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§0. INTRODUCTION

§0. Introduction

At the QED Academy 2023 in Sonthofen, I gave a lecture course about co-categories in topology.
The goal of this course was ambitious, but we managed to have the Adams spectral sequence
on the board in the end. After the academy was over, I decided, for future use, to translate my
handwritten German notes into English and into IXTEX. The result is this document. What
began as a simple transscription quickly led to many additions and presented me with the
opportunity to provide many missing details. While I fell for these temptations many times,
I hope that at their heart, this notes still display a faithful (albeit not essentially surjective)
representation of my original course.

0.1. co-Categories in topology. — When I first learned oo-category theory, I felt like I'd
just been given a cheat code for homotopy theory. Before, I'd felt lost in all the technicalities
and struggled to develop intuition. With oco-categories, everything suddenly made sense and I
finally started to see the elegance and the clarity that I'd been looking for so long.

So what are co-categories and what makes them so useful? Very roughly, an co-category
not only contains 0-morphisms (objects) and 1-morphism, as an ordinary category, but also
higher n-morphisms for all n > 2. It turns out that all the usual results and constructions from
category theory can be carried over to oco-categories—however, getting co-category theory off
the ground is much more difficult than ordinary category theory: More than 30 years lie between
the first definition of co-categories [BV73] and the first proof of the Yoneda lemma [L-HTT]!
But it’s worth the effort! Among many other applications, which we’ll not attempt to survey
here, co-categories provide an incredibly powerful framework to do homotopy theory in. Already
the vague idea explained above has a topological flavour: n-morphisms in an co-category, which
run between morphisms of lower order, are reminiscent of n-cells in a CW-complexes, whose
boundary is made up of cells of lower dimension. And indeed, every CW-complex (and then
by CW-approximation every topological space) is an example of an oco-category. This is a key
advantage of co-category theory over ordinary category theory:

Ordinary category theory can be used to do homotopy theory—but homotopy theory is
oo-category theory.

In particular, many formal oo-categorical constructions, like presheaves or colimits, have a
concrete topological meaning. It’s surprising how many classical topological results can be
reproved in a completely formal way just from abstract oo-category theory! That number
only increases through the introduction of the oco-category of spectra. Spectra combine the
topological flavour of, well, topological spaces with the algebraic flavour of abelian groups; in
particular, they admit a tensor product and so it makes sense to talk about rings and modules
in spectra. This allows us to bring algebra into the game—and again, algebra will not just be a
tool (like homology or homotopy groups) to prove classical theorems, but instead we’ll be able
to reinterpret classical theorems as algebraic statements in the oco-category of spectra.

For someone like me, how came from an algebra background originally, it’s amazing to
be able to do topology with just the tools I feel confident with: category theory and algebra.
But oco-category theory does wonderful things in algebra. For example, the theory of derived
categories—another notoriously technical subject—becomes so much clearer once you know
spectra and the associated notion of a stable co-category. In general, the future of algebra and
algebraic geometry is derived, and all things derived become much clearer if you approach them
using oo-category theory.
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All of this is to say: You should learn oo-category theory! It will be painful at first, but
once you're there, you’ll see mathematics with fresh eyes.

0.2. Aim and scope of these notes. — The goal of these notes is to introduce oco-
categories and to explain many of their applications to topology. As prerequisites, you should
feel comfortable with ordinary category theory; in addition, it would be beneficial to have a
solid background in commutative algebra and topology (at least, you should have heard of
simplicial sets, homology, and homotopy groups). None of this is strictly necessary—we’ll recall
the necessary ordinary category theory in §1 and we’ll reintroduce many classical topological
constructions in a way that’s convenient for us—but it would certainly help you not to get
overwhelmed by the material.

These notes roughly consist of four parts: In §§2-5 we’ll introduce oco-categories as well as
the technical ingredients that go into Lurie’s proof of Yoneda’s lemma. Unfortunately, this
part contains several minor black boxes and a major one: I won’t be able to prove Lurie’s
straightening/unstraightening equivalence. The second part is §6, in which we’ll redevelop
classical category theory in the setting of co-categories. In the third part, spanning §§7-8, we’ll
introduce spectra and their tensor product. Finally, the last part is §9, in which we’ll apply our
theory to topology (altough many more applications are scattered throughout the text up to
this point). One highlight will be the construction of the Adams spectral sequence.

0.3. Model independence and notation. — The model for co-categories we use in these
notes will be quasi-categories. But there are many other approaches to oo-categories, like
topologically or Kan-enriched categories, complete Segal spaces, 1-complicial sets, ... Of course,
all these approaches should be equivalent, but it’s usually a non-trivial task to tranfer a result
proven in one model into another model. A general theory of model independence that allows
for such non-trivial transfers has been developed by Emily Riehl and Dominic Verity [RV22].

In these notes, we take a somewhat different approach towards a model-independent theory.
We will, or at least we would, in an ideal version of these notes, proceed in the following steps:

(a) First, we’'ll set up the framework of quasi-categories, by any means necessary.

(b) After that, we’ll prove (or black box) a few key statements in the model of quasi-categories.
The statements themselves are model-independent, even though their proofs are not.

(¢) Finally, all further proofs will be done in a model-independent fashion.

If you prefer a different model of quasi-categories, you’ll probably know how to do steps (a)
and (b) in your model, and then, at least in an ideal world, everything from step (¢) will work
in your model too.

In reality, these notes don’t quite live up to that ideal, but I dare say we come somewhat
close. In §§2-5, we’ll sketch how to get the theory of quasi-categories off the ground. This
corresponds to steps (a) and (b) above, with most of (b) happening in §4 and §5. Everything
from §6 onward mostly falls within step (¢). I write “mostly” because, unfortunately, there are
still a few non-model-independent arguments scattered throughout the text, the worst offender
probably being our treatment of cardinality bounds and filteredness in §6.8. I could, of course,
tautologically claim that every non-model-independent proof still belongs to step (b), but that
would be a poor excuse for my inability to come up with better arguments.

The transition to (mostly) model-independent arguments will be reflected in a change of
terminology: Throughout §§2-5, we’ll use the term quasi-category, we’ll write F(C, D) for the
mapping object in simplicial sets and we’ll always write N(&) for the quasi-category obtained
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as the nerve of an ordinary category £. Starting from §6, we’ll simply say co-category, write
Fun(C, D), and consider every ordinary category £ implicitly as an oco-category, suppressing N
everywhere. Only when we’re using non-model-independent arguments, we’ll switch back to
the old terminology, to emphasise that what we’re doing is morally questionable.

Also, since I'm doing my PhD in Bonn, I'm legally required to use the term anima for
what other people would call space or co-groupoid or (in non-model-independent language) Kan
complex.

0.4. Acknowledgments. — First I'd like to thank Fabian Hebestreit for his amazing cycle of
lectures on oo-categories and K-theory [F-HCq], [F-HCy], [F-KTh]. I learnt all of this stuff in
Fabian’s lectures and these notes loosely follow his course. I’d also like to thank the participants
of my QED academy course, Andrea Lachmann, Peter Langer, Malena Wasmeier, and Melvin
Weif}, for their interest and for creating a thoroughly enjoyable teaching experience. Last but
not least, I'd like to thank Dave Bowman and Yordan Toshev for their valuable comments on
earlier versions of these notes.



§1. CATEGORY THEORY

§1. Category theory

We assume you are familiar with categories, functors, natural transformations and the Yoneda
lemma. In fact, you will probably be familiar with most of the stuff in this section, so we’ll
leave out many proofs (but give them later in the oo-categorical context).

