made precise as a colimit in Ĉat∞, the ∞-category of all large
∞-categories, but it can also be viewed as simply a union of simplices in every degree. In any
case, we see that every functor T : I ! PrL from a small ∞-category I factors through PrL

κ for
all sufficiently large cardinals κ.
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So it suffices to explain how PrL
κ can be constructed in ZFC. In Lemma 6.80(c) below, we

see that, for uncountable κ, PrL
κ can be identified with a non-full sub-∞-category of Cat∞ in a

non-trivial way. This can be viewed as an alternative construction of PrL
κ, thus providing a

construction within the confines of ZFC.

6.80. Lemma. — Let κ be an uncountable regular cardinal and let Catκ9colim
∞ ⊆ Cat∞ be the

non-full sub-∞-category spanned by those small ∞-categories that have all κ-small colimits
and those functors that preserve all κ-small colimits. Let p−qκ be the functor that sends a
κ-compactly generated presentable ∞-category D to its full sub-∞-category Dκ spanned by the
κ-compact objects.(6.22)

paq If C is a small ∞-category with all κ-small colimits and D is a presentable ∞-category,
then restriction alongよC : C ! IndκpCq induces an equivalence of ∞-categories

よ˚
C : FunL

κ

`

IndκpCq,D
˘ »
−! Funκ9colimpC,Dκq .

Here FunL
κ ⊆ Fun is the full sub-∞-category spanned by left adjoint functors that preserve

κ-compact objects and Funκ9colim ⊆ Fun is spanned by κ-small colimits-preserving functors.
pbq If C is a small ∞-category with all κ-small colimits, then C » IndκpCqκ.
pcq The functor p−qκ induces an equivalence of ∞-categories

p−qκ : PrL
κ

»
−! Catκ9colim

∞ .

Proof. We begin with (b). It’s clear that the objects tよCpxq | x ∈ Cu form a set of κ-compact
generators of IndκpCq. As we’ve seen in the proof of Lemma 6.62, this means that every
κ-compact object of IndκpCq is a retract of an object in tよCpxq | x ∈ Cu. As we’ve seen in
footnote (6.19) on page 116, retracts can be written as countable colimits. Furthermore, we’ve
seen in the proof of Lemma 6.61 thatよC : C ! IndκpCq preserves κ-small colimits; in particular,
よC preserves countable colimits, as κ is assumed uncountable. Since we assume that C has all
κ-small colimits, it follows that tよCpxq | x ∈ Cu is closed under retracts and thus comprises all
κ-compact objects. The claim follows.

To prove (a), our starting point is the equivalence Funκ9filtpIndκpCq,Dq » FunpC,Dq from
Lemma 6.61(c). So we only have to match full sub-∞-categories on either side. Suppose a
functor F : IndκpCq ! D preserves κ-compact objects. Then the associated functor C ! D
factors through a functor G : C ! Dκ. Furthermore, Dκ ⊆ D is closed under κ-small colimits
and so is C » IndκpCqκ ⊆ IndκpCq by (b). Thus, if F preserves all colimits, then G preserves
κ-small colimits. Conversely, suppose we’re given a functor G : C ! Dκ that preserves κ-small
colimits. Let F : IndκpCq ! D be the associated functor. By construction, F preserves κ-
compact objects and κ-filtered colimits. Furthermore, we’ve seen in the proof of Lemma 6.63
that arbitrary colimits in IndκpCq can be built from κ-filtered colimits as well as κ-small colimits
(6.22)We should explain how to construct this functor. In general, given a functor F : C ! Cat∞, it’s easy to
construct subfunctors of F . Indeed, suppose for every x ∈ C we’re given a full sub-∞-category F0pxq ⊆ F pxq such
that for every morphism α : x! y in F , the functor F pαq : F pxq! F pyq restricts to a functor F0pxq! F0pyq.
In this case, we automatically get a functor F0 : C ! Cat∞ together with a natural transformation F0 ⇒ F .
Indeed, let p : U ! C be the unstraightening of F and let U0 ⊆ U be the full sub-∞-category spanned fibrewise
by F0pxq ⊆ F pxq for all x ∈ C. Then p0 : U0 ! C given as the restriction of p is still a cocartesian fibration, since
our conditions on F0 precisely ensure that U0 is closed under p-cocartesian lifts in U . Thus, we can define F0 as
the straightening of p0. In the case at hand, the identity on PrL

κ can be viewed as a functor PrL
κ ! Ĉat∞ and we

can construct p−q
κ as a subfunctor of it.

124



§6.10. Lurie’s magic ∞-category PrL

of objects in the image ofよC : C ! IndκpCq. Thus F preserves all colimits. This finishes the
proof of (a).

Finally, (c) is a formal consequence: (b) shows that p−qκ is essentially surjective, and (a),
together with Lemma 6.63(d), shows that p−qκ is fully faithful.

6.81. Corollary. — Let λ > κ be regular cardinals.

paq The inclusion PrL
κ ⊆ PrL

λ admits a right adjoint. On objects, it sends D ∈ PrL
λ to IndκpDλq.

pbq The ∞-category PrL
κ has all small limits and colimits. The forgetful functor PrL

κ ! PrL

preserves all small colimits.(6.23)

Proof. We start with (a). Let D ∈ PrL
λ. By Lemma 6.61(c), the identity functor idDλ : Dλ ! Dλ

induces a κ-filtered colimits-preserving functor cD : IndκpDλq! D. Let’s first argue why cD is a
functor in PrL

λ. Since Dλ has all κ-small colimits and idDλ preserves them, the same argument
as in the proof of Lemma 6.80(a) shows that cD preserves all colimits. Furthermore, the
λ-compact objects of IndκpDλq are precisely those generated under λ-small colimits by objects
in the image ofよDλ : Dλ ! IndκpDλq. Indeed, if D denotes the full sub-∞-category spanned
by these objects, then the proof of Lemma 6.62(c) yields an equivalence IndλpDq » IndκpDλq;
now apply Lemma 6.80(b). Since cD preserves all colimits and Dλ ⊆ D is closed under λ-small
colimits, it follows that all λ-compact objects of IndκpDλq land in Dλ. This proves that cD is
indeed a functor in PrL

λ.
To construct the desired right adjoint, it’s now enough by Lemma 6.2 to show that the

functor pcDq˚ : FunL
κpC, IndκpDλqq −! FunL

λpC,Dq for all C ∈ PrL
κ, given by postcomposition

with cD, is an equivalence of ∞-categories. This functor fits into the following diagram:

FunL
κ

`

C, IndκpDλq
˘

FunL
λpC,Dq

Fun
`

Cκ, IndκpDλqκ
˘

FunpCκ,Dλq

pcDq˚

///

»

The vertical arrows are given by restriction along Cκ ⊆ C. By Lemma 6.80, the left vertical
arrow is fully faithful and the bottom arrow is an equivalence. The right vertical arrow is fully
faithful by Lemma 6.61(c), using C » IndκpCκq. It follows that pcDq˚ must be fully faithful
too. Furthermore, by Lemma 6.80, the essential image of FunL

κpC, IndκpDλqq ! FunpCκ,Dλq

is spanned by those functors that preserve κ-small colimits. Since Cκ ⊆ C and Dλ ⊆ D are
closed under κ-small colimits, the essential image of FunL

λpC,Dq! FunpCκ,Dλq must also be
contained in the κ-small colimits-preserving functors. This shows that pcDq˚ is essentially
surjective and we’ve finished the proof of (a).

The existence of limits in PrL
κ follows from Theorem 6.82 below combined with Corol-

lary 6.67(a). For colimits, let PrR
κ be the ∞-category of all κ-compactly generated presentable

∞-categories and right adjoint functors that preserve κ-filtered colimits. Then Corollary 6.8(b)
and Lemma 6.78 show PrL

κ » pPrR
κ qop. Thus it’s enough to check that PrR

κ is closed under

(6.23)It’s true that any product of κ-compactly generated ∞-categories in PrL is κ-compactly generated again;
we’ll see this in the proof of Corollary 6.81(b). But, confusingly, the product in PrL is usually not the product in
PrL

κ. The reason is that preservation of limits or colimits can be detected factor-wise, but not preservation of
κ-compact objects.
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limits PrR.(6.24) As usual, it’s enough to do products and pullbacks. In either case, we know
from Lemma 6.75 that the limit in Ĉat∞ is also the limit in PrR, so by Lemma 6.62(c) we
only need to construct a set of κ-compact generators. For a product

∏
i∈I Ci, choose a set Si of

κ-compact generators of Ci for all i ∈ I. Furthermore, choose an initial object ∅i ∈ Ci. For all
si ∈ Si let eipsiq ∈

∏
i∈I Ci be the object given by eipsiqi = si and eipsiqj = ∅j for j ̸= i. Then

teipsiq | si ∈ Siu are κ-compact and jointly detect equivalences in the ith component. Hence
the union

⋃
i∈Iteipsiq | si ∈ Siu is a set of κ-compact generators of

∏
i∈I Ci.

The argument for pullbacks is similar. Let C := C0 ×C2 C1 be a pullback in PrR, where
the underlying diagram is already contained in PrR

κ . By definition of PrR, the pullback
projections pr0 : C ! C0 and pr1 : C ! C1 admit left adjoints L0 : C0 ! C and L1 : C1 ! C. By
Lemma 6.76(b), the projections pr0 and pr1 preserve κ-filtered colimits, hence Lemma 6.78
shows that L0 and L1 preserve κ-compact objects. Now choose sets S0 and S1 of κ-compact
generators of C0 and C1. Then tL0ps0q | s0 ∈ S0u are κ-compact objects of C and jointly detect
equivalences in the first factor. Similarly, tL1ps1q | s1 ∈ S1u jointly detect equivalences in the
second factor. Hence the union tL0ps0q | s0 ∈ S0u ∪ tL1ps1q | s1 ∈ S1u is a set of κ-compact
generators of C. This finishes the proof of (b).

To finish this rather lengthy subsection, we’ll show the aforementioned mindblowing property
of PrL

κ. If you’re in a situation where you can fix an uncountable regular cardinal κ and only
work with κ-compactly generated ∞-categories (for most practical applications, κ = ℵ1 is
enough), Theorem 6.82 allows you to bypass all set-theoretic problems.

6.82. Theorem (“Russel’s paradox? Skill issue!”). — Let κ be an uncountable regular
cardinal. Then PrL

κ is an object of PrL
κ.

Proof sketch. We already know from Corollary 6.81(b) that PrL
κ has all colimits. Thus, by

Lemma 6.62(c) it’s enough to find a set of κ-compact generators. We’ll show that tAn,PShp∆1qu

does it. Let’s first show that the functors HomPrL
κ

pAn,−q and HomPrL
κ

pPShp∆1q,−q are jointly
conservative. To this end, we claim more generally:
p⊠1q If C is a small ∞-category and D is a κ-compactly generated presentable ∞-category, then

restriction alongよC : C ! PShpCq induces an equivalence of ∞-categories

よ˚
C : FunL

κ

`

PShpCq,D
˘ »
−! FunpC,Dκq .

Believing (⊠1), we find HomPrL
κ

pAn,Dq » core Dκ and HomPrL
κ

pPShp∆1q,Dq » core ArpDκq.
Now p−qκ : PrL

κ ! Cat∞ is conservative by Lemma 6.80(c). Furthermore, corep−q : Cat∞ ! An
and core Arp−q : Cat∞ ! An are jointly conservative, as we’ve seen in the proof of Corollary 6.64.
It follows that An and PShp∆1q are generators of PrL

κ, as desired.
To prove (⊠1), recall FunLpPShpCq,Dq » FunpC,Dq from Theorem 6.30, so we only have

to find out to which full sub-∞-category FunL
κ ⊆ FunL corresponds in FunpC,Dq. Since

tよCpxq | x ∈ Cu is a set of generators for PShpCq, the same argument as in the proof of
Lemma 6.80(a) shows that the κ-compact objects in PShpCq are precisely those generated
under κ-small colimits from representable presheaves. Thus, a colimits-preserving functor
PShpCq! D also preserves κ-compact objects if and only if it restricts to a functor C ! Dκ.
This proves (⊠1).
(6.24)As in the proof of Lemma 6.75, a straightforward extra-argument is needed since PrL

κ is not a full sub-∞-
category of PrR. As preservation of limits and κ-filtered colimits can be checked factor-wise, we don’t run into
the same issue as in footnote (6.23)
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It remains to show that An and PShp∆1q are κ-compact in PrL
κ. As explained above, (⊠1)

shows HomPrL
κ

pAn,−q » corepp−qκq and HomPrL
κ

pPShp∆1q,−q » core Arpp−qκq. We know from
Lemma 6.80(c) that p−qκ : PrL

κ ! Catκ9colim
∞ is an equivalence of ∞-categories, so it preserves all

κ-filtered colimits, and we’ve sketched in the proof of Corollary 6.64 that corep−q : Cat∞ ! An
and core Arp−q : Cat∞ ! An preserve filtered colimits. Therefore, to finish the proof it’s enough
to show the following claim about κ-filtered colimits in Catκ9colim

∞ .
p⊠2qThe forgetful functor Catκ9colim

∞ ! Cat∞ preserves κ-filtered colimits.
To prove (⊠2), let Cp−q : J ! Catκ9colim

∞ be a κ-filtered diagram. We have to show that the
colimit colimj∈J Cj in Cat∞ also has all κ-small colimits and constitutes a colimit in Catκ9colim

∞ .
So let I be a κ-small ∞-category and let T : I ! colimj∈J Cj be an I-shaped diagram in
colimj∈J Cj . It’s not hard to check that for uncountable regular cardinals κ the κ-compact
objects in Cat∞ are precisely the κ-small ∞-categories.(6.25) Hence I is κ-compact and so T
factors through a functor T0 : I ! Cj0 for some j0 ∈ J . By assumption, Cj0 has all κ-small
colimits and so T0 extends to a colimit cone T ▷0 : I▷ ! Cj0 . Furthermore, for every morphism
j0 ! j in J the functor Cj0 ! Cj preserves κ-small colimits, hence I▷ ! Cj0 ! Cj is still a
colimit cone. We claim that then also I▷ ! Cj0 ! colimj∈J Cj is a colimit cone. To show this,
we need an analogue of Lemma 6.76(a) for filtered colimits; this can be obtained in the exact
same way, using that HomCat∞p∆1,−q and HomCat∞p˚ ˚,−q also preserve filtered colimits and
that pullbacks in An commute with filtered colimits by Theorem 6.54. Then Corollary 6.16
shows that I▷ ! Cj0 ! colimj∈J Cj is indeed a colimit cone, as claimed. This proves that
colimj∈J Cj again has all κ-small colimits.

To finish the proof, it remains to argue why colimj∈J Cj is also a colimit in the non-full
sub-∞-category Catκ9colim

∞ ⊆ Cat∞. Unravelling the definitions (and using Lemma 4.9), we
must check that for every natural transformation η : Cp−q ⇒ const D in Catκ9colim

∞ the induced
functor colimj∈J Cj ! D in Cat∞ preserves κ-small colimits. But we’ve seen above that
every κ-small colimit in colimj∈J Cj is inherited from Cj0 for some j0 ∈ J and the functor
ηj0 : Cj0 ! D preserves κ-small colimits by assumption on η.

(6.25)Since Cat∞ is generated by the compact objects ˚ and ∆1, hence the κ-compact objects are precisely those
∞-categories generated under κ-small colimits by ˚ and ∆1. Everyone of them is κ-small by Remark 6.49.
Conversely, for all n ⩾ 0, the ∞-category ∆n can be written as a finite colimit in ˚ and ∆1 (namely, as the
iterated pushout ∆t0,1u ⊔t1u · · · ⊔tn−1u ∆tn−1,nu). Using Lemma 6.48(c), every other κ-small ∞-category is
contained in the full sub-∞-category of Cat∞ generated under κ-small colimits by t∆n | n ⩾ 0u.
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§7. Towards spectra
The goal of this section is to introduce the stable ∞-category Sp of spectra. Along the way
we’ll be able to deduce many classical topological results.

§7.1. Suspensions and loop animae

7.1. Definition. — Let X ∈ An be an anima or pX,xq ∈ An˚/ be a pointed anima. We
define ΣX, the suspension of X, and ΩxX, the loop anima of X with basepoint x, via

X ˚

˚ ΣX
≓ and

ΩxX txu

txu X

≒

respectively, where the pushout and the pullback are taken in An. If the basepoint is clear
from the context, we often simply write ΩX. Note that ΣX is canonically a pointed anima
via ˚! ΣX and ΩxX is canonically a pointed anima since the pullback can be taken in An˚/

instead by Lemma 6.56(a).

7.2. Remark. — By model category fact 6.13, to compute ΣX, we have to replace one
X ! ˚ by a cofibration, then take the usual pushout of simplicial sets, and finally replace
the result by a Kan complex. Such a replacement by a cofibration could be X ! X▷ ! CX,
where X▷ ! CX is an anodyne map from the cone X▷ from Construction 6.51 into a Kan
complex (which exists thanks to Lemma 3.12); then CX is contractible because CX » |X▷| » ˚.
From this description, we see that Σ is compatible with the topological suspension functor
ΣTop : Top! Top (reduced or unreduced doesn’t matter) in the sense that

hopAnq hopAnq

hopTopq hopTopq

Σ

| · | /// | · |

ΣTop

commutes; here | · | : hopAnq ! hopTopq denotes the geometric realisation functor. So the
suspension functor Σ: An! An deserves its name.

Next, we’ll show that the loop functor Ω: An˚/ ! An˚/ deserves its name as well.

7.3. Lemma. — Suspension and loop form an adjunction Σ: An˚/  ! An˚/ :Ω. In particular,
for every pointed anima pX,xq, the following hold:
paq πnpΩxX,xq „= πn+1pX,xq for all n ⩾ 0.
pbq ΩxX » HomAn˚/

ppS1, ˚q, pX,xqq » HomXpx, xq.

Proof sketch. The adjunction Σ ⊣ Ω follows immediately from Corollary 6.16 and the fact
that the pushout and pullback diagrams in Definition 7.1 can be taken in An˚/ as well by
Lemma 6.56.

Part (a) follows immediately from the suspension-loop adjunction and Sn+1 » ΣSn. The
latter is clear if we define Sn := Σp˚ ˚q as the n-fold suspension of two points; for any other
construction, it is a straightforward check.
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The first equivalence in (b) follows from ΩxX » HomAnp˚,ΩxXq » HomAn˚/
p˚ ˚, pΩxX,xqq

and Σp˚ ˚q » S1. For the second equivalence, note ArpXq » X. Indeed, ArpXq » Funp∆1, Xq

is already an anima and so Funp∆1, Xq » core Funp∆1, Xq » HomCat∞p∆1, Xq. Note that
|∆1| » ˚, since ∆1 has an initial object, and so Example 6.3(a) implies the desired equivalence
HomCat∞p∆1, Xq » HomAnp˚, Xq » X. Therefore, ps, tq : ArpXq ! X × X is homotopic to
the diagonal ∆: X ! X ×X and so HomXpx, xq » ptxu × txuq ×X×X,∆ X. Now consider the
following diagram:

txu txu ×X txu

X X ×X X

≒ ≒
∆ pr1

The right square is a pullback by inspection and the outer rectangle is a pullback because the
bottom row pr1 ◦∆: X ! X is the identity on X. It follows formally that the left square must
be a pullback as well. Finally, consider the following diagram:

ΩxX txu X

txu txu ×X X ×X

≒ ≒ ∆

The right square is a pullback as argued above and the left square is a pullback by Definition 7.1.
Now the outer square is a pullback again, which proves ΩxX » HomXpx, xq, as desired.

7.4. Example. — For every n ⩾ 0, the following is a pullback diagram in D⩾0pZq:

Arns 0

0 Arn+ 1s

≒

(this may seem weird at first, but will become more clear once we discuss stable ∞-categories
in §7.4; the proof is similar to Lemma 6.40(b)). Since the Eilenberg–MacLane anima functor
K: D⩾0pZq! An from Construction 6.41 is a right adjoint, it preserves pullbacks by Lemma 6.11,
which shows KpA,nq » ΩKpA,n+ 1q. This fits prefectly with the fact that the loop functor
shifts homotopy groups down by Lemma 7.3(a).

§7.2. E1-monoids and E1-groups

7.5. Associahedra. — What’s an associative monoid in the ∞-category An? Clearly, part
of the data should be an anima M together with a multiplication µ : M ×M !M . We’ll often
write we put a · b := µpa, bq for convenience.

Intuitively, associativity means that for every n ⩾ 3 and all a1, . . . , an ∈ M , every way of
bracketing the product a1 · · · an should be equivalent. What does this mean concretely? In the
case n = 3, another part of the data should be a homotopy η3 : µp−, µp−,−qq ⇒ µpµp−,−q,−q

in HomAnpM3,Mq, witnessing a · pb · cq » pa · bq · c for all a, b, c ∈ M . If M were a monoid in
Set (or in any ordinary category), then the case n = 3 would already guarantee associativity for
arbitrary n. However, in an ∞-category, this no longer works. For example, in the case n = 4,
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we need additional data—a homotopy η4 in HomAnpM4,Mq that witnesses commutativity of
the diagram

a · pb · pc · dqq

a · ppb · cq · dq pa · bq · pc · dq

pa · pb · cqq · d ppa · bq · cq · d

a·ηb,c,d

»

ηa,b,pc·dq

»

⇐=η4
ηa,pb·cq,d

»

ηpa·bq,c,d

»

ηa,b,c·d
»

Then η4 needs to satisfy another compatibility in HomAnpM5,Mq and so on. In general,
Stasheff rSta63s introduced pd− 2q-dimensional polytopes Kd, called associahedra, such that
associativity up to n = d− 1 induces a map ∂Kd ! HomAnpMd,Mq and associativity up to
n = d amounts to extending this to a map Kd ! HomAnpMd,Mq.

A similar story exists for unitality. This leads to a notion of An-monoids, and in the limit
case, A∞-monoids. Fortunately, ∞-category theory provides a way to package all this unwieldy
data into a much cleaner definition.

7.6. Definition. — Let C be an ∞-category with finite products (so in particular, the empty
product exists, so C has a terminal object ˚).
paq An A∞-monoid or E1-monoid in C is a functor M : ∆∆op ! C satisfying M0 » ˚ as well as

the Segal condition: The Segal maps ei : r1s ! rns that send r1s bijectively to ti, i+ 1u

induce an equivalence
Mn

»
−!Mn

1 .

We call M1 the underlying object of M ; we’ll often don’t distinguish between M and M1.
Let MonpCq ⊆ Funp∆∆op, Cq denote the full sub-∞-category spanned by the E1-monoids.

pbq For an E1-monoid M in C, we get a multiplication map µ : M1 ×M1 » M2
d˚

1−!M1 using
the Segal condition. Then M is called an E1-group in C if the shearing map

ppr1, µq : M1 ×M1
»
−!M1 ×M1

is an equivalence. We let GrppCq ⊆ MonpCq denote the full sub-∞-category spanned by
E1-groups.

7.7. Associahedra revisited. — Let’s unravel what happens in Definition 7.6. Let
M : ∆∆op ! C be an E1-monoid in an ∞-category C. We’ve already seen that d˚

1 : M2 ! M1
encodes the multiplication on M . In general, if we identify Mn » Mn

1 and Mn−1 » Mn−1
1

via Definition 7.6(a), then the face map d˚
i : Mn ! Mn−1 for 0 < i < n can be interpreted

as the map that sends pa1, . . . , anq to pa1, . . . , ai−1, ai · ai+1, ai+2, . . . , anq. More precisely, if
e

p2q

i,i+1 : r2s! rns is the map that sends r2s bijectively to ti− 1, i, i+ 1u, then the diagram

Mn M i−1
1 ×M2 ×Mn−i−1

1 M i−1
1 ×M2

1 ×Mn−i−1
1

Mn−1 M i−1
1 ×M1 ×Mn−i−1

1

pe1,...,ei−1q×ep2q

i,i+1×pei+2,...,enq

»

d˚
i

/// id ×d˚
1 ×id

id ×pe1,e2q×id
»

id ×µ×id

///

pe1,...,ei−1q×ei×pei+1,...,en−1q

»
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commutes. Indeed, the square on the left can be reduced to certain commutative squares in
the ordinary category ∆∆op; we leave the details to you. The triangle on the right commutes by
definition of µ. In a similar way, one can show that the “outer” face maps d˚

0 and d˚
n simply

forget a1 and an, respectively.
So the face maps in ∆∆ encode the multiplication, including its associativity, of the E1-monoid

M : ∆∆op ! C. Likewise, the degeneracy maps encode unitality. The image of ˚ » M0 under
s0 : M0 !M1 is a point 1 ∈ M1 which plays the role of the identity element of M in the sense
that the left and right multiplication maps

M1 » t1u ×M1
µ
−!M1 and M1 » M1 × t1u

µ
−!M1

are both homotopic to the identity idM1 : M1 ! M1. Indeed, this follows from the identities
s0 ◦ d1 = idr1s = s1 ◦ d1 in ∆∆ via the commutative diagrams

M1 M2 M1

t1u ×M1 M1 ×M1

»

s˚
0

///

d˚
1

pe1,e2q

µ

/// and
M1 M2 M1

M1 × t1u M1 ×M1

»

s˚
1

///

d˚
1

pe1,e2q

µ

///

In general, s˚
j : Mn−1 ! Mn can be interpreted as the map that sends an pn − 1q-tuple

pa1, . . . , anq ∈ Mn−1
1 » Mn−1 to the n-tuple pa1, . . . , aj−1, 1, aj , . . . , anq ∈ Mn

1 .
These considerations lead to a nice conceptual description of Stasheff’s associahedra Kd

from 7.5. We’ve seen that the “inner” face maps di : rns ! rn − 1s for 0 < i < n encode the
multiplication on M . The (non-full) sub-category of ∆∆ spanned by di : rns! rn−1s for 0 < i < n
and 1 < n ⩽ d is equivalent to □d−1 := p∆1qd−1. Since p□d−1qop » □d−1, we get a (faithful but
not fully faithful) functor □d−1 ! ∆∆op. The restriction M |□d−1 : □d−1 ! C of M then encodes
the multiplication µ on M plus the fact that µ is associative for up to d factors. But what
does this have to do with Stasheff’s associahedra? In the case C » An = N∆pKan∆q, a functor
□d−1 ! N∆pKan∆q is equivalently given by a simplicially enriched functor Cr□d−1s! Kan∆

by Construction 2.21. Thus, an anima M1 together with a multiplication that’s associative for
up to d factors is encoded by a simplicially enriched functor M∆ : Cr□d−1s! Kan∆ such that
M∆ sends p0, . . . , 0q to Md

1 and p1, . . . , 1q to M1. In particular, we get a morphism

FCr□d−1spp0, . . . , 0q, p1, . . . , 1qq −! HomAn
`

Md
1 ,M1

˘

.

This is precisely the kind of structure we’ve seen in 7.5: a map from a polytope, modelled here
as a simplicial set, into HomAnpMd,Mq! And indeed, FCr□d−1spp0, . . . , 0q, p1, . . . , 1qq turns out
to be a model for Stasheff’s associahedron Kd. In a similar way, ∂Kd arises as a Hom-simplicial
set in Cr∂□d−1s. For a greatly expanded version of this explanation see rL-HA, §4.1.6s.

7.8. Lemma (“Equivalences of E1-monoids can be checked on underlying objects”). — Let
C be an ∞-category with finite products. Then a morphism f : M ! N in MonpCq is an
equivalence if and only if f1 : M1 ! N1 is an equivalence.

Proof. This follows immediately from Theorem 4.5 and the Segal condition.

7.9. Lemma. — For an E1-monoid M in animae, the following conditions are equivalent:
paq M is an E1-group.
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pbq For every a ∈ M1, the “left multiplication map” a · p−q : M1 » tau × M1
µ
−! M1 is an

equivalence.
pcq For every a ∈ M1, the “right multiplication map” p−q · a : M1 » M1 × tau

µ
−!M1 is an

equivalence.
pdq The ordinary monoid π0pMq ∈ MonpSetq is a group.

Proof. We prove (a) ⇔ (b) first. Using Theorem 3.18, Lemma 3.19, and the five lemma (plus
Remark 3.20), we see that the shearing map ppr1, µq : M1 ×M1 !M1 ×M1 is an equivalence
if and only if it induces equivalences on all fibres of pr1 : M1 ×M1 !M1. The induced map on
fibres over a ∈ M1 is precisely a · p−q. This already proves (a) ⇔ (b).

The implication (b) ⇒ (d) is clear, since the condition from (b) implies that for every
equivalence class ras ∈ π0pMq, left multiplication with ras is a bijection. The same argument
shows (c) ⇒ (d). For (d) ⇒ (b), note that associativity of the multiplication of M implies

`

b · p−q
˘

◦
`

c · p−q
˘

»
`

pb · cq · p−q
˘

for all b, c ∈ M1. Since π0pMq is assumed to be a group, there exists an element b ∈ M1 such
that a · b » 1 » b · a, where 1 ∈ M1 is the identity element, that is, the image of ˚ » M0
under s0 : M0 ! M1. Since 1 · p−q : M1 ! M1 is homotopic to idM1 , as we’ve seen in 7.7,
the equivalence above shows that b · p−q is both a left inverse and a right inverse to a · p−q.
So a · p−q : M1 ! M1 is an equivalence. This finishes the proof of (d) ⇒ (b). An analogous
argument shows (d) ⇒ (c).

The main theorem of this subsection is Stasheff’s recognition principle for loop spaces:

7.10. Theorem (“E1-groups are the same as loop animae”). — Let ppCat∞q˚/q⩾1 ⊆ pCat∞q˚/

be the full sub-∞-category of all (small) pointed ∞-categories pC, xq for which π0 corepCq „= ˚

and let pAn˚/q⩾1 ⊆ ppCat∞q˚/q⩾1 be the full sub-∞-category spanned those pointed animae
pX,xq where π0pXq „= ˚.
paq There is an equivalence of ∞-categories

MonpAnq
»
−!

`

pCat∞q˚/

˘

⩾1 .

pbq There is an adjunction B: MonpAnq ! An˚/ :Ω which induces a pair of inverse equiva-
lences

B: GrppAnq
»
−! −

»

`

An˚/

˘

⩾1 :Ω .

7.11. Remark. — The intuition behind Theorem 7.10 is easy to explain: If pC, xq is a
pointed ∞-category, such that π0 corepCq „= ˚, then HomCpx, xq is an E1-monoid via composition.
Coversely, if M is an E1-monoid, then we can build an ∞-category B+M with only one object
˚ and HomB+M p˚, ˚q » M ; the composition is dictated by the multiplication on M . Hence
Theorem 7.10(a). Furthermore, C is an anima if and only if every morphism in HomCpx, xq

is invertible, which is equivalent to HomCpx, xq being an E1-group by Lemma 7.9. Hence
Theorem 7.10(b). Unfortunately, making this intuition formal requires a lot more work.

The proof of Theorem 7.10 will be rather lengthy. We’ll first show Theorem 7.10(a), up
to a pretty serious black box (Theorem 7.13). Theorem 7.10(b) could then be obtained as a
simple consequence, but instead, we’ll give a proof that avoids the aforementioned black box.
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Our first goal on our way towards Theorem 7.10(a) is to construct an E1-monoid structure
on the anima EndCpxq := HomCpx, xq of endomorphisms of x. This requires a construction
which is quite interesting in its own right.

7.12. Construction. — Consider the functor U : ∆∆ ! Cat∞ that sends rns 7! ∆n (or, if
you want, rns 7! rns, since we suppress writing nerves). To construct U formally, observe
that it already exists as a functor ∆∆ ! QCat of ordinary categories and use Theorem 4.13.
Alternatively, one can write down the unstraightening explicitly; it will be an ordinary category
over ∆∆. Using Theorem 6.30, U induces an adjunction

asscat : Funp∆∆op,Anq −−! Cat∞ : NRezk .

Here asscat stands for associated category(7.1), NRezk is the Rezk nerve. According to Lemma 6.32,
the Rezk nerve is given by NRezkpCqn » HomCat∞p∆n, Cq for every ∞-category C and all n ⩾ 0.

To prove Theorem 7.10(a), we’ll need the following black box. Fortunately, a relatively short
proof in model-independent language has recently been found by Fabian and Jan Steinebrunner
rFS23s. The original proof due to Joyal and Tierney is in rJT07s; Lurie has given another proof
in rLur09s.

7.13. Theorem. — The Rezk nerve NRezk : Cat∞ ! Funp∆∆op,Anq is fully faithful and its
image is given by the complete Segal animae. Here, a simplicial anima X : ∆∆op ! An is called
Segal if the Segal maps ei : r1s! rns induce equivalences

Xn
»
−! X1 ×X0 · · · ×X0 X1

looooooooooomooooooooooon

n factors

.

Furthermore, X is called complete, if s˚
0 : X0 ! X1 is an equivalence onto the collection of

path components X„
1 ⊆ X1 given by those α ∈ X1 for which there exist σ, τ ∈ X2 such that

d˚
0pσq » α » d˚

2pτq and both d˚
1pσq, d˚

1pτq lie in the image of s˚
0 : X0 ! X1. ■

Let us now construct the desired E1-monoid structure on EndCpxq.

7.14. Construction. — If M ∈ Funp∆∆op,Anq is an E1-monoid, then M0 » ˚. Via Yoneda’s
lemma, this induces a canonical morphismよ∆∆pr0sq » const ˚!M of E1-monoids. Accordingly,
we get a canonical morphism asscatpconst ˚q!M . Since asscatpconst ˚q » asscatpよ∆∆pr0sqq »

Upr0sq » ˚, the morphism above canonically turns asscatpMq into a pointed ∞-category and so
asscat upgrades to a functor B+ : MonpAnq! pCat∞q˚/.(7.2) For a pointed ∞-category pC, xq,
let, temporarily, EndCpxq ∈ Funp∆∆op,Anq be redefined as the pullback

EndCpxq NRezkpCq

consttxu Rantr0su!∆∆op NRezkpCq
∣∣
tr0su

≒ u

in Funp∆∆op,Anq. The right vertical arrow u is the unit transformation from a functor to the
right Kan extension of its restriction. For the bottom horizontal arrow, note that since pC, xq

(7.1). . . and it has nothing to do with asinine felines (or worse). Why would you think that?!
(7.2)Note that B+ is non-standard notation; there doesn’t seem to be any standard notation.
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is a pointed ∞-category, there is a canonical morphism txu ! corepCq » NRezkpCq0; then
the desired natural transformation consttxu ⇒ Rantr0su!∆∆op NRezkpCq|tr0su is induced by the
universal property of right Kan extension. It’s straightforward to check that the right vertical
and bottom horizontal arrows are functorial. Since taking pullbacks is functorial too, we get a
functor End: pCat∞q˚/ ! Funp∆∆op,Anq, as desired.

7.15. Lemma. — The simplicial anima EndCpxq from Construction 7.14 is an E1-monoid and
its underlying anima EndCpxq1 is the anima HomCpx, xq of endomorphisms of x. Furthermore,
the functors from Construction 7.14 fit into an adjunction

B+ : MonpAnq −−! pCat∞q˚/ : End .

Proof. Let’s check first that End takes values in MonpAnq ⊆ Funp∆∆op,Anq and that the
underlying anima of EndCpxq is indeed HomCpx, xq. To this end, fix n ⩾ 0; we’ll compute
EndCpxqn. Recall that NRezkpCqn » HomCat∞p∆n, Cq. To compute the right-Kan extension, we
use the formula from Lemma 6.27: The slice ∞-category tr0su/rns has n+ 1 objects, namely the
morphisms r0s! tju! rns for 0 ⩽ j ⩽ n, and there are no non-identity morphisms in tr0su/rns.
So the Kan extension formula is just a limit over a discrete diagram with n+ 1 objects, which
leads to pRantr0su!∆∆op NRezkpCq|tr0suqn » corepCqn+1. Furthermore, a quick unravelling shows
that the morphism u from Construction 7.14 can be identified with

HomCat∞

`

∆n, C
˘

! HomCat∞

`

t0u ⊔ · · · ⊔ tnu, C
˘

» corepCqn+1 .

Now observe that ∆n can be written as ∆n » ∆t0,1u ⊔t1u ∆t1,2u ⊔t2u · · · ⊔tn−1u ∆tn−1,nu in
Cat∞.(7.3) Identifying HomCat∞p∆ti−1,iu, Cq » core ArpCq via Theorem 2.24, we obtain

HomCat∞p∆n, Cq » core ArpCq ×t,corepCq,s · · · ×t,corepCq,s core ArpCq
loooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooon

n factors

from Corollary 6.16. Recall from Lemma 6.12 that pullbacks in Funp∆∆op,Anq are computed
degree-wise. So EndCpxqn is the pullback txu ×corepCqn+1 HomCat∞p∆n, Cq. Plugging in the
formula above, we see

EndCpxqn » HomCpx, xqn

by a simple manipulation of pullbacks. So we’ve achieved two things at once: We’ve shown
that EndCpxq satisfies the conditions from Definition 7.6, so that it is an E1-monoid, and that
the underlying anima of that E1-monoid is indeed HomCpx, xq.