§1.1. Adjunctions

1.1. Definition. — Let L: C — D be a functor.
(a) Let y € D. An object x € C is a right adjoint object to y under L if there exists an
equivalence

Hom¢(—,z) ~ Homp (L(—),y)
in the functor category Fun(C°P, Set).
(b) A functor R: D — C is a right adjoint of L if there exists an equivalence

Home (—, R(—)) ~ Homp (L(-), —)
in the functor category Fun(C°P? x D, Set). In this case we write L 4 R.

1.2. Lemma (“Adjoints can be constructed pointwise”). — A functor L: C — D has a right
adjoint if and only if every y € D has a right adjoint object x € C.

Proof. One implication is trivial: If R: D — C is a right adjoint of L, then R(y) is a right
adjoint object of y for every y € D. The other implication is left as an exercise. We’ll prove an
oo-categorical variant in Lemma 6.2. O

1.3. Construction. — Let L: C 2 D : R be an adjunction. For every x € C, the identity
idpg): L(z) — L(z) is adjoint to a morphism u,: * — RL(x). One can show that these
morphisms assemble into a natural transformation w: ide = RL, called the unit of the
adjunction. Dually, there is a counit ¢c: LR = idp.

1.4. Lemma (Triangle identities). — Let L: C = D : R be an adjunction. Then the diagrams
Lu uR
L — LRL R ——= RLR

N Jer  and N [
idy, idg
L R

commute. Conversely, if L, R are functors and u : id¢ = RL, ¢: LR = idp are natural
transformations such that the diagrams above commute, then L and R determine an adjunction.

Proof. Exercise. We’ll prove an co-categorical variant in Lemma 6.5. O

1.5. Corollary. — Let L: C 2 D : R be an adjunction and let T be another category. Then
the pre- and postcomposition functors determine adjunctions

Lo—: Fun(Z,C) = Fun(Z,D) :Ro —,

—oR: Fun(C,Z) = Fun(D,Z) : —o L.

Proof. By Lemma 1.4, we only need to construct unit and a counit transformations satisfying
the triangle identities. These are immediately inherited from the adjunction L 4 R. O
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§1.2. Limits and colimits

1.6. Definition. — Let F': Z — C be a functor. A limit of F', denoted lim F' (or sometimes
lim;ez F(4)), is a right adjoint object of F' under the functor const: C — Fun(Z,C) that sends
i € T to the constant functor with value i. Dually, a colimit of F', denoted colim F' (or sometimes
colim;ez F'(7)), is a left adjoint object of F' under const.

Concretely, Definition 1.6 means that we have the following natural bijections for all z,y € C:

Homg (7, lim F') = Hompyy(z ¢y (const z, F)

Homg (colim F, y) = Hompyy,(z,¢) (F, const y) .

1.7. Lemma. — Left adjoint functors preserve colimits and right adjoint functors preserve
limits.

Proof. Let L: C 2 D : R be an adjunction and let Z be another category. By Corollary 1.5,
the postcomposition functors Ly := L o — and R, := R o — determine an adjunction

Ly: Fun(Z,C) = Fun(Z, D) : R,

Now let F': T — C be a functor admitting a colimit colim F'. Since left adjoint functors
clearly preserve left adjoint objects, we see that L(colim F') is a left adjoint object of F' under
const R(—). But const R(—) ~ R, const: D — Fun(Z,C). A left adjoint object of F' under
R, const is also a left adjoint object of L,F under const: D — Fun(Z,D) by the adjunction
above. In summary, this proves that L(colim F') is a left adjoint object of Ly F under const,
which is precisely what we want. The case of limits is analogous. O

1.8. Lemma (“Colimits in functor categories are computed pointwise.”). — Let C, D, and T
be categories such that D has all Z-shaped colimits; that is, all functors T — D admit colimits.
Then Fun(C, D) has again all Z-shaped colimits and the evaluation functor

evy: Fun(C,D) — Fun({z},D) ~ D
preserves L-shaped colimits for all x € C. A dual assertion holds for limits.

Proof. By Lemma 1.2, the condition that D has all Z-shaped colimits implies that the func-
tor const: D — Fun(Z,D) has a left adjoint colim: Fun(Z,D) — D. Under the “currying”
equivalence

Fun(Z,Fun(C, D)) ~ Fun(C,Fun(Z, D)) ,

the functor const: Fun(C,D) — Fun(Z, Fun(C, D)) corresponds to the postcomposition functor
consty: Fun(C,D) — Fun(C, Fun(Z, D)). By Corollary 1.5, we have an adjunction

colim, : Fun(C,Fun(Z, D)) = Fun(C, D) : const, .
Hence const: Fun(C, D) — Fun(Z, Fun(C, D)) has a left adjoint too, which proves that Fun(C, D)

has Z-shaped colimits. The additional assertion that ev, preserves Z-shaped colimits follows by
unravelling how colim is constructed from colim,. O
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§1.3. Kan extensions

1.9. Setup — Suppose we are given functors f and F' as follows:

c-Lr.p

~
J« ///
-

c’

Often one would like to extend F' to a functor F’: ' — D. Of course, in general there’s no
such functor making the diagram above commute, and if there is, it might not be unique.

1.10. Definition. — In the situation of Setup 1.9, a left Kan extension of F' along f, denoted
Lany F: C' — D, is a left adjoint object of F under f* = —o f: Fun(C’, D) — Fun(C, D).
Dually, a right Kan extension of F' along f, denoted Rany F': C' — D, is a right adjoint object
of F' under f*.

1.11. Warning. — In general, even if the respective Kan extensions exist, the diagrams
c—+t-p c—Lt-np
fl // and fl //
Lany F Rany F'
C c

only commute up to the indicated natural transformations. Indeed, the defining property from
Definition 1.10 says that there are natural bijections

Hompyycr py(Lang F, F') = Hompyye,p) (F, F' o f),
HomFun(C’,D) (F/a Ranf F) = HomFun(C,D) (F/ o f, F) )
for all F': C" — D. Plugging in F’ = Lany I' , then taking the image of idpan, » produces the

indicated natural transformation; and likewise for Rany F' (so in other words, we’re considering
the unit of the adjunction Lany - f* and the counit of f* 4 Rany, respectively).

1.12. Example. — Let C' = %, then Fun(C’,D) ~ D and we see immediately that Lany F'
corresponds to colim F' (if either exists). Likewise, Rany F' corresponds to lim F.

Next we set out to answer the question when Kan extensions exist. To this end, we need to
introduce two constructions that will feature prominently throughout the text.

1.13. Construction. — Let C be a category and let [1] :== {e¢ — e} be the category with
two objects and one non-identity morphism. The arrow category of C is the category

Ar(C) :==Fun([1],C) .

Concretely, objects in Ar(C) are morphisms «: z — y in C, and morphisms in Ar(C) are
commutative diagrams
_—

1/ la

/

/
/

[0}

QL— 8

x
- Y
«“

in C. There are functors s,t: Ar(C) — C
(a: x — y) to = and y, respectively.

—~

source” and “target” projection) sending an arrow
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1.14. Construction. — Let f: C — C’ be a functor and x’ € C'. The slice category of C over
2 is the pullback(*!)

C/x’ AY(C/)
o e
Cx{z'y o e

Concretely, objects in the slice category C,,s are pairs (z, f(x) — 2'), where € C and f(x) — o
is a morphism in C’. Morphisms in C /2 are given by morphisms «: x — y such that

F) L py)

1/

/ /
€r —

commutes. Dually, there’s also C,//, the slice category of C under x'.