It remains to show that End is right adjoint to B+. So let M ∈ MonpAnq. The universal
property of right Kan extensions combined with M0 » ˚ shows

HomFunp∆∆op,Anq

´

M,Rantr0su!∆∆op NRezkpCq
∣∣
tr0su

¯

» HomAnpM0, corepCqq » corepCq

This allows us to compute

HomFunp∆∆op,Anq

`

M,EndCpxq
˘

» HomFunp∆∆op,Anq

`

M,NRezkpCq
˘

×corepCq txu

» HomCat∞

`

asscatpMq, C
˘

×HomCat∞ p˚,Cq txu

» HompCat∞q˚/

`

B+M, pC, xq
˘

.

(7.3)One way would to see this is to observe that the pushout in sSet would just be In from the proof of
Theorem 4.6 and that In ⊆ ∆n is inner anodyne, so that ∆n is the pushout in Cat∞ by model category fact 6.13.
Another way would be to use Lemma 6.14 and think hard about the localisation.

134



§7.2. E1-monoids and E1-groups

In the first step we use that HomFunp∆∆op,AnqpM,−q commutes with pullbacks by Corollary 6.17
together with the above simplification. In the second step, we use the adjunction asscat ⊣ NRezk

as well as corepCq » HomCat∞p˚, Cq. In the third step we use Corollary 5.15. It’s easy to make
all steps functorial in M and pC, xq and so the proof is finished.

Proof sketch of Theorem 7.10(a). Observe that a morphism pC, xq ! pD, yq in ppCat∞q˚/q⩾1
is automatically essentially surjective. Hence any such morphism is an equivalence if and
only if HomCpx, xq ! HomDpy, yq is an equivalence. This immediately shows that the right
adjoint End: ppCat∞q˚/q⩾1 ! MonpAnq is conservative. It follows from Theorem 7.13, or more
precisely, from rFS23, Corollary 3.15s, that HomB+M p˚, ˚q » M holds for all M ∈ MonpAnq.
Using Lemma 7.8, it follows that the unit uM : M ! EndB+M p˚q is an equivalence. Hence
B+ : MonpAnq! ppCat∞q˚/q⩾1 is fully faithful by Lemma 6.33(a). Then Lemma 6.33(b) shows
that B+ and End are inverse equivalences.

Let us now turn to Theorem 7.10(b). The proof will consist of two parts: a formal part, in
which we effortlessly deduce the adjunction B: MonpAnq ! An˚/ :Ω, and a hard part, in which
we compute ΩBG for every E1-group G to establish the equivalence GrppAnq » pAn˚/q⩾1.

Proof sketch of Theorem 7.10(b), formal part. Let Ω := End |An˚/
: An˚/ ! MonpAnq denote

the restriction of End from Construction 7.14 to An˚/ ⊆ pCat∞q˚/. It follows from Lemma 7.3(b)
that the underlying anima of ΩX ∈ MonpAnq is indeed the eponymous ΩX from Definition 7.1.
Now we claim:
p⊠1qThe functor Ω: An˚/ ! MonpAnq factors through GrppAnq ⊆ MonpAnq. Furthermore, Ω

admits a left adjoint B: MonpAnq! An˚/, which factors through pAn˚/q⩾1 ⊆ An˚/.
To see that ΩX is an E∞-group, one can use Lemma 7.9(d) for example: π0pΩXq „= π1pX,xq is
a group by Lemma 7.3(a).

Next, let’s construct B. Using Corollary 5.15 and |˚| » ˚, it’s straightforward to check that
| · | : Cat∞ ! An induces a functor | · | : pCat∞q˚/ ! An˚/ which is left adjoint to the inclusion
An˚/ ⊆ pCat∞q˚/. We then let B := |B+p−q| : MonpAnq! An˚/ denote the delooping functor.
From the diagram

MonpAnq pCat∞q˚/

An˚/

B+

B

End
| · |

///

Ω

it’s immediate that B and Ω are adjoints. To show that B lands in pAn˚/q⩾1, we need an
alternative description of B. By construction, the composition of B: MonpAnq! An˚/ with
An˚/ ! An agrees with |asscatp−q| : Funp∆∆op,Anq! An. Note that this functor preserves all
colimits, because so do asscat : Funp∆∆op,Anq! Cat∞ and | · | : Cat∞ ! An. By Theorem 6.30,
|asscatp−q| must be the unique colimit-preserving extension of the functor ∆∆ ! An sending
rns 7! |∆n| » ˚; that is, |asscatp−q| is the unique colimit-preserving extension of the constant
functor const ˚ : ∆∆ ! An. On the other hand, colim∆∆op : Funp∆∆op,Anq ! An also preserves
colimits, since it is a left adjoint by definition. Moreover, colim∆∆opよ∆∆prnsq » |∆∆/rns| » ˚ by
Lemma 6.14 and the fact that ∆∆/rns has a final object. So colim∆∆op : Funp∆∆op,Anq ! An is
also the unique colimit-preserving extension of const ˚. It follows that if M ∈ MonpAnq, then
the underlying unpointed anima of BM is colimrns∈∆∆op Mn, and the point ˚ ! BM comes
via ˚ » M0 ! colimrns∈∆∆op Mn. We’ve seen in Lemma 6.58 that π0 : An ! Set commutes
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with arbitrary colimits. So we get a bijection of sets π0pBMq „= colimrns∈∆∆op π0pMnq. Using
π0pM0q „= ˚, it’s straightforward to check that the colimit must be ˚ as well.(7.4) This finishes
the proof of (⊠1).

In particular, we obtain a restricted adjunction B: GrppAnq ! pAn˚/q⩾1 :Ω. To show that
this is a pair of inverse equivalences, it’s enough to show that B is fully faithful and that Ω is
conservative; see Lemma 6.33(b). The latter is easy. If evr1s : MonpAnq ! An is the functor
that sends an E1-monoid to its underlying anima is conservative, then already

An˚/
Ω
−! MonpAnq

evr1s
−−−! An

is conservative. Indeed, this composition is the loop functor Ω: An˚/ ! An. Since any
morphism pX,xq! pY, yq in pAn˚/q⩾1 is automatically a bijection on π0, Theorem 3.18 and
Lemma 7.3(a) show that such a morphism is an equivalence if and only if ΩxX ! ΩyY is an
equivalence. This proves that Ω is indeed conservative. To prove that B is fully faithful, we
will need another claim:
p⊠2q For every E1-group G ∈ GrppAnq, the unit transformation uG : G! ΩBG is an equivalence

on underlying animae.
If we can show (⊠2), then uG will also be an equivalence of E1-groups by Lemma 7.8. So B
is fully faithful by Lemma 6.33(a) and we would be done. The proof of (⊠2) requires some
further tools, and we postpone it for now.

The main difficulty in the proof of (⊠2) is the fact that BG is defined as a colimit, whereas
Ω is a pullback. So we need to commute pullbacks and (non-filtered) colimits. Fortunately,
there’s a relatively simple criterion due to Charles Rezk rRez14, Proposition 2.4s that allows us
to do this in certain situations.

7.16. Lemma. — Let J be an ∞-category. A natural transformation q : B ⇒ D in
FunpJ ,Anq is called equifibred if for every morphism α : i! j in J , the induced diagram

Bi Bj

Di Dj

Bpαq

qi ≒ qj

Dpαq

is a pullback square in An. Then the colimit functor colimJ : FunpJ ,Anq ! An preserves
pullback squares in which one leg is equifibred. That is, if we’re given a pullback square

A B

C D

p ≒ q

in FunpJ ,Anq such that q : B ⇒ D is equifibred, then colimJ : FunpJ ,Anq ! An sends this
diagram to a pullback square in An.

(7.4)In fact, if S : ∆∆op ! C is any functor into an ordinary category, then the colimit of S is given by the
coequaliser

colim
rns∈∆∆op

Sn
„= coeq

ˆ

S1
d˚

0
−!−!
d˚

1

S0

˙

.

(assuming either colimit exists). This formula is wildly false in general ∞-categories, as already evidenced by
BM » colimrns∈∆∆op Mn in An.
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The idea to prove Lemma 7.16 is to interpret qi : Bi ! Di as the unstraightenings of certain
functors Gi : Di ! An and then to use Lemma 6.14 backwards. To this end, we need to study
the straightening equivalence from Theorem 5.4 a little more.

7.17. The universal unstraightening. — Let κ be a regular cardinal and let An<κ ⊆ An
be the full sub-∞-category of essentially κ-small animae as in Definition 6.46. Then An<κ is
essentially small itself (albeit not necessarily essentially κ-small) and so we can consider the
unstraightening p<κuniv : U<κ

univ ! An<κ of An<k ! An and we can regard An<κ as an object in
Cat∞. If p : U ! C is any left fibration with essentially κ-small fibres over an ∞-category C
and F » Stpleftqppq : C ! An is the associated functor, then F factors through An<κ. Since
precompositions are sent to pullbacks by Theorem 5.4(a), it follows that there must be a
pullback diagram

U U<κ
univ

X An<κ
p ≒ p<κ

univ

F

in animae. So p<κuniv acts as a universal unstraightening, whence the notation. Of course,
what we would really like to do here is to consider the unstraightening puniv : Uuniv ! An of
idAn : An! An and regard An as an object in Cat∞. The only way to do this without any set
theorist suffering a stroke would be to consider universes, which amounts to choosing a strongly
inaccessible cardinal bound. It turns out that any cardinal bound κ does it, so we can get away
without using universes.

7.18. Lemma. — Consider the slice ∞-category An/An<κ » An ×Cat∞ pCat∞q/An<κ and
let Ar<κ

≒
pAnq ⊆ ArpAnq be the (non-full) sub-∞-category, in the sense of 2.16, spanned by

those objects pα : X ! Y q ∈ ArpAnq for which the fibres of α are essentially κ-small and those
morphisms pα : X ! Y q! pα′ : X ′ ! Y ′q that represent pullback squares in An. Then there is
an equivalence of ∞-categories

pp<κunivq˚ : An/An<κ
»
−! Ar<κ

≒
pAnq

that sends an object pF : X ! An<κq ∈ An/An<κ to the pullback pX ×An<κ U<κ
univ ! Xq, or

equivalently (by 7.17) to the unstraightening of F .

Proof sketch. It’s easy to construct pp<κunivq˚ formally and we’ll only sketch the necessary steps.
First, one constructs a functor An/An<κ ! FunpΛ2

2,Cat∞q that sends pX ! An<κq to the
span pX ! An<κ  U<κ

univq. To do so, let X := FunpΛ2
2,Cat∞q ×Funp∆t1,2u,Cat∞q tp<κunivu be the

∞-category of those spans whose second leg is p<κuniv. There’s a functor

X ! Fun
`

∆t0,2u,Cat∞
˘

×Funpt2u,Cat∞q tAn<κu » pCat∞q/An<κ

sending a span whose second leg is p<κuniv to its first leg. This functor is clearly essentially
surjective, and one easily checks that it is fully faithful too, using the formulas from Corollary 5.15
and Lemma 6.76(a). Hence we get an equivalence by Theorem 4.6. Choosing an inverse of this
equivalence yields the desired functor An/An<κ ! FunpΛ2

2,Cat∞q.
Next, one constructs a functor FunpΛ2

2,Cat∞q! ArpCat∞q that sends a span pC ! D  D′q
to the pullback C ×D D′ ! C. To do so, let Y ⊆ Funp□2,Cat∞q, where □2 » ∆1 × ∆1, be the
full sub-∞-category spanned by the pullback squares. Then Y ! FunpΛ2

2,Cat∞q is essentially
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surjective, since Cat∞ has pullbacks, and fully faithful by an easy application of Corollary 6.25
and Corollary 6.16. Hence it is an equivalence by Theorem 4.6. Choosing an inverse and
composing it with the projection Funp□2,Cat∞q! Funp∆1 × t0u,Cat∞q » ArpCat∞q yields
the desired functor FunpΛ2

2,Cat∞q! ArpCat∞q.
Putting everything together yields a functor An/An<κ ! ArpCat∞q, which, on objects, sends

pX ! An<κq to pX ×An<κ U<κ
univ ! Xq. By inspection, our functor factors through the non-full

sub-∞-category Ar<κ
≒

pAnq! ArpCat∞q and we obtain a functor pp<κunivq˚, as desired.
To show that pp<κunivq˚ is an equivalence, we’ll once again verify that it is essentially surjective

and fully faithful. Essential surjectivity reduces to the assertion that every morphism α : X ! Y
is equivalent to a left fibration in ArpAnq. Using the dual of Lemma 6.23(b), this reduces to
checking that every final morphism X ! X ′ of animae is an equivalence. For cofinal morphisms,
this follows from X » |X| » colimx∈X ˚ » colimx′∈X′ ˚ » |X ′| » X ′ using Lemma 6.14. For
final morphisms, we can use the same argument to show that Xop ! pX ′qop is an equivalence
and then X ! X ′ must be an equivalence too.

To show that p<κuniv is fully faithful, let pF : X ! An<κq and pG : Y ! An<κq be elements in
An/An<κ and let p : U ! X and q : V ! Y be the unstraightenings of F and G, respectively.
For brevity, let us put

HompF,Gq := HomAn/An<κ

`

pF : X ! An<κq, pG : Y ! An<κq
˘

Hompp, qq := HomAr<κ
≒

pAnq

`

pp : U ! Xq, pq : V ! Y q
˘

By Corollary 5.15, HompF,Gq is the pullback HomCat∞pX,Y q ×HomCat∞ pX,An<κq tF u. By
Lemma 5.13 and Lemma 4.9, Hompp, qq is a collection of path components of the pullback
HomCat∞pU ,Vq ×HomCat∞ pU ,Y q HomCat∞pX,Y q. By Theorem 3.18, Lemma 3.19, and the five
lemma (plus Remark 3.20), it’s enough to check that HompF,Gq ! Hompp, qq induces an
equivalence on fibres over HomCat∞pX,Y q. So fix f : X ! Y . If F ̸» G ◦ f , then both fibres
are empty by Theorem 5.4. If F » G ◦ f , then the fibre tfu ×HomCat∞ pX,Y q HompF,Gq is given
by tfu ×HomCat∞ pX,Y q pHomCat∞pX,Y q ×HomCat∞ pX,An<κq tF uq, which can be simplified to

tG ◦ fu ×HomCat∞ pX,An<κq tF u » Homcore FunpX,AnqpG ◦ f, F q

using Theorem 2.24 and Lemma 7.3(b). Likewise, Hompp, qq ×HomCat∞ pX,Y q tfu is a collection of
path components in pHomCat∞pU ,Vq ×HomCat∞ pU ,Y q HomCat∞pX,Y qq ×HomCat∞ pX,Y q tfu. This
pullback can be simplified to

HomCat∞pU ,Vq ×HomCat∞ pU ,Y q tp ◦ fu » HomCat∞/Y
pU ,Vq » HomLeftpXqpU , X ×Y Vq .

In the first step we use Corollary 5.15 and in the second step we use the dual of Lemma 6.23(c)
combined with the fact that LeftpXq ⊆ Cat∞/X is a full sub-∞-category. Thus, the fibre
Hompp, qq ×HomCat∞ pX,Y q tfu is a collection of path components of HomLeftpXqpU , X ×Y Vq.
A quick unravelling shows that the relevant path components are precisely those morphisms
U ! X×Y V that are equivalences. Since LeftpXq » FunpX,Anq by Theorem 5.4(b), this agrees
with the collection of path components of HomFunpX,AnqpG ◦ f, F q spanned by the equivalences.
By Lemma 4.9, this is precisely Homcore FunpX,AnqpG ◦ f, F q. This finishes the proof that pp<κunivq˚

is fully faithful.

Proof sketch of Lemma 7.16. Choose a cardinal κ in such a way that all Aj , Bj , Cj , Dj , and
the colimits are essentially κ-small in the sense of Definition 6.46. The natural transformation
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q : B ⇒ D in FunpJ ,Anq can be viewed as a functor q : J ! ArpAnq. The assumption that
q is equifibred and our choice of κ guarantee that q factors through Ar<κ

≒
pAnq. Applying the

equivalence of ∞-categories Ar<κ
≒

pAnq » An/An<κ from Lemma 7.18, we see that q corresponds
to a functor F : J ! An/An<κ . On objects, F sends j ∈ J to pFj : Dj ! An<κq in An/An<κ

such that pqj : Bj ! Djq is the unstraightening of Fj . By definition of the slice-∞-category
An/An<κ we can view F as a natural transformation η : D ⇒ const An<κ in FunpJ ,Cat∞q,
hence it induces a functor F∞ : colimi∈I Di ! An<κ. We claim:
p⊠q The unstraightening of F∞ is colimj∈J Bj ! colimj∈J Dj. In particular, we obtain the

following pullback square:
colim
j∈J

Bj U<κ
univ

colim
j∈J

Dj An<κ

≒ p<κ
univ

F∞

If we know (⊠), then we’re done. Indeed, our construction of F above exhibits q : B ⇒ D as
a pullback of const p<κuniv : const U<κ

univ ⇒ const An<κ. Then p : A ⇒ C must be a pullback of
const p<κuniv as well, hence p is equifibred again. The same reasoning as above then shows that
colimj∈J Aj ! colimj∈J Cj must too be a pullback of p<κuniv : U<κ

univ ! An<κ. Hence the square
formed by the colimits must be a pullback as well.

To prove (⊠), note that Bj » |Bj | » colimpFj : Dj ! An<κq follows from Lemma 6.14. So
Lemma 6.38(b) shows

colim
j∈J

Bi » colim
j∈J

`

colimpFj : Dj ! An<κq
˘

» colim
´

F∞ : colim
j∈J

Dj ! An<κ
¯

But the colimit on the right-hand side is the unstraightening of F∞, again by Lemma 6.14.
However, there’s a subtlety: To make this argument work, we have to show that the functor
B : J ! An<κ agrees with the functor pj 7! colimFjq : J ! An<κ constructed in the proof of
Lemma 6.38(b); let’s temporarily denote this functor by B′. So far, we’ve only verified that the
values of B and B′ coincide!

To fix this, let B ! J and D ! J be the unstraightenings of the functors B : J ! An<κ
and D : J ! An<κ. Let’s first recall the construction of B′: By the proof of Lemma 6.38(b),
we have a diagram

D |D| » colim
j∈J

Dj An<κ

J

d F∞

⇐=

B′

that exhibits B′ as the left Kan extension of F∞ ◦ d : D ! An<κ along D ! J . We know
from the dual of Lemma 6.23(c) how left Kan extensions for functors into An interact with
unstraightening. Namely, the unstraightening B′ ! J of B′ : J ! An<κ is given by factoring
the unstraightening of F∞ ◦ d : D ! An<κ into a final functor followed by a left fibration. In
particular, if we can show that B ! D is the unstraightening of F∞ ◦ d : D ! An<κ, then we’re
done, because B ! J is already a left fibration and so we would be able to deduce B » B′.

To show that B ! D is the desired unstraightening, recall that F : J ! An/An<κ is
equivalently given by a natural transformation η : D ⇒ const An<κ in FunpJ ,Anq. So we
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obtain a morphism D ! J × An<κ of cocartesian fibrations over J . Now consider the diagram

B J × U<κ
univ U<κ

univ

D J × An<κ An<κ
≒ ≒ p<κ

univ

The right square is a pullback for obvious reasons. To see that the left square is a pullback too,
observe that the natural transformation q : B ⇒ D is the pullback of η : D ⇒ const An<κ along
const p<κuniv : const U<κ

univ ⇒ const An<κ; this follows by construction of η, unravelling the proof
of Lemma 7.18 and using that pullbacks in functor categories can be computed pointwise by
Lemma 6.12. Since unstraightening is an equivalence of ∞-categories, it preserves pullbacks, and
so the left square must be a pullback too.(7.5) It follows that the outer rectangle in the diagram
above must be a pullback too. But then B ! D is a pullback of the universal unstraightening
and thus B is the unstraightening of the bottom composition D ! J × An<κ ! An<κ by 7.17.
So it remains to identify that composition with F∞ ◦ d : D ! An<κ. This follows from a closer
investigation of the proof of Lemma 6.14.

With Rezk’s equifibrancy condition from Lemma 7.16, we have obtained one of the two
ingredients in the proof of (⊠2). The other one is a general construction for simplicial objects.

7.19. Construction. — Let X : ∆∆op ! C be a simplicial object in an arbitrary ∞-category
C. We picture X as

X »

˜

X0 X1 X2 · · ·
d˚

1

d˚
0

d˚
2

d˚
0

¸

(for typographical reasons, we couldn’t label the degeneracy maps nor the inner face maps).
The décalage of X is another simplicial object décpXq : ∆∆op ! C given by “shifting” X, thus
“forgetting” X0 as well as all the face maps d˚

0 and all the degeneracy maps s˚
0 . In pictures:

décpXq »

˜

X1 X2 X3 · · ·
d˚

2

d˚
1

d˚
3

d˚
1

¸

.

More precisely, there’s a functor σ : ∆∆! ∆∆ given by σprnsq := rn+ 1s on objects. A morphism
α : rms! rns is sent to σpαq : rm+1s! rn+1s given by σpαqp0q := 0 and σpαqpiq := αpi−1q+1
for all 1 ⩽ i ⩽ n+ 1. Then décpXq is simply the composition X ◦ σop : ∆∆op ! C. The décalage
sits inside a diagram

constX0 décpXq X

constX0

idconst X0
d˚

last

///

d˚
0

The transformation constX0 ⇒ décpXq is induced by the unique transformation σ ⇒ const r0s

in Funp∆∆,∆∆q. This transformation has a left inverse dlast : const r0s ⇒ σ given object-wise by
(7.5)We’ve used similar arguments in the proofs of Lemmas 5.24 and 5.25, except back then we couldn’t talk

about pullbacks in ∞-categories yet
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the maps r0s! σprnsq = rn+ 1s that send 0 7! 0. These maps can be written as compositions
dn+1 ◦ dn ◦ · · · ◦ d1 : r0s! r1s! · · ·! rns! rn+ 1s, whence the notation dlast. The natural
transformation dlast induces a transformation d˚

last : décpXq ⇒ constX0. Finally, the maps
d0 : rns! rn+ 1s = σprnsq induce a natural transformation d0 : id∆∆ ⇒ σ, which in turn induces
a transformation d˚

0 : décpXq ⇒ X.

7.20. Lemma. — If C is any ∞-category and X : ∆∆op ! C is a simplicial object in C, then
the diagram from Construction 7.19 induces equivalences

colim
rns∈∆∆op

décpXqn
»
−! colim

rns∈∆∆op
X0 » X0 .

In particular, these colimits always exist in C.

Proof sketch. The equivalence colimrns∈∆∆op X0 » X0 follows from Lemma 6.57 and the fact
that |∆∆op| » ˚, since ∆∆ has a terminal object, namely r0s. To show colimrns∈∆∆op décpXqn » X0,
note that σ : ∆∆! ∆∆ can be identified with the inclusion ∆∆⩾1 ! ∆∆ of the (non-full) subcategory
spanned by rn+1s for all n ⩾ 0 and all morphisms α : rm+1s! rn+1s satisfying α−1t0u = t0u.
Furthermore, let ∆∆0 ! ∆∆ be the (non-full) subcategory spanned by all objects but only those
morphisms that send 0 7! 0.

Via this reinterpretation, colimrns∈∆∆op décpXqn » colimrns∈∆∆op
⩾1
Xn. On the other hand, it’s

straightforward to check that r0s ∈ ∆∆0 is an initial object; therefore, colimrns∈∆∆op
0
Xn » X0. So

it would be enough to show that ∆∆op
⩾1 ! ∆∆op

0 is cofinal, or equivalently, that ∆∆⩾1 ! ∆∆0 is final.
By the dual of Theorem 6.18(c), we must show that |∆∆⩾1 ×∆∆0 ∆∆0/rns| » 0 for all n ⩾ 0. The
case n = 0 is clear: It’s straightforward to see that r0s ∈ ∆∆0 is also a terminal object, so that
∆∆0/r0s » ∆∆0 and thus |∆∆⩾1 ×∆∆0 ∆∆0/r0s| » |∆∆⩾1| » ˚, since r1s ∈ ∆∆⩾1 is terminal. Now let n ⩾ 1
and consider the full subcategory X ⊆ ∆∆⩾1 ×∆∆0 ∆∆0/rns spanned by those α : rm + 1s ! rns

such that α maps α−1t1, . . . , nu bijectively to t1, . . . , nu. It’s straightforward to check that this
inclusion has a left adjoint ∆∆⩾1 ×∆∆0 ∆∆0/rns ! X .(7.6) Since adjunctions induce equivalences after
| · |, it’s enough to show |X | » ˚. But now it’s straightforward to check that pidrns : rns! rnsq

is an inital object of X .

Now we can finally finish the proof of Theorem 7.10(b).

Proof sketch of Theorem 7.10(b), claim (⊠2). Let G ∈ GrppAnq be an E1-group. Using the
Segal condition from Definition 7.6(a), one verifies that the following is a the pullback square
in Funp∆∆op,Anq:

constG1 décpGq

const ˚ G

≒ d˚
0

Note that G being an E1-group as opposed to merely an E1-monoid implies that d˚
0 : décpGq ⇒ G

from Construction 7.19 is equifibred in the sense of Lemma 7.16. Indeed, being an E1-group
means that ppr1, µq : G1 × G1 ! G1 × G1 is an equivalence, so that all occurences of the

(7.6)The left adjoint can be constructed as follows: Let pα : rm+ 1s! rnsq ∈ ∆∆⩾1 ×∆∆0 ∆∆0/rns. Then there exists
some 0 ⩽ k ⩽ m such that α−1

t0u = t0, 1, . . . , k + 1u. Let α : rk + n + 1s ! rns be defined by αpiq = 0 for
i = 0, 1, . . . , k + 1 and αpiq = i− pk + 1q for i ⩾ k + 2. Then α ∈ X . Furthermore, there’s a canonical morphism
uα : α! α in ∆∆⩾1 ×∆∆0 ∆∆0/rns, given by the identity on t0, 1, . . . , k + 1u and uαpiq = αpiq + k + 1 for i ⩾ k + 2.
Then α 7! α is the desired left adjoint and uα is the unit of the adjunction.

141



§7. Towards spectra

multiplication map µ in 7.7 can be replaced by simple projections, and then equifibrancy is
straightforward to check. Lemma 7.16 now implies that the central square of the diagram

G1 colim
rns∈∆∆op

G1 colim
rns∈∆∆op

décpGqn G0

˚ colim
rns∈∆∆op

˚ colim
rns∈∆∆op

Gn BG

»

/// ≒ ///

»

» »

is a pullback. The equivalences on the left follows from Lemma 6.57. The top right equivalence
is due to Lemma 7.20. The bottom right equivalence is the definition of BG. Since G0 » ˚,
this diagram shows G1 » ΩBG, which is precisely what we claimed in (⊠2).

Here are some immediate consequences of Theorem 7.10(b):

7.21. Corollary (“ΩB is group completion”). — The inclusion GrppAnq ⊆ MonpAnq of
E1-groups into E1-monoids has a left adjoint, given by ΩB: MonpAnq! GrppAnq.

7.22. Corollary (“ΩΣX+ is the free E1-group on X”). — The functor evr1s : GrppAnq! An
sending an E1-group to its underlying anima has a left adjoint, sending an anima X to ΩΣX+,
where X+ := X ⊔ ˚, regarded as a pointed anima.

Proof. It’s straightforward to check (for example, using Corollary 6.17 and Corollary 5.15) that
p−q+ := p−q ⊔ ˚ : An! An˚/ is a left adjoint to the forgetful functor An˚/ ! An. Combining
this observation with Lemma 7.3 and Theorem 7.10(b) yields a diagram of adjunctions

An An˚/ pAn˚/q⩾1

GrppAnq

p−q+

ΩΣp−q+

Σ

///

Ω
ΩB

evr1s

which shows that ΩΣp−q+ : An ! GrppAnq : evr1s must be an adjunction too.

Another immediate consequence of Theorem 7.10(b) is the Seifert–van Kampen theorem.

7.23. Theorem (Seifert–van Kampen). — The functor π1 : pAn˚/q⩾1 ! Grp preserves
pushouts. That is, the fundamental group of a pushout of pointed connected animae is given by
the pushout of fundamental groups, taken in the category Grp of groups.

Proof. Let pX,xq be a pointed anima. By Lemma 7.3, we have π1pX,xq „= π0pΩXq. By
Theorem 7.10(b), the functor Ω: pAn˚/q⩾1 ! GrppAnq is an equivalence of ∞-categories, so it
preserves pushouts. The functor π0 : An! Set is left adjoint to the inclusion i : Set! An given
by regarding sets as discrete animae. By Corollary 6.6, this implies that there is an adjunction
pπ0q˚ : Funp∆∆op,Anq ! Funp∆∆op, Setq : i˚. Note that π0 and i both preserve products. Hence
pπ0q˚ and i˚ preserve the conditions from Definition 7.6 and so the adjunction above restricts
to an adjunction π0 : GrppAnq ! GrppSetq : i. In particular, π0 : GrppAnq! GrppSetq » Grp
is a left adjoint and so it preserves pushouts. It follows that π1 „= π0 ◦ Ω preserves pushouts
too, as claimed.
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§7.3. E∞-monoids and E∞-groups

Our next goal is to study the analogue of commutative monoids and commutative groups in
animae. The definition is quite similar to Definition 7.6, except that we have to replace ∆∆op by
a category that encodes commutativity as well.

7.24. Definition. — Let Fin be the ordinary category of finite sets ⟨n⟩ = t1, . . . , nu for
n ⩾ 0 and partially defined (!) maps. Let C be an ∞-category with finite products.
paq An E∞-monoid in C is a functor M : Fin ! C satisfying M0 » ˚ as well as the Segal

condition: The Segal maps ei : ⟨n⟩ ! ⟨1⟩, where ei is everywhere undefined except at i,
induce an equivalence

Mn
»
−!Mn

1 .

We call M1 the underlying object of M ; we’ll often don’t distinguish between M and M1.
Let CMonpCq ⊆ FunpFin, Cq denote the full sub-∞-category spanned by the E∞-monoids.

pbq An E∞-monoid M in C is called an E∞-group if its underlying E1-monoid in the sense
of Construction 7.26 below is an E1-group. We let CGrppCq ⊆ CMonpCq denote the full
sub-∞-category spanned by E∞-groups.

7.25. Construction. — Let’s unravel how Definition 7.24(a) encodes a commutative multi-
plication on M1. The unique everywhere defined map f2 : ⟨2⟩! ⟨1⟩ induces a morphism

µ : M1 ×M1 » M2 −!M1 .

This is our multiplication. Now let’s see why it is commutative: Let flip: ⟨2⟩ ! ⟨2⟩ be the
everywhere defined map that sends 1 7! 2 and 2 7! 1. Then f2 ◦ flip = f2 and so the following
diagram commutes in C:

M1 ×M1

M1

M1 ×M1

flip

µ

///

µ

Here flip: M1 ×M1 !M1 !M1 is the morphism that flips the two factors; under the Segal
isomorphism M1 × M1 » M2, this really corresponds to flip: M2 ! M2, so the notational
overload checks out.

7.26. Construction. — Let us construct an underlying E1-monoid to every E∞-monoid
M . To this end, we’ll construct a functor Cut: ∆∆op ! Fin. On objects, Cut is given by
Cutprnsq := ⟨n⟩. A map α : rms ! rns in ∆∆, which corresponds to a morphism rns ! rms in
∆∆op, is sent to Cutpαq : ⟨n⟩! ⟨m⟩ given by the formula

Cutpαqpiq :=
#

j if αpj − 1q < i ⩽ αpjq

undefined else
.

A more conceptual way of saying this is that Cut sends rns to its set of Dedekind cuts, that is,
to the set of all partitions of rns into two non-empty intervals (of which there are exactly n, so
Cutprnsq = ⟨n⟩). The map Cutpαq : Cutprnsq! Cutprmsq sends such a partition of rns to its
preimage under α, which is again a partition of rms into intervals. However, it may happen
that one of the intervals is empty; if this is the case, we define the value of Cutpαq as undefined.
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Now Cut induces a precomposition functor Cut˚ : FunpFin, Cq! Funp∆∆op, Cq. It’s straight-
forward to check that Cutpeiq = ei, that is, Cut sends the Segal maps in ∆∆op to the Segal maps
in Fin. Hence Cut˚ preserves the Segal condition from and therefore restricts to a functor

Cut˚ : CMonpCq −! MonpCq .

For an E∞-monoid M , we call Cut˚pMq the underlying E1-monoid of M . As with the underlying
object, we often abuse notation and identify M with its underlying E1-monoid.

Our eventual goal in this subsection is to prove an analogue of Theorem 7.10(b) for E∞-
monoids/groups. This needs some preparations.

7.27. Definition. — Let C be an ∞-category with finite coproducts and finite products (in
particular, it has both an initial and a terminal object).
paq C is called semi-additive if the initial object, which we denote 0 ∈ C, is also terminal, and

for all x, y ∈ C the natural map
ˆ

idx 0
0 idy

˙

: x ⊔ y
»
−! x× y

is an equivalence. Here 0: x ! 0 ! y denotes the unique (up to contractible choice)
morphism in HomCpx, yq factoring through 0. If C is semi-additive, we usually write
x ⊔ y » x‘ y » x× y.

pbq C is called additive if it is semi-additive and additionally for all x ∈ C the shearing
morphism is an equivalence:

ˆ

idx idx
0 idx

˙

: x‘ x
»
−! x‘ x .

7.28. Lemma (“Every object in an additive ∞-category is canonically an E∞-group”). — If
C is a semi-additive ∞-category, then CMonpCq » MonpCq » C. If C is an additive ∞-category,
then also CGrppCq » GrppCq » C.

Proof sketch. Let Fin⩽1 » t⟨0⟩ ⟨1⟩u denotes the full subcategory of Fin spanned by ⟨0⟩ and
⟨1⟩ and let Fin◦

⩽1 ⊆ Fin⩽1 denote the non-full subcategory given by t⟨0⟩ ⟨1⟩u. The proof
rests upon the following two crucial observations:
p⊠1q A functor F : Fin! C with F p⟨0⟩q » 0 satisfies the Segal condition from Definition 7.24(a)

if and only if F is the left Kan extension of its own restriction along i : Fin⩽1 ! Fin.
p⊠2q If Fun˚ ⊆ Fun denotes the full sub-∞-category spanned by those functors that send ⟨0⟩ 7! 0,

then restriction along j : Fin◦
⩽1 ! Fin⩽1 and evaluation at ⟨1⟩ induces equivalences

Fun˚pFin⩽1, Cq
»
−! Fun˚

`

Fin◦
⩽1, C

˘ »
−! C .

We begin with (⊠2). Since 0 ∈ C is terminal, it’s clear that ev⟨1⟩ : Fun˚

`

Fin◦
⩽1, C

˘

! C is
essentially surjective. By an easy application of Corollary 6.25, using that Fin◦

⩽1 is an ordinary
category and so we understand its twisted arrow category TwArpFin⩽1q, ev⟨1⟩ is also fully
faithful. Alternatively one could also use Lemma 5.13 (which amounts to the same). Hence
ev⟨1⟩ is an equivalence by Theorem 4.6.
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To show that j˚ : Fun˚pFin⩽1, Cq! Fun˚

`

Fin◦
⩽1, C

˘

is an equivalence, we consider left Kan
extension along j. To this end, let F : Fin◦

⩽1 ! C be a functor satisfying F p⟨0⟩q » 0. We unravel
the Kan extension formula from Lemma 6.27: We have Fin◦

⩽1 ×Fin⩽1 pFin⩽1q/⟨0⟩ » pFin◦
⩽1q/⟨0⟩,

and so the colimit describing Lanj F p⟨0⟩q exists and is given by evaluating at the terminal object
pid⟨0⟩ : ⟨0⟩ ! ⟨0⟩q ∈ pFin◦

⩽1q/⟨0⟩. Hence Lanj F p⟨0⟩q » F p⟨0⟩q » 0. In a similar way, we can
analyse Fin◦

⩽1 ×Fin⩽1 pFin⩽1q/⟨1⟩. This category is a disjoint union T0 ⊔ T1 of two components:
T1 is simply tid⟨1⟩ : ⟨1⟩! ⟨1⟩u. On the other hand, T0 is a category with two objects, namely
the nowhere defined maps p⟨1⟩ ! ⟨1⟩q and p⟨0⟩ ! ⟨1⟩q, as well as precisely one non-identity
morphism p⟨1⟩! ⟨1⟩q! p⟨0⟩! ⟨1⟩q. In particular, p⟨0⟩! ⟨1⟩q is terminal in T0. Hence the
colimit describing Lanj F p⟨1⟩q exists and is given by F p⟨1⟩q ‘ F p⟨0⟩q » F p⟨1⟩q ‘ 0 » F p⟨1⟩q.

In summary, Lemma 6.27 shows that Lanj F exists and satisfies Lanj F p⟨0⟩q » 0 and so we
get an adjunction

Lanj : Fun˚

`

Fin◦
⩽1, C

˘

 −−! Fun˚pFin⩽1, Cq :j˚ .

It follows from our calculations above that for all functors G ∈ Fun˚pFin⩽1, Cq the counit
cG : LanjpG ◦ jq ⇒ G is a pointwise equivalence and thus an equivalence by Theorem 4.5. By
Lemma 6.33(a), this implies that Lanj is fully faithful, even though j itself is not. Furthermore,
since j is essentially surjective, it’s clear that j˚ must be conservative. Hence Lanj and j˚ are
inverse equivalences by Lemma 6.33(b) and we’ve finished the proof of (⊠2).