1.15. Lemma (Kan extension formula). — In the situation of Setup 1.9, assume that for all
x' € C' the following colimits exist in D:

colim F(z) = colim(C,,, — C . D).
(2.f (@) —a')€C 11 (z) ( / )

Then Lany F' exists and Lany F(x') is given by that colimit.

Proof. Exercise. We'll prove an oo-categorical variant in Lemma 6.27. O

1.16. Corollary. — In the situation of Setup 1.9, assume that f: C — C' is fully faithful and
that the colimits from Lemma 1.15 exist. Then the natural transformation up: F' = Lany Fo f
from Warning 1.11 is an equivalence.

Proof. If ' = f(y) for some y € C, then f being fully faithful implies that the slice category

C/f(y) 1s equivalent to C/, (that is, the slice category formed with respect to idc: C — C). The
latter has a terminal object, namely {id,}. Hence

Lans(F f(y)) = colim F(x)= colim Fl(z)=F(y). O

f( ( >> (z,f(2)—=Y)EC) 5 (y) (=) (z—y)eC, (@) )

To finish this subsection, we prove a result about the category PSh(C) := Fun(C°P, Set) of

presheaves on C. This will seem rather technical at first, but, together with its co-categorical
version, it will be invaluable throughout the text.

1.17. Theorem (“PSh(C) arises by freely adding colimits to C.”). — Let C and D be categories,
where D has all colimits. Let Xc: C — PSh(C) denote the Yoneda embedding, sending x € C to
Home(—,x): C°P — Set. Then restriction along K¢ induces an equivalence

X&: Fun®™(PSh(C), D) — Fun(C,D).
Here Fun®™(PSh(C), D) C Fun(PSh(C),D) is the full subcategory spanned by the colimit-

preserving functors. Furthermore, every colimit-preserving functor PSh(C) — D admits a right
adjoint.

(I-DThe pullback ist taken in the category of small categories, that is, those categories whose class of objects is
a set. But the explicit description works with the weaker assumption that C and C’ are locally small, meaning
that Home (z,y) and Home/ (2',y') are sets for all z,y € C, ’,y' € C'.
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To prove Theorem 1.17, we send two lemmas in advance.

1.18. Lemma (“Every presheaf is a colimit of representables.”). — Let C be a category. For
every E € PSh(C), the natural morphism

colim Home (—, = F
(y,Home(—y)—E)eC)/ =)

s an isomorphism.
Proof. Exercise (use Yoneda’s lemma). We’ll prove an co-categorical version in Lemma 6.31. [

1.19. Lemma. — Let C and D be categories, where D has all colimits. For every F: C — D,
the left Kan extension Lany , F': PSh(C) — D (which exists due to Lemma 1.15) admits a right
adjoint. The right adjoint sends y € D to Homp(F(—),y): C°? — Set.

Proof. Exercise. We'll prove an co-categorical version in Lemma 6.32. 0

Furthermore, we need the following general lemma (which will occasionally be useful in the
future too).

1.20. Lemma. — Let C and D be categories and let L: C = D : R be an adjunction.

(a) The left adjoint L is fully faithful if and only if the unit transformation w: id¢ = RL is
an equivalence.

(b)  Suppose L ist fully faithful and R is conservative (that is, if a: x — y is a morphism in
D such that R(«) is an isomorphism, then o is an isomorphism too). Then L and R are
inverse equivalences of categories.

Proof. To prove (a), first observe that for all elements z,y € C, the postcomposition map
(uy)s: Home(x,y) — Home(x, RL(y)) is given by

(uy)s: Home(z,y) —= Homp(L(z), L(y)) — Home (z, RL(y)) .

where the second map is the adjunction bijection. By Yoneda’s lemma, u,: y — RL(y) is an
equivalence if and only if (uy)s: Home(x,y) — Home(x, RL(y)) is a bijection for all z. By the
above, this happens if and only if L: Home(x,y) — Homp(L(x), L(y)) is a bijection for all
x € C. This proves (a).

For (b), the second of the triangle identities from Lemma 1.4 shows that Rc: RLR = R is
a natural equivalence. Since R is conservative, ¢: LR = idp must be an equivalence too. Since
u: id¢ = RL is an equivalence by assumption, we are done. ]

Proof of Theorem 1.17. By Lemma 1.19 and Lemma 1.7, the adjunction Lany , - J&¢ restricts
to an adjunction .
Lan, ,: Fun(C,D) = Fun®'™ (PSh(C), D) :&§.

Since &¢ is fully faithful, Corollary 1.16 implies that the unit u: idpy,c,p) = &¢ o Lany, is
an equivalence. Furthermore, it’s clear that X¢ is conservative: If a natural transformation
n: F = G between colimit-preserving functors F,G: PSh(C) — D is an equivalence when
restricted to representable presheaves, then it is an equivalence everywhere, because every
presheaf can be written as a colimit of representables (Lemma 1.18). Then Lemma 1.20(b)
finishes the proof. O

10
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§2. The simplicial model

In this section, we’ll introduce our model for co-categories and the main object of interest in
§2, §4, and §5: quasi-categories! We’ll see some first signs that quasi-categories behave a lot
like ordinary categories and we’ll define the quasi-category of quasi-categories Cat .

§2.1. Recollections on simplicial sets

2.1. Definition. — (a) The simplex category A is the category whose objects are finite non-
empty totally ordered sets [n] = {0 <1 < --- < n} for all n > 0 and whose morphisms are
order-preserving maps, that is, maps a: [m] — [n] such that a(0) < a(l) < -+ < a(m).

(b) A simplicial set is a presheaf on A, that is, a functor X: A°? — Set. The category of
simplicial sets is the category sSet = PSh(A) ~ Fun(A°P, Set) of presheaves on A.

2.2. Construction. — Forall i =0,...,nand all j =0,...,n—1let d;: [n — 1] — [n] be
the unique injective morphism in A that doesn’t hit ¢ and let s;: [n] — [n — 1] be the unique
surjective morphism in A that hits j twice. It’s straightforward to see that every morphism
a: [m] — [n] in A can be written as a composition of some s; and some d;. Therefore, a
simplicial set can be described by the following data:

(a) Sets X, = X([n]) for all n > 0.
(b) Face maps df: X, — X1 foralli =0,...,n.
* . S
- Ap— n =0,...,n— L.
(¢) Degeneracy maps s%: Xp—1 — X, for all j =0 n—1

The face and degeneracy maps satisfy d} odf = d;_; od} and s} o s} = s;_;o0s] foralli > j as
well as
syodi_y ifi<j—1

dj osj =« idx ifi=j—lori=j.

n—1

sijod; ifi>j

It’s customary to call elements of X, n-simplices of X. An n-simplex is called degenerate if it
is in the image of s;: X,,_1 — X, for some j.

Let’s give some first examples of simplicial sets and explain some basic constructions.

2.3. Boundaries and horns. — For all n > 0, the functor A" := Homa (—, [n]): A°? — Set
is a simplicial set, called the n-simplez. Yoneda’s lemma implies that Homgges (A", X) = X, for
all simplicial sets X. The maps d;: [n — 1] — [n] and s;: [n] — [n — 1] from Construction 2.2
induce maps d;: A"~! — A™ and 550 A" — A" 1 in sSet.(?1) Using these maps, we can define
the following sub-simplicial sets of A™:

OA™ = im(di: AT A”) C A", the boundary of A",

-

=0

3

AY U im(di: AP A") C A", the j-horn in A",

i=0
i#]

(2DThis may be confusing at first but the maps d;: A"~! — A™ and s;: A™ — A"™7! really run in the
indicated directions. The point is that while Homa (—, [n]): A°® — Set is contravariant, the functor that assigns
[n] — Homa (—, [n]), that is, the Yoneda embedding & a: A — PSh(A) ~ sSet, is covariant.