To prove (⊠1), first observe that by (⊠2) we can replace i by i ◦ j. Then we use Lemma 6.27
once again to compute the values of Lani◦jpF ◦ i ◦ jq. To this end, one analyses the category
Fin◦

⩽1 ×Fin Fin/⟨n⟩: This category is a disjoint union T0 ⊔T1 ⊔· · ·⊔Tn, where T0 is as above and Ti
is given by tsi : ⟨1⟩! ⟨n⟩u, where sip1q := i. Hence the colimit describing Lani◦jpF ◦ i ◦ jqp⟨n⟩q

evaluates to F p⟨0⟩q ‘ F p⟨1⟩q ‘ · · · ‘ F p⟨1⟩q » 0 ‘ F p⟨1⟩q‘n » F p⟨1⟩q‘n. This shows that F
satisfies the Segal condition if and only if cF : Lani◦jpF ◦ i◦ jq ⇒ F is an equivalence of functors
and thus proves (⊠1).

To finish the proof, observe that since i : Fin⩽1 ! Fin is fully faithful, the left Kan extension
functor Lani : FunpFin⩽1, Cq! FunpFin, Cq must be fully faithful too by Corollary 6.29. So

C » Fun˚pFin⩽1, Cq! FunpFin⩽1, Cq
Lani−−−! FunpFin, Cq

is fully faithful, and its essential image is CMonpCq by (⊠1). It follows that CMonpCq » C.
Replacing Fin by ∆∆op everywhere, the same argument shows MonpCq » C. Finally, if C
is additive, then Definition 7.27(b) shows that the E∞-monoid in C associated to x ∈ C is
automatically an E∞-group, so that CGrppCq » CMonpCq and GrppCq » MonpCq.

7.29. Lemma. — If C is any ∞-category with finite products, then CMonpCq is semi-additive
and CGrppCq is an additive ∞-category.

For the proof we need a criterion to decide when an ∞-category is semi-additive.

7.30. Lemma. — Let C be an ∞-category with finite products. Then C is semi-additive if the
following two conditions are satisfied:
paq The terminal object ˚ ∈ C is also initial.
pbq Let ∆: C ! C be the functor that sends x 7! x× x. Then there exists a natural transfor-

mation µ : ∆ ⇒ idC such that both compositions

x » x× ˚
idx×0
−−−−! x× x

µx−! x

x » ˚ × x
0×idx−−−−! x× x

µx−! x
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are homotopic to idx for all x ∈ C, and the following diagram commutes for all x, y ∈ C:

px× xq × py × yq px× yq × px× yq

x× y
µx×µy

idx ×flip×idy

///
µx×y

All conditions on µ in (b) are pointwise; so for example, we don’t need to assume that the
diagram above commutes functorially in x and y. ■

The proof of Lemma 7.30 is rather straightforward: One proves that the morphisms
x » x× ˚! x× y and y » ˚ × y ! x× y exhibit x× y as a coproduct of x and y. However,
the details become rather tedious, and so we skip the proof. You can find a full argument in
rF-KTh, Lemma II.20s and another variant in rL-HA, Proposition 2.4.3.19s.

Proof sketch of Lemma 7.29. We use the criterion from Lemma 7.30 to check that CMonpCq

is semi-additive. First observe that if ˚ ∈ C is a terminal object, then const ˚ is terminal in
CMonpCq (even in FunpFin, Cq by Lemma 6.12). But it is also initial. Indeed, if M : Fin! C
is any functor, then HomFunpFin,Cqpconst ˚,Mq » HomCp˚, lim⟨n⟩∈FinMnq. However, ⟨0⟩ ∈ Fin
is an initial object and so lim⟨n⟩∈FinMn » M0; in particular, the limit always exists. Now if
M ∈ CMonpCq, then M0 » ˚. Thus

HomCMonpCqpconst ˚,Mq » HomCp˚, ˚q » ˚ ,

as desired. So Lemma 7.30(a) is satisfied.(7.7)

To construct µ, consider the functor × : Fin × Fin ! Fin sending a pair p⟨m⟩, ⟨n⟩q

to the product ⟨m⟩ × ⟨n⟩ := ⟨mn⟩.(7.8) Precomposition with × then induces a functor
FunpFin, Cq ! FunpFin × Fin, Cq » FunpFin,FunpFin, Cqq. It’s straightforward to check that
the Segal condition is preserved, and so we obtain a functor

Double : CMonpCq −! CMonpCMonpCqq .

Unravelling the definitions, we find that

Doublep−q1 : CMonpCq −! CMonpCMonpCqq
ev⟨1⟩
−−−! CMonpCq

Doublep−q2 : CMonpCq −! CMonpCMonpCqq
ev⟨2⟩
−−−! CMonpCq

are equivalent to idCMonpCq and ∆, respectively. The everywhere defined map f2 : ⟨2⟩ ! ⟨1⟩
from Construction 7.25 induces a natural transformation ev⟨2⟩ ⇒ ev⟨1⟩, which yields a natural
transformation µ : ∆ ⇒ idCMonpCq in FunpCMonpCq,CMonpCqq, as desired. It’s straightforward
to check that µ satisfies the conditions from Lemma 7.30(b). This finishes the proof that
CMonpCq is semi-additive.

Since CGrppCq ⊆ CMonpCq is closed under products, it follows that CGrppCq must be semi-
additive too. But then every G ∈ CGrppCq also satisfies the condition from Definition 7.27(b),
by definition of G being an E∞-group. Hence CGrppCq is additive.

(7.7)The same argument works for MonpCq, since r0s ∈ ∆∆op is initial too. So MonpCq also satisfies Lemma 7.30(a).
(7.8)Here we crucially use that we’re working with Fin; for ∆∆op, such a functor wouldn’t exist. Thus, MonpCq

doesn’t satisfy Lemma 7.30(b).
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Now we’re ready to approach the desired analogue of Theorem 7.10(b).

7.31. Construction. — By Corollary 6.6, the adjunction B: MonpAnq  ! An˚/ :Ω from
Theorem 7.10(b) induces an adjunction B˚ : FunpFin,MonpAnqq  ! FunpFin,An˚/q :Ω˚. We
claim that this restricts to another adjunction

B: CMonpMonpAnqq −−! CMon
`

An˚/

˘

:Ω .

To see this, we must show that the Segal condition is preserved under B˚ and Ω˚. This in
turn reduces to checking that B: MonpAnq! An˚/ and Ω: An˚/ ! MonpAnq preserve finite
products. For Ω, this is obvious, since right adjoints preserve all limits. For B, this follows from
Lemma 7.32 below (plus Lemma 6.56(a)).

Now the currying equivalence FunpFin,Funp∆∆op,Anqq » Funp∆∆op,FunpFin,Anqq restricts to
an equivalence CMonpMonpAnqq » MonpCMonpAnqq by a straightforward check. Furthermore,
Lemmas 7.28 and 7.29 show MonpCMonpAnqq » CMonpAnq. In a similar way, the equivalence
FunpFin,An˚/q » FunpFin,Anqconst ˚/ restricts to CMonpAn˚/q » CMonpAnqconst ˚/. But
const ˚ ∈ CMonpAnq is an initial object, as we’ve seen in the proof of Lemma 7.29. Thus
CMonpAnqconst ˚/ » CMonpAnq. Putting everything together, we can rewrite the adjunction
above as

B: CMonpAnq −−! CMonpAnq :Ω .

7.32. Lemma. — The functor colim∆∆op : Funp∆∆op,Anq! An preserves finite products.

Proof sketch. The crucial step is to show that the diagonal ∆∆op ! ∆∆op × ∆∆op is cofinal. This
is another application of Theorem 6.18(c), of course, but it’s not completely obvious and we
leave it as a not quite easy exercise. For a full proof, consult rL-Ker, Tag 02QPs or rF-KTh,
Exercise II.18as.

It will be enough to show that colim∆∆op preserves empty products and binary products.
First note that colimrns∈∆∆op ˚ » ˚ follows from Lemma 6.57, since |∆∆op| » ˚ (which follows, for
example, from the fact that r0s ∈ ∆∆op is an initial object). This shows that colim∆∆op preserves
empty products. For binary products, let X,Y : ∆∆op ! An be functors. Since ∆∆op ! ∆∆op ×∆∆op

is cofinal, we can rewrite colimrns∈∆∆oppXn × Ynq as

colim
prms,rnsq∈∆∆op×∆∆op

pXm × Ynq » colim
rms∈∆∆op

ˆ

Xm × colim
rns∈∆∆op

Yn

˙

»

ˆ

colim
rms∈∆∆op

Xm

˙

×
ˆ

colim
rns∈∆∆op

Yn

˙

.

The first equivalence follows from Lemma 6.38 together with the fact that Xm × − : An! An
commutes with arbitrary colimits, because it is a left adjoint by Example 6.3(b). Applying the
same argument to − × colim∆∆op Ym gives the third equivalence.

7.33. Theorem. — The adjunctions from Construction 7.31 and Theorem 7.10(b) fit into a
commutative diagram

(˚)
CMonpAnq CMonpAnq

MonpAnq An˚/

B

Cut˚ ///

Ω
ev⟨1⟩

B

Ω

(note that ev⟨1⟩ : CMonpAnq ! An factors canonically over An˚/ ! An since we have
CMonpAnq » CMonpAn˚/q by Construction 7.31). Furthermore:
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paq Both B: CMonpAnq ! CMonpAnq and Ω: CMonpAnq ! CMonpAnq factor through the
full sub-∞-category CGrppAnq ⊆ CMonpAnq and they induce inverse equivalences

B: CGrppAnq
»
−! −

»
CGrppAnq⩾1 :Ω .

Here CGrppAnq⩾1 ⊆ CGrppAnq is the full sub-∞-category spanned by those E∞-groups G
for which π0pGq „= ˚.

pbq The inclusion CGrppAnq ⊆ CMonpAnq has a left adjoint, namely ΩB. So ΩB is not only
the “group completion” for E1-monoids (see Corollary 7.21), but for E∞-monoids too.

Proof sketch. Commutativity of (˚) is a straightforward unravelling of definitions. Let’s proceed
with (a). Let M ∈ CMonpAnq. To show that B factors through CGrppAnq ⊆ CMonpAnq,
simply observe π0pBMq „= ˚. This ordinary monoid is a group and so the underlying E1-
monoid of BM must be an E1-group by Lemma 7.9(d). To show that Ω factors through
CGrppAnq ⊆ CMonpAnq, we must show that the underlying E1-monoid Cut˚pΩMq of ΩM
is an E1-group. But commutativity of (˚) shows Cut˚pBMq » ΩM1 Cut˚pΩMq » ΩM1 and
Ω: An˚/ ! MonpAnq factors through GrppAnq ⊆ MonpAnq, as we’ve seen in the proof of
Theorem 7.10(b).

It remains to show that B and Ω induce inverse equivalences CGrppAnq » CGrppAnq⩾1.
We’ve already seen that the functor B: CGrppAnq! CMonpAnq factors through the inclusion
CGrppAnq⩾1 ⊆ CMonpAnq, so at least we get an adjunction

B: CGrppAnq −−! CGrppAnq⩾1 :Ω .

We use the criterion from Lemma 6.33(b). Observe that equivalences of E∞-monoids can be
checked on underlying animae by the same argument as in Lemma 7.8. Thus, the questions
whether the unit u : idCGrppAnq ⇒ ΩB is an equivalence and whether Ω is conservative can
be reduced to the analogous questions for the adjunction B: GrppAnq  ! pAn˚/q⩾1 :Ω. But
Theorem 7.10(b) says that this adjunction is a pair of inverse equivalences. This finishes the
proof of (a). Part (b) is a formal consequence of (a).

§7.4. Spectra and stable ∞-categories

We’ve seen in Theorem 7.10(b) that E1-groups in An are essentially the same as loop animae.
Furthermore, we’ve seen in Corollary 7.22 that ΩΣX+ is the free E1-group on an anima X. Of
course, these observations should have analogues for E∞-groups, but it’s not immediately clear
how such analogues would look like, nor how they would follow from Theorem 7.33. In this
subsection, we’ll introduce the ∞-category of spectra, which will eventually lead us to answers
for both questions (Remark 7.41 and Corollary 7.58), but also to many more applications.

7.34. Construction. — We’ve seen in Theorem 7.33(a) that ΩB: CGrppAnq! CGrppAnq

is homotopic to the identity. Therefore, the following diagram commutes in Cat∞ (or really, in
Ĉat∞, since we’re dealing with large ∞-categories, but we’ll ignore this issue here):

· · · CGrppAnq CGrppAnq CGrppAnq

· · · CGrppAnq CGrppAnq CGrppAnq

///B◦B ///B

Ω Ω Ω
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This diagram yields a functor(7.9)

B∞ : CGrppAnq −! lim
´

· · · Ω
−! CGrppAnq

Ω
−! CGrppAnq

Ω
−! CGrppAnq

¯

.

Observe that for all n ⩾ 0, B and Ω induce inverse equivalences CGrppAnq⩾n+1 » CGrppAnq⩾n,
where CGrppAnq⩾n ⊆ CGrppAnq is the full sub-∞-category spanned by those E∞-groups G that
satisfy πipGq „= 0 for all 0 ⩽ i < n. Indeed, the case n = 0 follows from Theorem 7.33(a). Since
Ω “shifts homotopy groups down by one” (see Lemma 7.3(a)), its inverse B must “shift homotopy
groups up by one”. This implies that B: CGrppAnq! CGrppAnq⩾1 must map CGrppAnq⩾n into
CGrppAnq⩾n+1; similarly, Ω must map CGrppAnq⩾n+1 into CGrppAnq⩾n. Hence the equivalence
from Theorem 7.33(a) must restrict to an equivalence CGrppAnq⩾n+1 » CGrppAnq⩾n for all
n ⩾ 0, as claimed.

Combining this observation with Lemma 6.76Lemma 6.76 shows that B∞ is fully faithful,
with essential image given by

B∞ : CGrppAnq
»
−! lim

´

· · · Ω
−! CGrppAnq⩾2

Ω
−! CGrppAnq⩾1

Ω
−! CGrppAnq

¯

.

Let us now turn this construction into a definition.

7.35. Definition. — Let C be an ∞-category with finite limits (in the sense of Defini-
tion 6.46(c)); in particular, C has a terminal object ˚ ∈ C. The ∞-category of spectra in C is
defined as the following limit in Cat∞:

SppCq := lim
´

· · · ΩC−! C˚/
ΩC−! C˚/

ΩC−! C˚/

¯

.

Here ΩC : C˚/ ! C˚/ is defined by the same pullback diagram as in Definition 7.1. In the case
C » An, we write Sp := SppAnq for brevity, and we call Sp simply the ∞-category of spectra.

7.36. Lemma. — Let C be an ∞-category with finite limits. Then ev⟨1⟩ : CGrppCq! C induces
an equivalence SppCGrppCqq » SppCq. In particular, the first limit from Construction 7.34
agrees with Sp.

Proof sketch. Let’s address the “in particular” first. Since 0 := const ˚ ∈ CGrppAnq is both
initial and terminal by Lemma 7.29, we have CGrppAnq » CGrppAnq0/. Hence the first limit
from Construction 7.34 agrees with SppCGrpqpAnq and thus with Sp, as claimed.

To show SppCGrppCqq » SppCq in general, first observe that FunpFin,−q : Cat∞ ! Cat∞
commutes with limits, since it is a right adjoint by Example 6.3(b). Hence we obtain

(7.9)Here we would like to point out a subtlety that only the extraordinarily careful reader will have noticed:
Let N denote the partially ordered set p· · · ! 2 ! 1 ! 0q. Then to construct a functor N ! D into an
arbitrary ∞-category D, it’s enough to specify objects yn ∈ D together with morphisms yn+1 ! yn for all n ∈ N.
This is because the inclusion sk1 NpNq ! NpNq of the 1-skeleton of the nerve of N is inner anodyne, so that
FpNpNq,Dq! Fpsk1 NpNq,Dq is a trivial fibration (and thus an equivalence of quasi-categories) by Corollary 3.10.
In the situation above, we implicitly used this observation in the case D » ArpCat∞q to turn the commutative
diagram, which a priori only encodes a sequence of morphisms

`

B◦pn+1q : CGrppAn
˘

! C˚/q −!
`

B◦n : CGrppAnq! C˚/

˘

in ArpCat∞q, into a functor N! ArpCat∞q, which by currying encodes a natural transformation in FunpN,Cat∞q

and thus a functor B∞ by the universal property of limits. Also note that this subtle observation was implicitly
used to even write down the limit above: We can’t just take the limit of a sequence of morphisms, we must turn
that sequence into a functor N! Cat∞!
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FunpFin, C˚/q » FunpFin, Cqconst ˚/ and FunpFin,SppCqq » SppFunpFin, Cqq. It’s straightfor-
ward to check that the latter equivalence restricts to SppCGrppCqq » CGrppSppCqq. Thus, by
Lemma 7.28, it’s enough to show that SppCq is additive. We’ll use Lemma 7.30. Note that
˚ ∈ C˚/ is both initial and terminal. By Lemma 6.76(a), it follows that 0 := p. . . , ˚, ˚, ˚q ∈ SppCq

is initial and terminal too. So the condition from Lemma 7.30(a) is satisfied. To construct a
natural transformation µ : ∆ ⇒ idSppCq as in Lemma 7.30(b), we observe:

p⊠1q ΩC induces an equivalence ΩC : SppCq
»
−! SppCq.

p⊠2q ΩC can be factored into ΩC : SppCq! GrppSppCqq
evr1s
−−−! SppCq. More generally, the same

is true if SppCq is replaced by any ∞-category D with finite limits, whose terminal object
˚ ∈ D is also initial.

Observation (⊠1) is clear from Definition 7.35. Observation (⊠2) can be shown by hand.
Alternatively, first observe (⊠2) is true in the case D » An˚/ by Theorem 7.10(b), using
that GrppAn˚/q » GrppAnq˚/ » GrppAnq since ˚ ∈ GrppAnq is both initial and terminal
by the arguments from the proof of Lemma 7.29. The general case can be reduced to this
special case using the Yoneda embeddingよD : D ! FunpDop,Anq, which preserves all limits
by Corollary 6.17 and thus factors through FunpDop,Anqconst ˚/ » FunpDop,An˚/q. A full
argument can be found in rF-KTh, Remark* II.23as.

Now (⊠1) and (⊠2) imply that every X ∈ SppCq can be written as X » ΩCpΩ−1
C pXqq,

and so X can be functorially upgraded to an E1-group X ∈ GrppSppCqq. We then define
µ : X ×X ! X to be the multiplication on X. All conditions from Lemma 7.30(a) are easily
verified.

7.37. Construction. — We regard N and Z as partially ordered sets and N ⊆ Z as the
inclusion p· · · ! 2 ! 1 ! 0q ⊆ p· · · ! 2 ! 1 ! 0 ! p−1q ! p−2q ! · · · q. Then N ! Z is a
final functor of ∞-categories. Indeed, this is immediate from the dual of Theorem 6.18(c), or
from the dual of Example 6.20(a). Hence we can rewrite SppCq as

SppCq » lim
´

· · · ΩC−! C˚/
ΩC−! C˚/

ΩC−! C˚/
ΩC−! · · ·

¯

.

For all n ∈ Z, we let Ω∞−n
C : SppCq! C˚/ denote the projection to the nth component of the

limit. This notation is chosen in such a way that ΩCpΩ∞−n
C Xq » Ω∞−pn−1q

C X, as one would
expect. In the case C » An, we drop the index and just write Ω∞−n.

In the case C » An, we define πnpXq := π0pΩ∞+nXq, the nth homotopy group of the spectrum
X. Since Ω∞+nX » ΩipΩ∞+n−iXq and Ω shifts homotopy groups down by Lemma 7.3(a),
we see πnpXq „= πipΩ∞+n−iXq for all i ⩾ 0 (we don’t have to specify a base point since
Ω∞+n−iX ∈ An˚/ by construction). In particular, choosing i ⩾ 2 and using Lemma 3.17(b), we
see that πnpXq is an abelian group for all n ∈ Z.

A spectrum X is called connective if πnpXq „= 0 for all n < 0, and coconnective if πnpXq „= 0
for all n > 0. It’s customary to denote by Sp⩾0 ⊆ Sp and Sp⩽0 ⊆ Sp the full sub-∞-categories
spanned by the connective and the coconnective spectra, respectively.

7.38. Lemma. — Let C be an ∞-category with finite limits. Then SppCq has all finite limits
and Ω∞−n

C : SppCq! C˚/ preserves all finite limits for all n ∈ Z. Furthermore, in the special
case C » An, the following is true:
paq The ∞-category Sp has all small limits and colimits. For all n ∈ Z, the functors

Ω∞−n : Sp! An˚/ commute with all limits and with filtered colimits.
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pbq For all n ∈ Z, the functors πn : Sp! Ab commute with all products (in particular, with
finite products and thus with finite coproducts too) and with filtered colimits.

pcq A morphism f : X ! Y of spectra is an equivalence if and only if it induces isomorphisms
πnpXq „= πnpY q for all n ∈ Z. Furthermore, if X ! Y ! Z is a fibre sequence in Sp (in
the sense of Definition 6.39), then there is a long exact sequence of abelian groups

· · · −! πn+1pZq
∂
−! πnpXq −! πnpY q −! πnpZq

∂
−! πn−1pXq −! · · · .

Proof. The first assertion is an immediate consequence of Lemma 6.76(b). The same argument
also proves that Sp has all limits and that Ω∞−n : Sp! An˚/ commutes with limits. To prove
the existence of colimits in Sp, it’s enough to show that pushouts, finite coproducts, and filtered
colimits exist, because infinite coproducts can be written as filtered colimits of finite coproducts
(see claim (⊠) in the proof of Lemma 6.62). Since Ω: An˚/ ! An˚/ preserves filtered colimits
by Theorem 6.54, we can apply Lemma 6.76(b) again to deduce that Sp has all filtered colimits
and that Ω∞−n : Sp! An˚/ commutes with filtered colimits. The existence of finite coproducts
follows from the fact that Sp is additive, as observed in Lemma 7.36. Finally, pushouts will be
constructed in Lemma 7.43 below. This finishes the proof of (a).

Part (b) follows immediately from (a) and the fact that π0 : An! Set preserves all products
and filtered colimits by Lemma 6.58 (plus the fact that Ab! Set is conservative and preserves
all products and filtered colimits).

The long exact sequence from (c) follows immediately from Lemma 3.19 and the fact that
Ω∞−nX ! Ω∞−nY ! Ω∞−nZ is a fibre sequence in An˚/ for all n ∈ Z by (a). It’s clear that
any equivalence f : X ! Y induces isomorphisms πnpXq „= πnpY q for all n ∈ Z. The converse
follows essentially from Theorem 3.18; the only non-obvious point is that Theorem 3.18 requires
isomorphisms on homotopy groups for all basepoints, whereas πnpXq „= πipΩ∞+n−iXq only
uses the preferred base point of Ω∞+n−iX ∈ An˚/. However, Ω∞+n−iX upgrades canonically
to an E∞-group in An by Lemma 7.36. In an E∞-group, all path components are homotopy
equivalent, and so it doesn’t matter which basepoint we use.

7.39. Remark. — Using the formalism from §6.10, we can give a slick proof of Lemma 7.38(a):
Suppose C is a presentable ∞-category. The loop functor ΩC : C˚/ ! C˚/ admits a left adjoint
ΣC : C˚/ ! C˚/ given by the same pushout diagram as in Definition 7.1. Thus ΩC is a functor
in PrR. We know from Lemma 6.75 that PrR ! Ĉat∞ preserves limits, and so the limit
defining SppCq can also be viewed as a limit in PrR.(7.10) This immediately shows that SppCq is
presentable, so in particular, it has all colimits. If C˚/ is ℵ0-compactly generated (which is true
for C » An, as the pointed 0-dimensional sphere pS0, ˚q is a compact generator of An˚/; this is
clear from Lemma 6.62(c)), the limit defining SppCq can also be interpreted as a limit in PrR

ℵ0 ,
because PrR

ℵ0 ! PrR also preserves all limits by the dual of Corollary 6.81(b). This shows that
the projections Ω∞−n

C : SppCq! C˚/ preserve filtered colimits.
We can take these considerations one step further: Recall that there’s an equivalence of

∞-categories PrL » pPrRqop given by extracting adjoints. Thus, SppCq can also be described as
a colimit in PrL, namely

Sp » colim
´

C˚/
ΣC−! C˚/

ΣC−! C˚/
ΣC−! · · ·

¯

.

(7.10)Since we can construct PrR in ZFC, see 6.79, this also provides a way to construct SppCq without enlarging
our universe and talking about Ĉat∞.
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Thus, SppCq is the terminal ∞-category over C˚/ such that ΩC becomes invertible, but it’s also
the initial presentable ∞-category under C˚/ such that ΣC becomes invertible. And we get
for free that Ω∞

C : SppCq ! C˚/ admits a left adjoint Σ∞
C : C˚/ ! SppCq. In Lemma 7.55 and

Corollary 7.57, we’ll give an explicit construction of Σ∞
C that works in greater generality (in

particular, not only for presentable C), but it’s nice to see a first instance where Lurie’s magical
∞-category PrL becomes really useful.

7.40. Corollary (“E∞-groups are connective spectra”). — The functor B∞ from Construc-
tion 7.34 fits into an adjunction

B∞ : CGrppAnq −−! Sp :Ω∞ .

Furthermore, B∞ is fully faithful and its essential image is the full sub-∞-category Sp⩾0 ⊆ Sp
of connective spectra.

Proof. This follows immediately from Construction 7.34 together with Lemma 7.36 and Con-
struction 7.37.

7.41. Remark. — Corollary 7.40 implies that an anima Y can be equipped with an E∞-group
structure if and only if Y can be written as Ω∞X for some spectrum X. Equivalently, Y must
admit a compatible sequence p. . . , Y2, Y1, Y0q of deloopings, satisfying Y0 » Y and ΩYn+1 » Yn
for all n ⩾ 0. This can be regarded as an analogue of Theorem 7.10(b): Just as E1-groups
are precisely the loop animae, that is, those animae that can be delooped once, E∞-groups
are precisely the infinite loop animae, that is, those animae that can be delooped arbitrarily
often, in a compatible way. This is the recognition principle for infinite loop spaces due to
Boardman–Vogt, May, and Segal.

Furthermore, Corollary 7.40 implies that if Y » Ω∞X, then the spectrum X can always be
chosen to be connective. In other words, if Y admits a compatible sequence p. . . , Y2, Y1, Y0q of
deloopings, then we may always assume that Yn is n-connected for all n ⩾ 0, that is, πipYnq = 0
for all i < n and all basepoints. The intuitive reason for this is that upon writing Y » ΩnYn, all
information about π˚pYnq below degree n will be lost, so we may as well assume these homotopy
groups vanish. If we work with spectra (not necessarily connective), this information is instead
remembered in the form of negative homotopy groups. In general, working with Sp rather than
CGrppAnq has a number of advantages, due to the excellent categorical properties of Sp. These
properties are axiomatised in the notion of a stable ∞-category.

7.42. Definition. — An ∞-category C is called stable if it satisfies the equivalent conditions
from Lemma 7.43 below.

7.43. Lemma. — Suppose C is an ∞-category with an object 0 ∈ C that’s both initial and
terminal. Then the following conditions are equivalent:
paq C has finite limits and ΩC : C ! C is an equivalence of ∞-categories. Here ΩC is defined

by an analogous pullback diagram as in Definition 7.1.
pbq C has finite colimits and ΣC : C ! C is an equivalence of ∞-categories. Here ΣC is defined

by an analogous pushout diagram as in Definition 7.1.
pcq C has finite limits and finite colimits and a commutative square in C is a pushout square

if and only if it is a pullback square.
pdq The functor Ω∞

C : SppCq! C is an equivalence of ∞-categories.
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peq There exists an ∞-category D and an equivalence of ∞-categories SppDq » C.

Proof. The implication (a) ⇒ (d) is clear: Since 0 ∈ C is both initial and terminal, we have
C0/ » C, and so ΩC : C0/ ! C0/ is an equivalence too. It follows that the limit defining SppCq

is taken along equivalences and thus equivalent to C by (a dual variant of) Lemma 6.57. The
implication (d) ⇒ (e) is trivial, as is the implication (e) ⇒ (a): ΩSppDq : SppDq! SppDq is an
equivalence for obvious reasons (for example, using Construction 7.37, ΩSppDq just corresponds
to a shift in the index category Z, which is clearly an equivalence). Furthermore, the implications
(c) ⇒ (a), (b) are also clear: Applying the pushout-pullback condition to the pushout square
defining ΣC and the pullback square defining ΩC shows that the unit u : idC ⇒ ΩCΣC and counit
c : ΣCΩC ⇒ idC are natural equivalences, so ΣC and ΩC must be equivalences of ∞-categories.

It remains to show (a) ⇒ (c); the implication (b) ⇒ (c) will follow from a dual argument. The
same argument as in the proof of Lemma 7.36 shows that C is additive (write X » ΩCpΩ−1

C Xq

to lift X to an E1-group in C and then apply Lemma 7.30). So we only need to check that
pushouts exist and coincide with pullbacks. Let X ⊆ Funp□2, Cq, where □2 » ∆1 × ∆1, be the
full subcategory spanned by pullback squares. We claim:
p⊠q The restriction r : X −! FunpΛ2

0, Cq is an equivalence of ∞-categories.
To prove (⊠), we construct a functor s : FunpΛ2

0, Cq! X satisfying r ◦ s » pΩCq˚ and s ◦ r »

pΩCq˚, where pΩCq˚ : Funp□2, Cq ! Funp□2, Cq is postcomposition with ΩC. Since ΩC is an
equivalence, so is pΩCq˚, and (⊠) will be proved. Given a functor F : Λ0 ! C, which we can
view as a span c a! b in C, we construct the following moderately large diagram:

ΩCpaq ΩCpcq 0

ΩCpbq x f 0

0 g a b

0 c

≒ ≒

≒ ≒ ≒

≒

All squares are pullbacks as indicated. The fact that ΩCpaq, ΩCpbq, and ΩCpcq appear in the
top left corner follows by combining suitable pullback squares into larger pullback rectangles.
The functor s : FunpΛ2

0, Cq! X now sends

F =

¨

˝

a b

c

˛

‚ 7−!

¨

˝

ΩCpaq ΩCpbq

ΩCpcq x

≒

˛

‚

(technically we have only defined s on objects, but its clear how to make it functorial since
limits are functorial). This proves (⊠).

To construct pushouts, let F : Λ2
0 ! C be a span c a! b as above. We know from (⊠)

that F can be uniquely (up to contractible choice) extended to a pullback square, where the
bottom right corner is some object d ∈ C. The same goes for the trivial span consisting of
identities y = y = y for some y ∈ C, and in this case the object we have to add in the bottom
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right corner has to be y by uniqueness. Hence

HomFunpΛ2
0, Cq

¨

˝

a b

c

,

y y

y

˛

‚» HomFunp∆1×∆1, Cq

¨

˝

a b

c d

≒ ,

y y

y y

≒

˛

‚.

By the universal property of colimits, this means that the colimit over the span c  a ! b
agrees with the colimit over the commutative square formed by a, b, c, and d, provided that
at least one of these colimits exists. But ∆1 × ∆1 has a terminal object, namely the vertex
t1u × t1u, and so the colimit over any commutative square exists and is given by the bottom
right corner. This shows that d is a pushout of the span c a! b. Simultaneously, we’ve also
shown that pushout squares agree with pullback squares. This finishes the proof of (a) ⇒ (c)
and so we’re done.

7.44. Corollary. — Let F : C ! D be a functor between stable ∞-categories. Then F
preserves finite colimits if and only if it preserves finite limits.

Proof. This is an immediate consequence of Lemma 6.50: Since C and D are additive (as we’ve
seen in the proof of Lemma 7.36), F preserves finite coproducts if and only it preserves finite
products. By Lemma 7.43(c), F preserves pushouts if and only if it preserves pullbacks.

7.45. Definition. — A functor F : C ! D between stable ∞-categories is called exact if
it preserves finite colimits, or equivalently, finite limits. We let Catst

∞ ⊆ Cat∞ denote the
(non-full) sub-∞-category spanned by stable ∞-categories and exact functors between them.

In the remainder of this subsection, we’ll explain how the derived ∞-category DpRq and its
variant D⩾0pRq from crash course 6.34 fit into the framework of stable ∞-categories.

7.46. Lemma. — Let R be a (not necessarily commutative) ring. Then there exists an
equivalence of ∞-categories DpRq » SppD⩾0pRqq, given on objects by

M 7−!
´

. . . , pτ⩾−2Mqr2s, pτ⩾−1Mqr1s, τ⩾0M
¯

.

(here τ⩾−np−q are the smart truncations and p−qrns are the shift functors from crash course 6.34).
In particular, DpRq is a stable ∞-category.

Proof sketch. Let’s first explain how to construct the desired functor DpRq ! SppD⩾0pRqq

formally. The crucial observation is that ΩDpRq : DpRq! DpRq can be identified with the shift
functor p−qr−1s; we’ve seen an instance of this Example 7.4, the general case follows from
similar arguments as in Lemma 6.40(b). Since τ⩾0 : DpRq ! D⩾0pRq is right adjoint to the
inclusion D⩾0pRq ⊆ DpRq, it follows formally that ΩD⩾0pRq : D⩾0pRq ! D⩾0pRq is given by
τ⩾0pp−qr−1sq. Then we get an equivalence of functors

τ⩾−np−qrns » ΩD⩾0pRq ◦ τ⩾−pn+1qp−qrn+ 1s

in FunpDpRq,D⩾0pRqq for all n ⩾ 0. Indeed, substituting τ⩾0pp−qr−1sq for ΩD⩾0pRq, this
equivalence is straightforward to verify in FunpChpRq,Ch⩾0pRqq; after that, Lemma 4.11 does
the rest. Thus, the functors τ⩾−np−qrns : DpRq! D⩾0pRq for all n ⩾ 0 assemble into a functor
DpRq! SppD⩾0pRqq, as desired.
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Now we’ll verify that this functor is fully faithful and essentially surjective. For fully
faithfulness, we employ Lemma 6.76(a) to compute HomSppD⩾0pRqq; we must then show that
HomDpRqpM,Nq » limn∈N HomD⩾0pRqppτ⩾−nMqrns, pτ⩾−nNqrnsq for all M,N ∈ DpRq. Clearly,
we can get rid of the shifts and instead write limn∈N HomD⩾−npRqpτ⩾−nM, τ⩾−nNq, where the
transition morphisms are induced by applying the functor τ⩾−n. This functor can also be viewed
as a right adjoint τ⩾−n : DpRq! D⩾−npRq of the inclusion D⩾−npRq ⊆ DpRq. Therefore, we get
an adjunction equivalence HomD⩾−npRqpτ⩾−nM, τ⩾−nNq » HomDpRqpτ⩾−nM,Nq. We claim:
p⊠q Under these adjunction equivalences, the transition morphisms, which were originally

induced by τ⩾−n, get identified with the precomposition morphisms

c˚
n : HomDpRq

`

τ⩾−pn+1qM,N
˘

−! HomDpRqpτ⩾−nM,Nq

induced by the canonical morphisms cn : τ⩾−nM ! τ⩾−pn+1qM .
To prove (⊠), recall from the proof of Lemma 6.5 that any adjunction equivalence can, at least
pointwise, be obtained by applying the right adjoint and then precomposing with the unit
transformation. In our case, we see that HomD⩾−npRqpτ⩾−nM, τ⩾−nNq » HomDpRqpτ⩾−nM,Nq

is simply given by applying τ⩾−n, since the unit uτ⩾−nM : τ⩾−nM ! τ⩾−npτ⩾−nMq is just the
identity. To show (⊠), we now simply observe that τ⩾−n ◦ τ⩾−pn+1q » τ⩾−n and that τ⩾−npcnq

is the identity on τ⩾−nM .
Using (⊠) and Corollary 6.16, we see that to show the desired equivalence

HomDpRqpM,Nq
»
−! lim

n∈N
HomDpRqpτ⩾−nM,Nq ,

it’ll be enough to show colimn∈N τ⩾−nM » M . To prove this, observe that filtered colimits
in ChpRq preserve quasi-isomorphisms. Through Lemma 4.11, this formally implies that
ChpRq ! DpRq preserves filtered colimits (we’ve seen analogous arguments in the proofs of
Lemma 6.58 and Corollary 6.64). So colimn∈N τ⩾−nM » M can be checked on the level of
chain complexes, where it becomes obvious. This finishes the proof that DpRq! SppD⩾0pRqq

is fully faithful.
To show essential surjectivity, observe that objects in SppD⩾0pRqq are given by sequences

p. . . ,M2,M1,M0q in D⩾0pRq together with equivalences Mn » ΩD⩾0pRqMn+1 » τ⩾0pMn+1r−1sq.
These equivalences induce morphisms Mn !Mn+1r−1s in DpRq and we can form the colimit
M := colimn∈NMnr−ns. Using once again that filtered colimits in DpRq are well-understood,
one checks that M is a preimage of p. . . ,M2,M1,M0q up to equivalence.