11
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Here the unions are taken degree-wise.(*?) It’s customary to call horns A7 inner horns if

0 < j < n and outer horns if j =0 or j = n. Concretely, for all m > 0, the m- snnphces of the
boundary JA™ and the j-horn A7 are given by the following formulae:

Here are some pictures in the case n = 2 (in the bottom line, the dotted lines mark the faces
that are missing in the respective horns):

2 2
B ////\\ , ont= /\\
0——1 0——1

2 2 2
A R AN
0 ——1 0 ——1 0 1
2.4. Geometric Realisation. — These pictures suggest a geometric way to think about

simplices, boundaries of simplices, and horns. In fact, we can associate to every simplicial set
X a topological space (in fact, a CW-complex) |X|, called the geometric realisation of X. To
describe this construction, we first define |A™| to be the topological n-simplex, that is, the space
{(to,...,tn) eR" |0<t; < 1,20 ti=1} CR™ Foralli=0,...,nandall j =0,...,n—1
we define maps |d;|: [A"7 — |A?| and |s;|: |A"] — |[A™7Y via

|di|(t0, .. atn—l) = (to, ey tiz1, 008, ... ,tn)
|Sj|(t0, ceey tn) = (t(), ot b i, tiga, - ,tn)

For general simplicial sets X, we can now construct |X| by taking a topological n-simplex |A"|
for every o € X,, and gluing them together according to the face and degeneracy maps above.
More precisely, we take
|X|:= colim |A"| € Top.
(n,A"r—X)

This agrees with the Kan extension formula from Lemma 1.15! So |-|: sSet — Top must be
the unique colimit-preserving extension, guaranteed by Theorem 1.17, of the functor A — Top
that sends [n] — |A"|.

Furthermore, Theorem 1.17 guarantees that |-|: sSet — Top admits a right adjoint, which
we denote Sing: Top — sSet. By Lemma 1.19, it is given by (SingY"),, = Homm,,(JA™],Y). So
Sing Y is indeed the construction you know from the definition of singular homology.

2.5. Nerve and homotopy category. — Every partially ordered set defines a category. In
particular, we can regard the totally ordered sets [n] as categories. Accordingly, we obtain a
functor U: A — Cat into the category of small categories; U simply sends [n] — [n]. For every
small category C, this allows us to define a simplicial set N(C), called the nerve of C, as the

composition
HomCat ( ) C)

N(C): A°P U, Catop Set .

(22 Therefore, they’re colimits in sSet, as limits and colimits in functor categories are computed pointwise by
Lemma 1.8.

12
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Concretely, N(C),, = Homcat([n],C) = {xg — -+ — =z, in C} is the set of all chains of n
morphisms in C. The face maps di: N(C),, — N(C),_1 compose the (i — 1) and i*" morphism
in the chain (in the cases ¢ = 0 or i = n, the face map d§ just discards zp and d} just discards
). The degeneracy maps s} : N(C),—1 — N(C), insert an identity at the 4 position.
Observe that the formula N(C),, = Homcat([n],C) is exactly of the form of a right-adjoint
as in Lemma 1.19! So what’s the corresponding left adjoint? According to Theorem 1.17, it
has to be the unique colimit-preserving extension of the functor U: A — Cat above.(23) We'll
denote this extension by ho: sSet — Cat and for a simplicial set X, we call ho(X) the homotopy
category of X. The objects of ho(X) are the set of 0-simplices Xy. However, the morphisms of
ho(X) are a little more difficult to describe. For example, ho(A?) contains a morphism a: 0 — 1
and a morphism 3: 1 — 2; « and f are induced by the functors [1] = ho(A{%!}) — ho(A?)
and [1] = ho(A2}) — ho(A?}). Hence ho(A?) must also contain a morphism foa: 0 — 2,
even though there’s no 1-simplex from 0 to 2 in A2. So in general, not all morphisms in ho(X)
come from 1-simplices of X. Instead, we have to take chains of 1-simplices and quotient out a
suitable equivalence relation. This is not too hard to make precise, but quite technical and we
won’t pursue it here. We’ll see an explicit description in the case of quasi-categories in 2.13
below; the general description can be found in [F-HCj, Construction/Proposition I1.24].

2.6. Mapping objects in simplicial sets. — For every simplicial set X the functor
— x X: sSet — sSet commutes with colimits.(>%) Hence, by Theorem 1.17, it must be the
unique colimit-preserving extension of the functor A — sSet sending [n] — A™ x X. But more
importantly, — x X must have a right adjoint, which we denote F(X, —): sSet — sSet. By the
formula in Lemma 1.19, the right adjoint is given by F(X,Y), = F(A" x X,Y).

At this point, let’s take a moment to appreciate the power of Theorem 1.17: It gave us
adjunctions

|- |: sSet = Top :Sing, ho:sSet = Cat :N, and — xX:sSet — sSet :F(X,—)

essentially for free!

§2.2. Quasi-categories and Kan complexes

In this subsection, we’ll introduce quasi-categories, a class of simplicial sets that behaves very
similarly to ordinary categories. To motivate the definition, we start with a lemma.

2.7. Lemma. — (a) LetY be a topological space and let SingY be the singular simplicial
set of Y as in 2.4. For alln > 1 and all 0 < ¢ < n, every horn filling problem

A} —— SingY

E
-
-
-
-
-
-

-

An

has a solution.

(239 Here we use implicitly that Cat has all colimits (which is easy to check, but not completely trivial, due to
the same composition issues as in the description of ho(A?)).

(29 Using that limits and colimits in sSet are computed degree-wise by Lemma 1.8, this can be reduced to the
fact that products in Set commute with colimits, which is straightforward to check.
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(b) Let C be a small category and let N(C) be the nerve of C as in 2.5. For alln > 2 and all
0 < i < mn, every inner horn filling problem

A —— N(C)

P
-
-
-
-
-
-

A?’L

has a unique solution. Furthermore, if X is a simplicial set with this horn filling property,
then X = N(C) for some category C (which is necessarily the homotopy category ho(X)).

Proof sketch. By the adjunction |- |: sSet = Top :Sing from 2.4, a horn filling problem as in
(a) is equivalent to

|AY] — Y

-
-
-
-
-
-

| A"

This one always has a solution since the topological space |A}| is a retract of |A™|. This proves
(a). For (b), recall from 2.5 that a morphism A™ — N(C) corresponds to a chain g — -+ — z,
in C. But the morphisms x; — x;41 are already given by A? — N(C). This shows the unique
horn filling assertion from (b). The additional assertion is more or less straightforward if you use
the description of the homotopy category from 2.13 below. For a complete proof, see [F-HCr,
Theorem I1.25]. O

Recall that by Grothendieck’s homotopy hypothesis, topological spaces should be the same
as oo-groupoids, so in particular, they should provide examples of oco-categories. Furthermore,
every ordinary category should give rise to an oco-category too. So if we try to model oo-
categories by a specific class of simplicial sets, that class should contain SingY for every
topological space Y and N(C) for every small category C. It then feels reasonable to look for
a common generalisation of the horn filling conditions from Lemma 2.7(a) and (b), which is
precisely what the definition of quasi-categories does:

2.8. Definition (Boardman—Vogt, [BV73]). — A quasi-category (or oo-category) is a simpli-
cial set C such that for all n > 2 and all 0 < i < n, every inner horn filling problem

A} — C

-
-
-
-’
-
-

A’n

has a solution. If, moreover, all horn filling problems for n > 1 and 0 < 7 < n have solutions,
then C is called a Kan complex. We let Kan C QCat C sSet denote the full subcategories
spanned by Kan complexes and quasi-categories.

The rest of §2 as well as the entirety of §4 and §5 will be spent convincing you that
Definition 2.8 is a sensible definition and that quasi-categories really behave like ordinary
categories. Let’s begin by giving a dictionary of the most basic categorical notions and their
counterparts in the world of quasi-categories.

14
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2.9. Objects and Morphisms. — Let C be a quasi-category. We’'ll use the following
suggestive terminology. If z is a 0-simplex in C, we’ll say that x is an object in C and write
x € C instead of x € Cy. We also write {x} — C for the map A® — C induced by z. If « is a
1-simplex in C and z = df (a), y = d§(«), we’ll say that o: @ — y is a morphism in C. For an
object x € C, we'll call the degenerate 1-simplex s§(z) € C; the identity on x and we’ll write
idg: x — x.

2.10. Functors and natural transformations. — A functor of quasi-categories is simply a
map of simplicial sets. If C and D are quasi-categories, then the construction F(C, D) from 2.6
plays the role of the category of functors from C to D. We’'ll show in Corollary 3.11 that F(C, D)
is indeed a quasi-category again. Furthermore, if F,G: C — D are functors of quasi-categories,
then a natural transformation n: F = G is a functor n: A! x C — D such that the following
diagram commutes:

{0} xC

BN

Alxc —"1-D
T /7
{1} xC ¢
By 2.6, we may equivalently view 1 as a 1-simplex A' — F(C,D) from F to G. That is, natural
transformations are morphisms in the functor quasi-category, as they should be (except that

we don’t know yet that F(C, D) is a quasi-category again). Further evidence that F(C, D) is the
right construction will be given in Lemma 2.14 below.

2.11. Arrows, slices, and Hom. — We let Ar(C) := F(A!,C) denote the arrow quasi-
category of C. The inclusions {0} — A! and {1} — A'! induce a source and a target projection
s,t: Ar(C) — C. Furthermore, for x,y € C, we define the Hom anima Home(x,y) and the slice
quasi-category C,, via the pullbacks

Home(z,y) Cyy Ar(C)

R

{x} x{y} —— {a} xC —— CxC

We'll prove in Corollary 4.4 that Home(x,y) is always an anima in the sense of Definition 2.18
below, and we’ll prove in Corollary 3.11 that Ar(C) and C,, are quasi-categories. So these
constructions live up to their names. Furthermore, it follows from Lemma 2.14 below and
A' = N([1]) that we have an isomorphism of simplicial sets Ar(N(D)) = N(Ar(D)) for every
ordinary category D, so it makes sense to use the same notation as in Construction 1.13.
Furthermore, since N: Cat — sSet preserves pullbacks (being a right adjoint), it follows that
N(D),, = N(D,,) for all y € D. Finally, it follows that Homyp)(z,y) is a discrete simplicial
set, that is, a disjoint union of copies of A", with the indexing set being Homp(x,%). So our
construction of Hom recovers the usual notion for ordinary categories.

Be aware that C, is not the slice construction from [L-HTT, Proposition 1.2.9.2] or [Lan21,
Definition 1.4.13]; instead, it corresponds to their fat slice C*/. 1 like our definition better
because it is in line with Construction 1.14 and we’ll avoid using the other slice construction
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(or rather hide its unavoidable usages in black boxes). It can be shown that while the two
slice constructions are not isomorphic, they are equivalent as quasi-categories (see [L-HTT,
Proposition 4.2.1.5] or [Lan21, Proposition 2.5.27]), so once we’re out of the simplicial swamp
(that is, starting from §6), the distinction won’t matter.

2.12. Compositions. — Morphisms in a quasi-category can be composed, albeit not
uniquely. To explain how this works, let’s first describe an equivalence relation on morphisms.
For morphisms a, o’: © — y we say a and o/ are equivalent, o ~ o', if the map o: 0A? — C

represented by the hollow triangle
Yy
-/ N\

can be extended to a map 7: A? — C satisfying 7|ya2 = o (thus “filling” the triangle above).
Even though the definition is asymmetric in « and ¢/, it turns out that “~” is an equivalence
relation on C;. For reflexivity, we can fill the triangle by taking 7t := s} () to be a degenerate
simplex. For symmetry and transitivity, consider the maps Ysym: A3 — C and Yypans: A% —C
represented as the following hollow tetrahedra (each tetrahedron is missing its interior as well
as one face; the missing faces have been highlighted):

syrn = \ / \dy and  Vtrans = \ /jd\dy

More precisely, the face Usym|af01,2) is a 2-simplex witnessing o ~ o', whereas the faces
Usym|at0.1,3) = 87 (a) and Jgym|a1.2.8 = s7(idy) = s7s§(y) are degenerate simplices. Likewise,
the faces Virans|af0.1.2) and Yirans| Af0.2,3) are 2-simplices witnessing o ~ o’ and o/ ~ o, respec-
tively, whereas the face Virans|a01,2,30 = s7(idy) = s7si(y) is a degenerate simplex. By Defini-
tion 2.8, the horns ¥¢ym and Yirans can be extended to 3-simplices ﬁsym, Dtrans : A% — C satisfying
Jsym| A3 = Usym and Jirans| A3 = Utrans (in other words, the hollow tetrahedra can be “filled”).
Now the face Tsym = Vsym|at0.2,3) is a 2-simplex witnessing o’ ~ a and Tirans = Vtrans| A10.1,3)
is a 2-simplex witnessing a ~ o, which proves symmetry and transitivity.
Now let’s define compositions. For morphisms «: x — y and 8: y — z in C, consider the
map o: A? — C represented by

By Definition 2.8, this horn admits a filler, that is, a morphism &: A% — C such that E!A% =o0.

If v: © — z is the morphism in C represented by |aj0.2;: A2} ¢ then ~ is called a
composition of a and § and we write v ~ o a. In particular, composition of morphisms is
not unique in a general quasi-category, as filling inner horns is not unique.(*®) However, if
~v,7: @ — z are any two compositions, then v and v/ are equivalent in the sense of 2.12 above.

(2:5) Conversely, uniqueness of composition in ordinary categories accounts for uniqueness of filling inner horns
in nerves of an ordinary categories, see Lemma 2.7(b).
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Indeed, then we can consider the morphism 9: A3 — C represented as follows (the missing face

has been highlighted again):
z <7 z

I'*>y

Concretely, 9| 0,12y and 9| (01,3 are 2-simplices that witness v and 4/ being compositions of
a and (3, whereas V| x1.2.3 = s7(8): AlL23} s a degenerate simplex. By Definition 2.8,
we can extend 9 to a map J: A3 — C and then the face & = ] (0.2,3) is a 2-simplex witnessing
an equivalence v ~ ~/.

2.13. The homotopy category. — We can now describe the homotopy category ho(C) from
2.5 in more explicit terms. As already explained there, the objects of ho(C) are the 0-simplices
Co, that is, the objects of C. We’ve seen in 2.5 that the morphism may cause some problems
since we might need to add compositions. However, by 2.12 above, compositions already exist
in C, they just might not be unique. So we find that the set of morphisms of ho(C) is given by
C1/~, the set of 1-simplices modulo the equivalence condition from 2.12.