7.47. Eilenberg–MacLane spectra — In the special case R = Z, we have the Eilenberg–
MacLane functor K: D⩾0pZq! An from Construction 6.41, which preserves all limits (being a
right adjoint) and thus commutes with Ω. Therefore, K induces a functor H: DpZq! Sp via
the commutative diagram

Sp
`

D⩾0pZq
˘

SppAnq

DpZq Sp

SppKq

» ///

H

We call H the Eilenberg–MacLane spectrum functor. Unravelling the equivalence DpZq »

SppD⩾0pZqq from Lemma 7.46 and the construction of SppKq : SppD⩾0pZqq! Sp, we see that

155



§7. Towards spectra

for all abelian groups A and all n ⩾ 0, the spectrum HA := HpAr0sq is explicitly given by the
sequence of animae

HA »
`

. . . ,KpA, 2q,KpA, 1q,KpA, 0q
˘

.

This fits perfectly with the homotopy equivalences KpA,nq » ΩKpA,n+ 1q from Example 7.4.
We call HA the Eilenberg–MacLane spectrum of A.

The Eilenberg–MacLane functor induces an equivalence of ∞-categories H: Ab »
−! Sp♡ from

the (ordinary) category of abelian groups onto the ∞-category Sp♡ := Sp⩾0 ∩ Sp⩽0 of spectra
concentrated in degree 0. Indeed, an inverse functor is provided via Sp♡ ! Sp⩾0 » CGrppAnq

(Corollary 7.40) and π0 : CGrppAnq! CGrppSetq » Ab. In the modern point of view, abelian
groups are just spectra concentrated in degree 0. Following this, we’ll often suppress H in the
notation and write the Eilenberg–MacLane spectrum just as A.(7.11)

In the classical theory of derived categories, much emphasis is placed on the fact that DpRq

can be equipped with a triangulated structure. Let us now explain how this structure is captured
and radically simplified by the fact that the derived ∞-category DpRq is stable.

7.48. Stable ∞-categories and triangulated categories. — One striking feature of
stable ∞-categories is that their homotopy category admits a canonical triangulated structure.
If you haven’t see triangulated categories before, rL-HA, Definition 1.1.2.5s has a nice review
(but you can also safely skip this remark). Moreover, rL-HA, Theorem 1.1.2.14s explains the
triangulated structure in much more detail than we’ll do below.

Let C be a stable ∞-category. We choose p−qr1s := hopΣCq : hopCq! hopCq to be the shift
functor in our emerging triangulated structure. By Lemma 7.43(b), p−qr1s is an equivalence of
categories. We say that x! y ! z ! xr1s is a distinguished triangle if x! y ! z is a cofibre
sequence in C in the sense of Definition 6.39. Then we can form the following pushout diagram

x y 0

0 z ΣCpxq

≓ ≓

(to see why ΣCpxq appears in the bottom left corner, just observe that the outer rectangle
must be a pushout too). This shows several things at once: First it explains where the
morphism z ! xr1s in a distinguished triangle comes from. Second, a closer investigation of
the diagram shows that x ! y ! z is a cofibre sequence if and only if y ! z ! ΣCpxq is
a cofibre sequence.(7.12) Hence x ! y ! z ! xr1s is a distinguished triangle if and only if
y ! z ! xr1s ! yr1s is a distinguished triangle. In other words, Verdier’s axiom (TR2) is
satisfied.

Furthermore, it’s immediately clear that every morphism x ! y can be extended to a
distinguished triangle (just form the cofibre), that distinguished triangles are closed under
isomorphisms in HopCq, and that for every x ∈ C, the identity idx : x! x fits into a distinguished
triangle x! x! 0! xr1s. So (TR1) is satisfied.
(7.11)In the words of Robert Burklund: “Why would you give a name to the functor that sends an abelian group
to itself?”
(7.12)Here’s the argument: We’ve already seen that x ! y ! z being a cofibre sequence implies the same for
y ! z ! ΣCpxq. Conversely, if y ! z ! ΣCpxq is a cofibre sequence, then the right square in the diagram is a
pushout, hence a pullback by Lemma 7.43(c). Similarly, the outer square must be a pullback. It follows formally
that the left square must be a pullback too, hence a pushout, and so x! y ! z is a cofibre sequence too.
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Next, we’ll tackle axiom (TR3). Since taking cofibres is functorial, for every commutative
diagram in C as below there is a unique dashed arrow (up to contractible choice):

x y cofibpαq

x′ y′ cofibpα′q

α

β /// γ

α′

The crucial detail here is “///”: A commutative diagram in C is a functor σ : □2 ! C, whereas a
commutative diagram in hopCq is a functor σ : ∂□2 ! C, which can be extended to a functor
σ : □ ! C; however, the choice of σ is not part of the data! In particular, there could be
several non-homotopic choices, corresponding to the fact that π1pHomCpx, y′q, γ ◦ αq may not
be trivial. So taking cofibres is not functorial in commutative diagrams in hopCq. If we start
with a commutative diagram in hopCq, then a dashed arrow will exist, but it will not necessarily
be unique; the uniqueness only comes about once a filler σ : □2 ! C has been chosen, which we
indicate by writing “///” in a diagram as above. This shows axiom (TR3) and it offers a nice
conceptual explanation of the non-uniqueness statement in that axiom.

Finally, let’s talk about the dreaded octahedron axiom (TR4): Given morphisms α : x! y
and β : y ! z in C, we can form a pushout diagram

x y z

0 cofibpαq cofibpβ ◦ αq

0 cofibpβq

α

≓

β

≓

≓

which shows that cofibpαq ! cofibpβ ◦ αq ! cofibpβq is a cofibre sequence in C. And that’s
already the octahedron axiom!

Not every triangulated category arises as the homotopy category of a stable ∞-category.
However, every triangulated category encountered in nature does, the primordial example being
the derived category DpRq of a ring R, which arises as the homotopy category of DpRq, which
is stable by 7.47 and Lemma 7.43(e). The point we’re trying to make here is that whenever
you would work with triangulated categories, you should use stable ∞-categories instead: It is
both conceptually simpler and more powerful! For a concrete example, you might have seen the
filtered derived category of a ring R before. In the classical approach, you run into annoying
technical subtleties when you try to define it in full generality; this is the reason why the Stacks
Project only considers degree-wise finite filtrations in rStacks, Tag 05RXs. But on the level
of ∞-categories, everything works as expected: We simply define FilpDpRqq := FunpZ,DpRqq.
This is a stable ∞-category again(7.13) and so its homotopy category ho FilpDpRqq is canonically
a triangulated category. This is the “right” definition of the filtered derived category. It also
explains where the technical subtleties come from: The homotopy category ho FunpZ,DpRqq is
in general not the same as FunpZ,ho DpRqq

(7.13)In general, if C is stable, then so is FunpI, Cq for any ∞-category I; to see this, use that limits and colimits
in functor ∞-categories can be computed pointwise (Lemma 6.12) to verify your favourite condition from
Lemma 7.43.
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As our final application to the theory of derived ∞-categories, we would like to explain the
relationship between HomDpRqpM,Nq and RHomRpM,Nq. This needs a general construction,
which is pretty important on its own.

7.49. Lemma. — If C is a stable ∞-category, then the Hom animae in C can be refined to
spectra. More precisely, there is a unique (up to equivalence) functor homC : Cop × C ! Sp
fitting into the following diagram:

Sp

Cop × C An

Ω∞
homC

HomC

Proof. The Yoneda embeddingよC : C ! FunpCop,Anq preserves limits by Corollary 6.17. In
particular, it commutes with Ω and thus induces a functor SppよCq : SppCq! SppFunpCop,Anqq,
which is uniquely (up to equivalence) characterised by the fact that Ω∞よst

C » よC. Now
FunpCop,−q : Cat∞ ! Cat∞ commutes with limits, since it has a left adjoint given by − × Cop.
Furthermore, FunpCop,An˚/q » FunpCop,Anqconst ˚/. Hence SppFunpCop,Anqq » FunpCop, Spq

and so we’ve upgraded the Yoneda embedding to a functor

よst
C : C −! FunpCop,Spq .

After currying, this induces the desired functor homC : Cop × C ! Sp. Uniqueness follows from
uniqueness ofよst

C .

7.50. Corollary. — For any ring R, the spectra-enriched hom in the derived ∞-category
DpRq is given by

homDpRqpM,Nq » RHomRpM,Nq ,

that is, the Eilenberg–MacLane spectrum associated to RHomRpM,Nq ∈ DpRq as in 7.47, but
we suppress writing H.

Proof sketch. By the uniqueneness statement from Lemma 7.49, it’s enough to construct a
functorial equivalence Ω∞RHomRpM,Nq » HomDpRqpM,Nq. Unravelling the construction in
7.47, we see that Ω∞RHomRpM,Nq » Kpτ⩾0 RHomRpM,Nqq is the Eilenberg–MacLane anima
associated to the trunctation τ⩾ RHomRpM,Nq. Now any anima X satisfies X » HomAnp˚, Xq

and then we can compute

HomAnp˚,Kpτ⩾0 RHomRpM,Nqqq » HomD⩾0pZqpZr0s, τ⩾0 RHomRpM,Nqq

» HomDpZqpZr0s,RHomRpM,Nqq

» HomDpRq

`

Zr0s bL
Z M,N

˘

» HomDpRqpM,Nq .

In the first step, we use the adjunction C: An ! D⩾0pZq : K from Construction 6.41. In the
second step, we use that τ⩾0 : DpZq! D⩾0pZq is right adjoint to the inclusion D⩾0pZq ⊆ DpZq,
as we’ve seen in crash course 6.34. In the third step, we use the “derived tensor-Hom adjunction”.
To construct this, using the description from crash course 6.36, we only need to verify that the
ordinary tensor-Hom adjunction refines to an adjunction of Kan-enriched categories, which is
straightforward. The fourth step is obvious.

Putting everything together, we get Ω∞RHomRpM,Nq » HomDpRqpM,Nq, as desired.
Since all steps can easily be made functorial, we’re done.
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§7.5. Spectra and excisive functors

In this subsection, we’ll explain an alternative construction of SppCq that more closely resembles
the “Segal models” for E1-groups and E∞-groups from Definitions 7.6 and 7.24. This alternative
model will be needed in §8 to construct the tensor product of spectra, but we’ll also use it to
show that Ω∞ : Sp! An has a left adjoint and to construct the famous sphere spectrum S.

7.51. Definition. — Let Anfin
˚/ ⊆ An˚/ be the ∞-category of finite pointed animae, defined

as smallest full sub-∞-category that contains S0 » ˚ ˚ and is closed under finite colimits.(7.14)

Furthermore, let C be an ∞-category with all finite limits, so that, in particular, C contains a
terminal object ˚ ∈ C.
paq A functor F : Anfin

˚/ ! C˚/ is called reduced if F p˚q » ˚.
pbq A functor F : Anfin

˚/ ! C˚/ is called excisive if F sends pushout squares to pullback squares.
Furthermore, we let Fun˚pAnfin

˚/, C˚/q ⊆ Funexc
˚ pAnfin

˚/, C˚/q ⊆ FunpAnfin
˚/, C˚/q denote full sub-∞-

categories spanned by the reduced functors or the reduced excisive functors, respectively.

7.52. Lemma. — If C has finite limits, then Funexc
˚ pAnfin

˚/, C˚/q is a stable ∞-category.

Proof. We’ll verify the conditions from Lemma 7.43(a). Since limits in colimits in functor
categories are computed pointwise by Lemma 6.12, it follows that FunpAnfin

˚/, C˚/q has all finite
limits and that the terminal object const ˚ is also initial. Furthermore, reduced excisive functors
are closed under all limits, and so Funexc

˚ pAnfin
˚/, C˚/q still has all finite limits and its terminal

object is initial too. It remains to show that the loop functor Ω on Funexc
˚ pAnfin

˚/, C˚/q is an
equivalence. We’ll show that precomposition with Σ: Anfin

˚/ ! Anfin
˚/ provides an inverse. To this

end, let F : Anfin
˚/ ! C˚/ be a reduced excisive functor. By definition of Σ, we have a diagram

of natural transformations
F p−q F pconst ˚q

F pconst ˚q F pΣp−qq

///

Since F p˚q » ˚, we have F pconst ˚q » const ˚. Therefore, this diagram induces a natural
transformation ηF : F p−q ⇒ ΩF pΣp−qq. Since F sends pushout squares to pullbacks, ηF is a
pointwise equivalence, hence an equivalence of functors by Theorem 4.5. Furthermore, it’s clear
from the construction that ηF is also functorial in F .

Now observe that the loop functor Ω on Funexc
˚ pAnfin

˚/, C˚/q is given by postcomposition with
the loop functor ΩC : C˚/ ! C˚/, as follows from Lemma 6.12. Since, in general, postcomposition
commutes with precomposition, our functorial equivalence F p−q » ΩF pΣp−qq thus shows that
precomposition with Σ is both a left and a right inverse of Ω.

7.53. Lemma. — For every n ⩾ 0, let evSn : Funexc
˚ pAnfin

˚/, C˚/q! C˚/ be given by evaluation
at the n-sphere Sn. Then evSn+1 » ΩC ◦ evSn holds for all n ⩾ 0 and the induced functor

Funexc
˚

`

Anfin
˚/, C˚/

˘ »
−! SppCq

is an equivalence of ∞-categories.
(7.14)Anfin

˚/ looks like it could be the full sub-∞-category pAn˚/q
ℵ0 ⊆ An˚/ spanned by the compact objects (in

the sense of Definition 6.52(c)), but it’s not: pAn˚/q
ℵ0 also contains all retracts of objects in Anfin

˚/.
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Proof sketch. The condition evSn+1 » ΩC ◦ evSn follows immediately from Sn+1 » ΣSn and the
fact that excisive functors send pushouts to pullbacks, so the hard part will be to show that we
get an equivalence. Let’s first consider the case where C is a stable ∞-category. We’ll show that

evS0 : Funexc
˚

`

Anfin
˚/, C˚/

˘ »
−! C

is an equivalence of ∞-categories. This special case will occupy the majority of the proof; the
general case is an easy consequence, as we’ll see below. If C is stable, then C˚/ » C, since
the terminal object is also initial. This also shows that a functor is reduced if and only if it
preserves initial objects. Furthermore, since pushout squares and pullback squares agree in any
stable ∞-category, a functor F : Anfin

˚/ ! C is excisive if and only if it preserves pushouts. Any
finite colimit can be built from initial objects and pushouts. Indeed, by Lemma 6.50, we only
have to show that finite coproducts can be built that way, but coproducts are pushouts over
the initial object. In summary, we obtain

Funexc
˚

`

Anfin
˚/, C˚/

˘

» Funfin9colim`Anfin
˚/, C

˘

,

where Funfin9colim ⊆ Fun denotes the full sub-∞-category of functors that preserve finite
colimits.

Now let I := t˚ S0u be the full sub-∞-category of Anfin
˚/ spanned by ˚ and S0. Observe

that I » Fin⩽1, where Fin⩽1 is the (ordinary) category from the proof of Lemma 7.28.(7.15)

Applying claim (⊠2) from the proof of Lemma 7.28, we obtain that evaluation at S0 induces
an equivalence of ∞-categories

evS0 : Fun˚pI, Cq
»
−! C .

So it remains to show that restriction along the inclusion i : I ! Anfin
˚/ induces an equivalence

of ∞-categories
i˚ : Funfin9colim`Anfin

˚/, C
˘ »
−! Fun˚pI, Cq .

To prove this, we’ll study left Kan extension along the inclusion i. By Lemma 7.54 below, every
reduced functor F : I ! C admits a left Kan extension; furthermore, that lemma provides
an explicit formula (in form of a pushout diagram) for Lani F pX,xq. Combining this formula
with Lemma 6.38(b) shows that Lani F : Anfin

˚/ ! C preserves pushouts. Lani F also preserves
initial objects since F was assumed to be reduced. Hence Lani F preserves all finite colimits.
Therefore, usual left Kan extension adjunction Lani ⊣ i˚ restricts to an adjunction

Lani : Fun˚pI, Cq −−! Funfin9colim`Anfin
˚/, C

˘

: i˚ .

Since i is fully faithful, so is Lani by Corollary 6.29. Furthermore, since Anfin
˚/ is generated

under finite colimits by ˚ and S0, it’s clear that i˚ is conservative. So Lani and i˚ are inverse
equivalences by Lemma 6.33(b), which is what we wanted to show.

It remains to deduce the general case. So let C again be an arbitrary ∞-category with finite
limits. Then an equivalence SppCq » Funexc

˚ pAnfin
˚/, C˚/q can be obtained as follows:

SppCq » Funexc
˚

`

Anfin
˚/,SppCq

˘

» Sp
´

Funexc
˚

`

Anfin
˚/, C˚/

˘

¯

» Funexc
˚

`

Anfin
˚/, C˚/

˘

(7.15)Indeed, it’s straightforward to verify that hopIq » Fin⩽1. But one also easily verifies that the Hom animae
in I are discrete, and so the canonical functor I ! hopIq is an equivalence by Theorem 4.6.
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The first equivalence follows from what we’ve just shown. The third equivalence follows from
Funexc

˚ pAnfin
˚/, C˚/q being stable by Lemma 7.52. So let’s explain where the second equivalence

comes from: The functor FunpAnfin
˚/,−q : Cat∞ ! Cat∞ commutes with limits since it is

a right adjoint by Example 6.3(b). Hence FunpAnfin
˚/,SppCqq » SppFunpAnfin

˚/, C˚/qq. Now
Funexc

˚ pAnfin
˚/,SppCqq and SppFunexc

˚ pAnfin
˚/, C˚/qq can be regarded as full sub-∞-categories of the

left- and the right-hand side, respectively, and we only have to check that they match. To see
this, recall that limits in SppCq are formed degree-wise by Lemma 6.76(b), and so a functor
F : Anfin

˚/ ! SppCq is reduced and excisive if and only if Ω∞−n
C ◦ F : Anfin

˚/ ! C˚/ is reduced and
excisive for all n ∈ Z. This is precisely what we need.

So we’ve constructed an equivalence SppCq » Funexc
˚ pAnfin

˚/, C˚/q. By a straightforward
unravelling, this equivalence is really induced by evSn for all n ⩾ 0.