To make this argument precise, one would have to check that ho(C) as described above
satisfies the universal property of the colimit colim(, an_.cy[n] in Cat. This is technical, but
straightforward, and we leave the details to you.

As a consequence, we can prove that the construction F(—, —) from 2.6 is compatible with
the functor category construction for ordinary categories.

2.14. Lemma. — If C is a quasi-category and D is an ordinary category, then there is an
isomorphism of simplicial sets

F(C,N(D)) = N(Fun(ho(C), D))

In particular, if C = N(C') is the nerve of an ordinary category C', we get an isomorphism
F(N(C'),N(D)) = N(Fun(C", D).

Proof sketch. For all n > 0, we obtain the following chain of bijections, all of which are
compatible with the simplicial structure maps:

F(C,N(D)) = Homgget (A" x C,N(D)) = Homca (ho(A™ x C), D)
= Homg (ho(C) x [n], D)
~ HomCat([ ], Fun(ho(C), ))
~ N(Fun(ho(C), ))n

In the first step, we use the definition of F(—, —) from 2.6. In the second step, we use the
adjunction ho: sSet = Cat : N from 2.5. In the third step, we use that ho commutes with
products of quasi-categories, which follows from the description in 2.13. In the fourth step, we
use “currying” for ordinary categories. Finally, in the fifth step we plug in the definition of
N(Fun(ho(C), D)).

To prove the “in particular”, it suffices to see that the unit uc: " — hoN(C’) of the
adjunction ho 4 N from 2.5 is an isomorphism of categories (and we really need an isomorphism,
not just an equivalence of categories). This is easy to check using Lemma 2.7(b) and the explicit
description of ho N(C) from 2.13. O
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2.15. Equivalences in quasi-categories. — We say that a morphism «: z — y in C is an
equivalence if it becomes an isomorphism in the homotopy category ho(C). Equivalently, « is
an equivalence if and only if the horns e : A% — C and ogny : A% — C represented by

T Yy

Oleft = ld*/ “o and Ouigne = ldl/ xx

xT—— Yy Yoo @

can be filled, that is, if and only if there are 2-simplices Tleft, Oright : A2 — C such that
Tleft | A2 = Oleft and Eright| A2 = Oright- Indeed, by 2.12 above, Gf; corresponds to a left inverse
of o and Tyigpt corresponds to a right inverse. We say z and y are equivalent and write x ~ y if
there exists an equivalence a: x — y.

2.16. Sub-quasi-categories. — If C is a quasi-category and Sy C Cy is a set of O-simplices,
we can define a sub-simplicial set C[Sy] C C by declaring that a simplex A™ — C belongs to
C[So] if and only if all its vertices {i} — A™ — C for 0 < ¢ < n belong to Sp. It’s straightforward
to check that C[Sp] is a quasi-category again: If A? — C[Sp] is an inner horn, any filler A” — C
will automatically belong to C[Sp], because A} — A" is a bijection on vertices whenever n > 2.
We call C[Sy] the full sub-quasi-category spanned by Sp.

Similarly, assume S7 C C; is a set of 1-simplices which contains all identities and is closed
under the equivalence relation from 2.12 as well as under compositions. We can define a
sub-simplicial set C[S1] C C by declaring that a simplex A™ — C belongs to C[S1] if and only if
all its edges A7} — A™ — C for 0 < i,j < n belong to S;. Once again, if AP — C[S] is an
inner horn, any filler A™ — C will automatically belong to C[S1], because any “missing” edge
in A™ \ Al is a composition of edges in A]'. Hence C[S1] is a quasi-category again, and we call
it the sub-quasi-category spanned by S1 (and usually we’ll emphasise that C[S1] is not full).

2.17. The opposite quasi-category. — FEvery quasi-category C admits an opposite quasi-
category C°P. In fact, this construction works for arbitrary simplicial sets. Let (—)°P: Cat — Cat
be the functor that sends a category to its opposite. Consider the composition
v: A -2 cat 27 cat N sSet

where U and N are the functors from 2.5. This composition sends [n] — N([n]°P) = A", since
there is an isomorphism of categories [n]°P = [n] given by sending i — n — i. Nevertheless,
V does not coincide with the Yoneda embedding &a: A — sSet, which also sends [n] — A",
since the effect on morphisms is different (V “reverses the order” of face and degeneracy maps).
According to Theorem 1.17, V admits a unique colimit-preserving extension, which we denote
(—)°P: sSet — sSet. Intuitively, if X is a simplicial set, then X°P is given by inverting the
direction of every 1-simplex and by reversing the order of all face and degeneracy maps. It’s
straightforward to check that (—)°P o (—)°P ~ idgget (so the right adjoint from Theorem 1.17 is
just (—)°P again) and that N(D)°P = N(D°P) holds for every ordinary category D. Furthermore,
if C is a quasi-category, then so is C°P, because (—)°P transforms an inner horn inclusion

A} — A" where n > 2 and 0 < ¢ < n, into A],_, — A", which is again an inner horn inclusion.

This finishes our preliminary ordinary-to-quasi-categories dictionary. Next, we’ll introduce
another notion that will play a central role in these notes.
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2.18. Definition. — A quasi-category C is called an anima (plural animae) if all its morphisms
are equivalences in the sense of 2.15. For an arbitrary quasi-category, we let core(C) C C be
the (non-full) sub-quasi-category spanned by the equivalences, as defined in 2.16.

It follows immediately that core(C) is the largest anima contained in C.

2.19. Theorem (Joyal, [Joy02, Corollary 1.4]). — A quasi-category C is a Kan complex if
and only if it is an anima.

Proof. If C is a Kan complex, then the horns from 2.15 can be filled, so C is an anima. The
converse is much harder to prove and we’ll postpone it to Corollary 4.2. ]

So on one hand, by Definition 2.18, animae are the analogues of groupoids in quasi-category
theory. In fact, people used (and continue to use) the term oo-groupoid, before Beilinson,
Clausen, and Scholze decided to invent a new term. On the other hand, Theorem 2.19 says that
animae are the same as Kan complexes. We'll see in §3 that for the purposes of homotopy theory,
Kan complexes and topological spaces can be used interchangeably. This fits perfectly with
Grothendieck’s homotopy hypothesis, which predicts that the theory of co-groupoids/animae
should essentially be the homotopy theory of topological spaces.

We'll keep the terms anima and Kan complex distinct until we’ve finished the proof that
they coincide (Corollary 4.2). After that, we’ll use the terms interchangeably. Starting from §6,
we try to keep our arguments as model-independent as possible. Accordingly, we’ll settle on
anima, only using Kan compler to emphasise that a certain (non-model-independent) argument
takes place in thequasi-categorical model.

§2.3. Simplicially enriched categories

Until now, we know a good supply of Kan complexes, given by SingY for every topological
space Y (see Lemma 2.7(a)). We'll see in Theorem 3.26 that these exhaust essentially all Kan
complexes. Besides that, our only other examples of quasi-categories are nerves of ordinary
categories (see Lemma 2.7(b)). These can’t possibly be alll The goal of this subsection is to
provide a rich source of non-trivial examples of quasi-categories, using a fancier version of the
nerve construction.

2.20. “Definition”. — A simplicially enriched category C is the same as a category, except
that the morphisms sets Home(z,y) for z,y € C are replaced by simplicial sets Fe(x,y).
Composition of morphisms is now a map of simplicial sets o: Fe(x,y) x Fe(y, z2) — Fe(x, z) and
the identity on any object z € C is a 0-simplex id, € Fe(x,x). Composition and identities are
supposed to satisfy some straightforward compatibilities that we won’t spell out. Furthermore,
if C and D are simplicially enriched categories, there is an obvious notion of a simplicially
enriched functor F': C — D. We let Cata denote the category of (small) simplicially enriched
categories and simplicially enriched functors between them.

If you would like to see a formal definition of these notions, have a look at [Lan21, Defini-
tions 1.2.34 and 1.2.35].

2.21. Construction. — We’ll construct a “simplicially thickened” versions of the ordinary

categories [n] and use them to define a simplicial nerve functor N°: Cata — sSet. This is
originally due to Cordier and Porter [CP86].
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To start with, the simplicially enriched category €[A"] is given as follows: It’s objects are
0,1,...,n and it’s morphisms are given by

U] ifi>5
Fepan(i, ) = < A° ifi=j .
i1 ifi<j

Here (0" := (A!)" is the n-cube. Note the shift by —1 in the definition! In particular,
Feran)(i,4) = A® (and that 0-simplex is necessarily id;), but also Feany(i,i 4 1) = 0% = AP,
The composition map o: Fe[an(i, ) X Fe[anr](4, k) — Fean)(i, k) is given by

Dj*i*l « Dk*jfl i I:ljfifl % {1} % Dk*jfl C Dk*ifl

if i < j < k; in the other cases, there’s only one possible composition map. The simplicially
enriched categories €[A"] can be assembled into a functor €[—]: A — Cata. A conceptual
construction of this functor is given in [L-HTT, Definition 1.1.5.3] or [Lan21, Lemma 1.2.62].
Since it’s quite annoying to unravel said conceptual construction, let us describe the simplicially
enriched functors €[d;]: €[A" 1] — €[A"] and €[s;]: €[A"] — €[A"!] explicitly: On objects,
C[d;] and €[s;] are just given by d; and s;, repectively. For the effect on morphisms, let’s first
describe €[d;]: Fepan-11(k,€) — Fepan)(di(k), d;(£)) in the case k < i < £ (in all other cases,
we simply get the identity). Then d;(k) = k and d;(¢) = ¢+ 1 and the desired morphism is

Of—k-1 =, imk—1 {0} x QEFD—i—1 c QU+ —k-1
Similarly, €[s;]: Fejan)(k, ) — Fepan-11(s;(k), sj(£)) is only interesting for k < j < £. If k = j
or j + 1 =/, then the desired morphism [0*=F=1 = (AL)f=F=1  (A1)=k=2 = Of=k=2 j5 given
by forgetting the first or the last factor, respectively. If k£ < j and j + 1 < ¢, then the desired
morphism is

Dﬁfkfl ~ Dj*k*l % ‘:’2 % D@*(j#’l)*l N Dj*k*l % Al % Df*(]ﬁ*l)*l ~ DE*/C*Q

)

induced by the map (0 — A! that sends (0,0) € [0 to 0 € A! and the other three 0-simplices
of 1®to 1€ AL

It can be shown that the category Cata has all colimits (see [Lan21, Corollary 1.2.45]).
Consequently, by Theorem 1.17, the functor above admits a unique colimit-preserving extension
¢[—]: sSet — Cata, which in turn has a right-adjoint N2: Cata — sSet, called the simplicial
nerve or coherent nerve. By the formula from Lemma 1.19, the simplicial nerve is given by

NA(C)n, = Home, (€[A"],C) .

2.22. Lemma (Cordier—Porter, [CP86, Theorem 2.1]). — Let C be a small simplicially
enriched category. If C is even Kan-enriched, that is, if Fe(x,y) is a Kan complex for all
x,y € C, then N2(C) is a quasi-category.

Proof sketch. By the adjunction €[—]: sSet = Cata : N® from Construction 2.21, an inner
horn filling problem for N*(C) as in Definition 2.8 is equivalent to an extension problem

C[A"] % C
|

C[A"]
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of simplicially enriched categories. The functor €[A] — €[A"] is a bijection on objects and
an isomorphism on all but one simplicial sets of morphisms. The only difference between
these two simplicially enriched categories is that FQ[A?](O, n) — Fe[an(0,n) = 07! is not an
isomorphism. Instead, FQ:[AZ’(I] (0,n) is given by deleting the interior and the bottom i-face of the
(n — 1)-cube 0"~ !. More precisely, if 90" ! = ?;ll(Dj_l x ({0} L {1}) x O"~1) denotes
the boundary of the (n — 1)-cube, then Feanj(0,n) — Fean)(0,n) can be identified with the
inclusion of simplicial sets

oot (O x{opxOhH co !,

To make this precise, one has to show that the description of €[A]'] given above satisfies the
universal property of colim,, am—an) ¢[A™] in Cata. This is not hard, but technical. A full
argument is in [Lan21, Lemma 1.2.69].

So to solve the extension problem of simplicially enriched categories above, it’s enough to
solve the extension problem

oot (O x {0} x O I, Fe(f(0), f(n))

anl -7

of simplicial sets. This can be done by successive horn filling (or by applying the upcoming
Lemma 3.9, which is also proved by successive horn filling), using the fact that F¢(f(0), f(n))
is a Kan complex, as C is supposed to be Kan-enriched. A complete argument is in [Lan21,
Lemma 1.2.70]. O

2.23. Example. — The category of simplicial sets can be turned into a simplicially enriched
category sSet™ by putting Fga(X,Y) = F(X,Y). This can be used to construct some
interesting quasi-categories as follows:

(a) Restricting to the full subcategory Kan C sSet yields a simplicial enrichment Kan®. Note
that Kan® is actually a Kan-enriched category, since F(X,Y) is a Kan complex whenever
Y is a Kan complex, as we’ll see in Corollary 3.11. Up to set-theoretic difficulties that
we’ll not address here, Lemma 2.22 shows that

An := N?(Kan®)

is a quasi-category; we call it the quasi-category of animae.

(b) For quasi-categories C and D, the simplicial set F(C,D) is a quasi-category; once again,
this will be shown in Corollary 3.11. Then core F(C,D) from Definition 2.18 is an anima,
hence a Kan complex by Theorem 2.19. So we can turn the category of quasi-categories
QCat into a Kan-enriched category QCat® by putting Focad (C,D) = coreF(C,D). By
Lemma 2.22 (and up to set-theoretic difficulties),

Catos == N2(QCat®)

is a quasi-category; we call it the quasi-category of (small) quasi-categories.
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Let’s unravel how the notions from 2.12, 2.13, and 2.15 look like in the cases of An and Cat,.
A 1-simplex a: Al — Caty, is equivalently a simplicially enriched functor @: €[A!] — QCat®.
Let C :=@(0) and D := &(1). As we've seen in Construction 2.21, Feja11(0,1) = A®. Hence a
is given by a morphism A? — core F(C, D) of simplicial sets. In other words, a morphism in
Cat is given by a functor C — D of quasi-categories, as we would expect.

Next, let’s consider a 2-simplex o: A? — Caty,, or equivalently, a simplicially enriched
functor 7: €[A2%] — QCat®. Let C := a(0), D := 7(1), and £ = 7(2). Furthermore, let
F:C — D and G: D — & be the functors of quasi-categories corresponding to the 1-simplices
0|01y = d5(0) and o|rp2 = di(0). Now Fepaz)(0,2) = A' by Construction 2.21, so &
induces a map Al — coreF(C,€). By definition of the composition in €[A2], we find that
{0} — Al — coreF(C,£) is Go F: C — &, whereas {1} — A! — core F(C, £) is another functor
H:C — €. The morphism A — coreF(C, £) is an equivalence G o F ~ H in F(C,€).