7.54. Lemma. — Let C be an ∞-category with finite colimits; in particular, C contains an
initial object 0 ∈ C. Let i : I ! Anfin

˚/ be as in the proof of Lemma 7.53 and let F : I ! C be a
functor such that F p˚q » 0. Then Lani F : Anfin

˚/ ! C exists and its value on a pointed anima
pX,xq is given as the pushout

F
`

S0˘ colim
`

constF pS0q : X ! C
˘

0 Lani F pX,xq

≓

in C (where the top horizontal arrow is induced by txu! X).
Proof. First note that the pushout above exists in C. Indeed, since C is stable, it has all finite
colimits by Lemma 7.43(c). In particular, since X is a finite anima, colimpconstF pS0q : X ! Cq

exists, and then so does the pushout.
Showing that Lani F pX,xq is indeed given by the pushout in question is essentially a

lengthy unravelling of the Kan extension formula from Lemma 6.27. We’ve seen in the proof of
Lemma 7.53 that I » Fin⩽1. Under this equivalence, Fin◦

⩽1 corresponds to the non-full sub-∞-
category J := t˚ S0u of Anfin

˚/. Let j : J ! Anfin
˚/ be the inclusion of J . By claim (⊠2) in

the proof of Lemma 7.28 we may replace I by J and analyse the left Kan extension Lanj F of
a reduced functor F : J ! Anfin

˚/ instead. This will make our life much easier.
Fix some pointed anima pX,xq and consider the slice ∞-category

Y := J ×Anfin
˚/

`

Anfin
˚/

˘

/pX,xq

together with its usual slice projection s : Y ! J . The Kan extension formula from Lemma 6.27
asserts that Lanj F pX,xq » colimpF ◦ s : Y ! Cq, provided this colimits exists. So let’s analyse
the ∞-category Y. The objects of Y come in two flavours: First there are pointed morphisms
˚! pX,xq, of which there’s only one, which by abuse of notation we’ll also denote ˚. Second,
there are pointed morphisms S0 ! pX,xq. Every such morphism is uniquely given by where
it sends the non-basepoint, and we let y : S0 ! pX,xq denote the morphism that sends the
non-basepoint to y ∈ X. Next, let’s compute morphism animae. For y, z ∈ X, we can use
Corollary 5.15 and Lemma 6.76(a) to see that HomYpy, zq sits in a pullback square

HomYpy, zq tyu

HomJ
`

S0, S0˘ HomAn˚/

`

S0, pX,xq
˘

≒
z˚
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Since HomJ pS0, S0q » idS0 and HomAn˚/
pS0, pX,xqq » HomAnp˚, Xq » X, this pullback can

be identified with tyu ×X tzu, and then an argument as in Lemma 7.3(b) shows

HomYpy, zq » HomXpy, zq .

In a similar way, we obtain HomYpy, ˚q » HomXpy, xq as well as HomYp˚, ˚q » ˚ and
HomYp˚, zq » ∅. This finishes our description of Y.

Now let X be the pushout in Cat∞ of txu! X along txu » t0u! ∆1. We wish to construct
a functor ϑ : X ! Y and then to show that ϑ is an equivalence of ∞-categories. To this end,
first consider the functor

φ : X » tS0u ×Anfin
˚/

`

Anfin
˚/

˘

/pX,xq
−! J ×Anfin

˚/

`

Anfin
˚/

˘

/pX,xq
» Y

(the equivalence on the left follows from the fact that the right fibration
`

Anfin
˚/

˘

/pX,xq
! Anfin

˚/

parametrises the functor HomAnfin
˚/

p−, pX,xqq :
`

Anfin
˚/

˘op
! An and so its fibre over S0 is given

by HomAn˚/
pS0, Xq » X). Secondly, consider the functor ψ : ∆1 ! Y corresponding to the

morphism ψ : x ! ˚ in Y which in turn corresponds to idx ∈ HomXpx, xq » HomYpx, ˚q. By
construction, φ|txu » ψ|t0u and so by the universal property of pushouts, φ and ψ together
determine a functor ϑ : X ! Y.(7.16)

If we can show that ϑ is an equivalence, we’re done. Indeed, using Lemma 6.38(b) and
our assumption F p˚q » 0, we see that colimpF ◦ s ◦ ϑ : X ! Cq is precisely the pushout we’re
looking for! It’s obvious that ϑ is essentially surjective, so we only need to prove that ϑ is fully
faithful, and for that, we must understand Hom animae in X . In general, there’s no nice way to
describe Hom in a pushout, but here we can use a trick: The inclusion ι : X ! X is left adjoint
to the functor r : X » X ⊔txu ∆1 ! X ⊔txu txu » X defined by ∆1 ! txu! To see this, first
note that t0u ! ∆1 is an adjunction (which is obvious, as these are ordinary categories), and
recall from Lemma 6.5 that to construct an adjunction, it’s enough to construct unit and counit
as well as the triangle identities. Since − × ∆1 : Cat∞ ! Cat∞ commutes with pushouts, as it
is a left adjoint by Example 6.3(b), we can construct the counit c : idX ! r ◦ ι by taking the
pushout of the identity transformation on X with the counit of the adjunction t0u ! ∆1. In
the same way, we can construct the unit, and then the triangle identities will still be satisfied.

Using this adjunction, we see that ϑ induces equivalences HomX py, zq » HomYpy, zq for
all y, z ∈ X. Furthermore, if ˚ ∈ X denotes the image of 1 ∈ ∆1, then ϑp˚q » ˚ and we
have HomX py, ˚q » HomXpy, rp˚qq » HomXpy, xq, so HomX py, ˚q » HomYpy, ˚q for all y ∈ X.
Finally, we have HomX p˚, ˚q » ˚ and HomX p˚, zq » ∅ for all z ∈ X. For the latter, simply note
that X ! txu defines a functor X » X⊔txu∆1 ! txu⊔txu∆1 » ∆1 and then there’s a morphism
HomX p˚, zq! Hom∆1p1, 0q » ∅. For the former, we use model category fact 6.13: X is given
by choosing an inner anodyne map of the pushout X ⊔txu ∆1 in sSet into a quasi-category. If
we use the recipe from the proof of Lemma 3.12, we won’t ever add any simplex whose vertices
are all ˚, hence HomX p˚, ˚q » Hom∆1p1, 1q. Alternatively, for a model-independent argument,
one could use Lemma 6.14 and a general formula for Hom in localisations, but this is much
more difficult. This shows that ϑ is fully faithful and we’re done!

This finishes the proof that SppCq » Funexc
˚ pAnfin

˚/, C˚/q. Now we’ll use this alternative
description to define a left adjoint of Ω∞ : Sp! An and to construct the sphere spectrum S.
(7.16)More precisely, every choice of an equivalence φ|txu » ψ|t0u determines a natural transformation between the
span X  txu » t0u! ∆1 and the span const Y in FunpΛ2

0,Cat∞q. And every such transformation determines
a viable ϑ by the universal property of colimits.

162



§7.5. Spectra and excisive functors

7.55. Lemma. — Let C be an ∞-category with finite limits; in particular, C has a terminal
object ˚ ∈ C. Assume furthermore that C˚/ admits sequential colimits and that ΩC : C˚/ ! C˚/

commutes with them. Then Funexc
˚ pAnfin

˚/, C˚/q ⊆ Fun˚pAnfin
˚/, C˚/q has a left adjoint, which sends

a reduced functor F : Anfin
˚/ ! C˚/ to

F sp := colim
n⩾0

Ωn
CF

`

Σnp−q
˘

(in the proof of Lemma 7.52 we’ve constructed a transformation F ⇒ ΩCF pΣp−qq; the colimit
on the right-hand side is given by iterating this construction).

To prove Lemma 7.55, we need a general lemma about adjunctions:

7.56. Lemma. — Let L : C ! C be an endofunctor of an ∞-category and u : idC ⇒ L be a
natural transformation. Suppose that both Lu : L ⇒ L ◦ L and uL : L ⇒ L ◦ L are equivalences.
Then, if i : CL ! C denotes the inclusion of the full sub-∞-category spanned by the essential
image of L, we have an adjunction

L : C  −−! CL : i .

Proof. By Lemma 6.5, it’s enough to construct the unit as well as the counit and to verify
the triangle identities. This will be so tautological that it becomes confusing again. As the
notation suggests, we take u to be our unit. Restricting u along i : CL ! C defines a natural
transformation ui : i ⇒ L ◦ i in FunpCL, Cq. By assumption, uLpxq : Lpxq ! LpLpxqq is an
equivalence for all x ∈ C. This shows that ui is a pointwise equivalence, hence it admits an
inverse by Theorem 4.5. Furthermore ui takes values in CL, so we can regard it as a natural
transformation idCL

⇒ L ◦ i in FunpCL, CLq. Its inverse can then also be regarded as a natural
transformation c : L ◦ i ⇒ idCL

in FunpCL, CLq. This will be our counit.
Let’s now verify the triangle identities. The second one from Lemma 6.5 is trivially satisfied,

since, by construction, ic is an inverse of ui and so ic ◦ ui » idi. For the first triangle
identity (in its weak form, where we only require cL ◦ uL to be an equivalence), we use that
Lu : L ⇒ L ◦L = L ◦ i ◦L is an equivalence by assumption, so we only need to check that cL is
an equivalence. But c itself is, by construction, already an equivalence.

Proof sketch of Lemma 7.55. It’s clear that the construction of F sp can be made into an
endofunctor p−qsp : Fun˚pAnfin

˚/, C˚/q! Fun˚pAnfin
˚/, C˚/q. By construction, for every F there is

a natural transformation uF : F ⇒ F sp in Fun˚pAnfin
˚/, C˚/q. This is clearly natural in F as well,

hence defines a natural transformation idFun˚pAnfin
˚/
,C˚/q ⇒ p−qsp. We’ll verify the conditions

from Lemma 7.56 and show that the image of p−qsp are precisely the reduced and excisive
functors.

Let’s start with the first condition: To show that usp : p−qsp ⇒ pp−qspqsp is an equivalence,
we must show that

usp
F : colim

m⩾0
Ωm

C F
`

Σmp−q
˘ »=⇒ colim

m⩾0
colim
n⩾0

Ωm+n
C F

`

Σm+np−q
˘

is an equivalence for all F . This follows from a formal manipulation of colimits.
To show the second condition, observe that if F is already reduced and excisive, then

F ⇒ ΩCF pΣp−qq is an equivalence, and so uF : F ⇒ F sp must be an equivalence too. Thus,
to show that up−qsp : p−qsp ⇒ pp−qspqsp is a pointwise equivalence, it’s enough to check that
p−qsp takes values in reduced and excisive functors. This has to be done anyway, since we have
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to identify the image of p−qsp. Also, our observation that uF is an equivalence whenever F is
reduced and excisive already shows that the essential image of p−qsp contains all reduced and
excisive functors. Thus, once we show that the F sp is reduced and excisive, we’ll be done.

To show this, it’s clear that F sp is reduced again. For excisivity, observe F sp » ΩCF
sppΣp−qq.

Indeed, precomposition with Σ commutes with all colimits, and postcomposition with ΩC
commutes with sequential colimits by our assumption, so the colimit defining F sp just gets
transformed into itself. Now consider an arbitrary pushout diagram in Anfin

˚/ and extend it as
follows:

A C ˚

B D Q ˚

˚ P ΣA ΣB

˚ ΣC ΣD

≓ ≓

≓ ≓ ≓

≓ ≓

The top left 2 × 2-square induces a morphism F sppBq ×F sppDq F
sppCq! ΩCF

sppΣAq » F sppAq.
It’s straightforward to check that this morphism is an inverse to the canonical morphism in the
other direction. This proves that F sp turns pushouts into pullbacks, as required.

7.57. Corollary. — The functor Ω∞ : Sp! An˚/ admits a left adjoint Σ∞ : An˚/ ! Sp. If
pX,xq is a pointed anima, then Ω∞Σ∞pX,xq » colimn⩾0 ΩnΣnX together with its basepoint x.
In particular,

π˚Σ∞pX,xq „= colim
n⩾0

π˚pΩnΣnXq „= colim
n⩾0

π˚+npΣnXq

are the stable homotopy groups of X.

Proof. To prove that Σ∞ exists and is given as above, let I := t˚ S0u be the full sub-∞-
category of Anfin

˚/ spanned by ˚ and S0 and recall the chain of equivalences and adjunctions

An˚/
»
 −−−
evS0

Fun˚

`

I,An˚/

˘

Lani

 −−!
i˚

Fun˚

`

Anfin
˚/,An˚/

˘

from the proof of Lemma 7.53. Thus, evS0 : Fun˚pAnfin
˚/,An˚/q! An˚/ has a left adjoint. Fur-

thermore, according to Lemmas 7.53 and 7.55, Sp » Funexc
˚ pAnfin

˚/,An˚/q ⊆ Fun˚pAnfin
˚/,An˚/q

has a left adjoint too. This shows that Σ∞ exists.
To show the desired formula for Σ∞, fix a pointed anima pY, yq and let −∧Y : Anfin

˚/ ! An˚/

denote the associated functor. Let pX,xq be a finite pointed anima; we wish to compute
the value X ∧ Y of − ∧ Y on pX,xq. It will turn out that X ∧ Y agrees with the smash
product you know from topology, so the suggestive notation is justified. But for the moment,
let’s forget what we know about smash products and regard X ∧ Y as the value of our
functor. We use Lemma 7.54 to compute it. By definition, S0 ∧ Y » Y . The colimit of the
constant functor constS0 ∧ Y : X ! An is therefore X × Y by Lemma 6.14. If we take the
colimit of constS0 ∧ Y : X ! An˚/ in pointed animae, we get pX × Y q/pX × tyuq instead, see

164



§7.5. Spectra and excisive functors

Lemma 6.56(c). Plugging this into Lemma 7.54, we get a pushout diagram

X × tyu pX × Y q/
`

X × tyu
˘

˚ X ∧ Y

≓

(in An or An˚/, this doesn’t matter by Lemma 6.56(b)). So X ∧ Y is indeed the usual smash
product from topology.(7.17)

Now Ω∞Σ∞pY, yq can be described as the value of p− ∧ Y qsp on S0. According to the
formula from Lemma 7.55, this value is given by

colim
n⩾0

ΩnpΣnS0 ∧ Y q » colim
n⩾0

ΩnpSn ∧ Y q » colim
n⩾0

ΩnΣnY .

It remains to show the “in particular” about the homotopy groups of the spectrum Σ∞pY, yq.
The same argument as above shows that Ω∞−iΣ∞pY, yq is given by the value of p− ∧ Y qsp on
Si, which is colimn⩾0 ΩnpΣnSi∧Y q » colimn⩾0 ΩnΣn+iY . Hence Lemmas 6.58 and 7.3(a) show
π˚Σ∞pY, yq „= π0pΩ∞−˚Σ∞pY, yqq „= colimn⩾0 π˚+npΣnXq, as desired.

As an immediate consequence, we get an analogue of Corollary 7.22 for E∞-groups.

7.58. Corollary (“Ω∞Σ∞X+ is the free E∞-group on X”). — The forgetful functor
ev⟨1⟩ : CGrppAnq ! An sending an E∞-group to its underlying anima has a left adjoint,
sending an anima X to Ω∞Σ∞X+, where X+ := X ⊔ ˚, regarded as a pointed anima.

Proof. Since π˚Σ∞pX,xq is given by the stable homotopy groups of X, Σ∞ takes values in the
full sub-∞-category Sp⩾0 of connective spectra. Therefore, we get a diagram of adjunctions

An An˚/ Sp⩾0

CGrppAnq

p−q+

Ω∞Σ∞p−q+

Σ∞

///

Ω∞

Ω∞B∞

evr1s

which shows that Ω∞Σ∞p−q+ : An ! CGrppAnq : ev⟨1⟩ must be an adjunction too.

And finally, we can define the legendary sphere spectrum.

7.59. Definition. — The reduced suspension spectrum functor functor Σ∞ : An˚/ ! Sp. The
(unreduced) suspension spectrum functor (7.18)is the composition

Sr−s : An p−q+
−−−! An˚/

Σ∞
−−! Sp ;

it is a left adjoint of Ω∞ : Sp! An. The spectrum S := Sr˚s is called the sphere spectrum.

(7.17)It’s easy to turn the usual definition from topology into a functor − ∧ Y : An˚/ ! An˚/ (more on that in
[TODO]). This functor agrees with the functor we’ve constructed above. So far, we only know this on objects,
but the equivalence as functors is not hard to check. Since both definitions of S0X agree, both functors must
agree in Fun˚pI,An˚/q. From the universal property of left Kan extension, we then get a natural transformation
between them for free. So knowing that they agree object-wise is enough by Theorem 4.5.
(7.18)In the old literature, and still in much of the modern one, the (unreduced) suspension spectrum of X is
denoted Σ∞

+ X rather than SrXs. However, in the modern mathematics, we think of spectra as “modules over the
sphere spectrum” (a point of view that will be much elaborated on in §8), and so it seems only natural that the
“free S-module on X” should be denoted SrXs, just as ZrSs usually denotes the free abelian group on a set S.
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§8. The tensor product of spectra
The overarching theme of these notes is to do topology without doing topology. So far, we’ve
seen that many classical results are entirely formal consequences of abstract ∞-category theory.
From now on, we’ll show that many more classical results can be proved by doing algebra in
the stable ∞-category Sp. We already know that Sp is additive (see the proof of Lemma 7.36)
and so spectra can be viewed as homotopical generalisations of abelian groups. But to make
the analogy between Ab and Sp really powerful, we need to be able to talk about algebras and
modules in Sp. This requires the construction of a tensor product on Sp.

In §8.1, we’ll study symmetric monoidal structures on arbitrary ∞-categories. In §8.2, we’ll
construct many interesting examples, including the tensor product of spectra. In §8.3, we’ll
take the theory of algebras and modules in Sp for granted and use it to give the “correct”
construction of homology and cohomology. Finally, there’ll be a lengthy appendix. In §8.4,
we’ll sketch the missing theory of algebras and modules. In §8.5, we’ll introduce the notion of
En-algebras for all 0 ⩽ n ⩽ ∞, which generalises the notions of E1- and E∞-monoids that we
already know. Finally, in §8.6, we’ll prove more cool stuff about Lurie’s magical ∞-category
PrL and sketch another construction of the tensor product on Sp.

§8.1. Symmetric monoidal ∞-categories

§8.2. Day convolution

§8.3. Homology and cohomology

8.1. Theorem. — The Eilenberg–MacLane functor DpZq ! Sp from 7.47 upgrades to an
equivalence of stable ∞-categories

DpRq
»
−! LModRpSpq

for every ordinary ring R. If R is commutative, then LModRpSpq » ModRpSpq admits a
canonical symmetric monoidal structure and the above equivalence can be made strictly monoidal
if we equip DpRq with the symmetric monoidal structure induced by − bL

R −. ■

8.2. Corollary. — If X ∈ An is an anima, then the unreduced and reduced homology and
cohomology of X with coefficients in an abelian group A are given by

H˚pX,Aq „= π˚

`

SrXs bA
˘

, rH˚pX,Aq „= π˚

´

fib
`

SrXs! Sr˚s
˘

bA
¯

,

H˚pX,Aq „= π−˚ homS
`

SrXs, A
˘

, rH˚pX,Aq „= π−˚ homS

´

fib
`

SrXs! Sr˚s
˘

, A
¯

.
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Appendix to §8. A glimpse of higher algebra

§8.4. ∞-Operads

§8.5. En-Algebras and iterated loop animae

§8.6. The Lurie tensor product
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