Therefore, if F': C — D and G: D — & are functors of quasi-categories, hence morphisms
in Catso, then a composition of F' and G in the quasi-category Catso, as defined in 2.12, is a
functor H: C — & of quasi-categories together with an equivalence Go F ~ H in F(C,&). The
same analysis can be done for An. Soif f: X — Y and ¢g: Y — Z are maps of Kan complexes,
corresponding to morphisms in the quasi-category An, then a composition of f and g in the
quasi-category An is a morphism h: X — Z together with a l-simplex A! — F(X,Z7) from
go f to h. By 2.6, such a I-simplex A! — F(X, Z) is equivalently a map 1: A! x X — Z such
that

{0} x X

| X

A'xXx 1.7
T ////
{1} x X h

commutes. In other words, 7 is a homotopy from go f to h. In summary, we obtain the following
slogans:

“Compositions in Cats, are compositions in sSet up to equivalence of functors.”
“Compositions in An are compositions in sSet up to homotopy.”

Furthermore, this analysis shows that two functors of quasi-categories F,G: C — D are
equivalent as morphisms in Cats, in the sense of 2.12 if and only if they are equivalent
as objects in F(C,D). Similarly, two morphisms of animae f,g: X — Y are equivalent as
morphisms in An in the sense of 2.12 if and only they are homotopic. This somewhat explains
the term homotopy category.

Finally, we see that an equivalence C ~ D in the quasi-category Cateo, as defined in 2.15,
is given by functors of quasi-categories F': C — D and G: D — C together with equivalences
G o F ~id¢ and F o G ~ idp, exactly as an equivalence of ordinary categories. Analogously,
an equivalence X ~ Y in An is given by maps of Kan complexes f: X — Y and ¢g: ¥ — X,
together with homotopies g o f ~ idx and f o g ~ idy. In other words, equivalences in An are
simply homotopy equivalences. We’ll explore this in much more detail in §3.

If X, Y are Kan complexes, then F(X,Y) is a Kan complex too, as we’ll see in Corollary 3.11.
Hence F(X,Y) = core F(X,Y) and therefore the Kan-enriched category Kan® is a full sub-
simplicially enriched category of QCat®. Using the explicit formula for the simplicial nerve
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from Construction 2.21, it’s straightforward to see that N®(—) sends full sub-simplicially
enriched categories to full sub-quasi-categories in the sense of 2.16. Thus An C Cat,, is a full
sub-quasi-category of Cats. In particular, if X and Y are Kan complexes, then

Hom (X, Y) — Homca (X,Y)

is an isomorphism of simplicial sets. In general, Theorem 2.24 below describes the Hom anima
from 2.11 in a simplicial nerve. A relatively short proof of that theorem was given by Achim
Krause and Fabian in [FK20].

2.24. Theorem. — Let C be a Kan-enriched category. Then there is a homotopy equivalence
of Kan complezes
HomNA(C) (‘Ta y) = FC('r7 y) .

In particular, Homan(X,Y) ~ F(X,Y) for all X,Y € An and Homcas, (C, D) ~ core F(C, D)
for all C,D € Catw. |

2.25. Example. — We can also turn the category of ordinary categories Cat into a Kan
enriched category>%) Cat® via F,.a(C, D) = core N(Fun(C, D)). We let

Cat® = N2 (Cat?)

denote its simplicial nerve. According to Theorem 2.24, Hom, 2 (C,D) ~ core N(Fun(C, D)).
In particular, we see that Cat(® is different from N(Cat), the nerve of the ordinary category
of categories. Indeed, we've seen in 2.11 that Homycat)(C, D) would be a discrete: a disjoint
union of copies of A®, where the indexing set is precisely the set of functors from C to D. In
contrast to that, core N(Fun(C,D)) ~ N(core Fun(C, D)), where core Fun(C,D) C Fun(C, D)
denotes the maximal groupoid contained in Fun(C, D). So Hom, ) (C, D) is the nerve of a

groupoid and usually not a discrete simplicial set.(%7)

(26 Don’t confuse Cat®, the simplicially enriched category of categories, with Cata, the category of simplicially
enriched categories.

(27 One says that Cat® is the 2-category of categories, and we’ve just seen why: Cat®® not only knows about
categories and functors, but through Homg,,(2) (C, D) ~ N(core Fun(C, D)) it also contains information about
natural equivalences between functors. In general, a quasi-category £ is said to be an n-category if for all objects
z,y € € and all morphisms f € Home (z,y) one has m; (Home (z,y), f) = 0 whenever ¢ > n. Here 7; refers to the
homotopy groups introduced in Construction 3.15 and we’ve used implicitly that Homge (z,y) is a Kan complex,
as will be shown in Corollaries 4.2 and 4.4. It is not hard to check that Cat® is indeed a 2-category. Indeed,
we’ve seen that Homg,,(2) (C, D) ~ N(core Fun(C, D)). By the observation in the proof of Lemma 4.8, we get

T (N(COI"G Fun(C, D)), F) =T (HOI’HN(core Fun(C,D)) (F, F‘)7 ldF)

for all F' € N(core Fun(C,D)). But now Homy core Fun(c,p)) (F, F) is a discrete simplicial set, because it is the
Hom anima in the nerve of an ordinary category. So the right-hand side vanishes for i — 1 > 1, as desired.

You might have expected the 2-category of categories to encompass all natural transformations, not only
the natural equivalences. The reason for this confusion is an unfortunate oversimplification of language on
our part: What we call co-categories (or n-categories) should more accurately be called (oo, 1)-categories (or
(n, 1)-categories). The first entry of the pair “(co0,1)” signifies that such an object contains “d-morphisms” for
every dimension 0 < d < oo, whereas the second entry refers to the fact that all d-morphisms for d > 1 are
invertible. This is evidenced by the fact that Home (z,y) is a Kan complex for any quasi-category £ and all
z,y € €. Thanks to the effort of many mathematicians, we now have well-studied notions of (co, k)-categories
(with (oo, 0)-categories corresponding to animae and (co, 1)-categories corresponding to what we call co-categories
in these notes), in which only d-morphisms for d > k need to be invertible. These have become important tools
in modern mathematics—for example, it’s sometimes necessary to use the fact that Cato can be enhanced to an
(00, 2)-category—but this goes beyond the scope of these notes.
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Thanks to Lemma 2.14, the nerve functor N: Cat — QCat defines a fully faithful functor of
simplicially enriched categories N: Cat® — QCat®. Accordingly, we can regard Cat® as the
full sub-quasi-category of Cats, spanned by those quasi-categories that are nerves of ordinary
categories.

In a similar way, one can define equip the category of groupoids Grpd with a Kan enrichment
Grpd® (simply given by restriction from Cat®) and we let

Grpd®) = N2 (Grpd®)

denotes its simplicial nerve. As above, Grpd® is the full sub-quasi-category of Cats, spanned
by the nerves of groupoids. Since every nerve of a groupoid is a Kan complex (which follows
from Corollary 4.2, but can also be checked by hand), we see that Grpd® is also a full
sub-quasi-category of An.
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§3. Simplicial homotopy theory

The goal of this section is to describe how to do homotopy theory with simplicial sets instead
of topological spaces. This doesn’t quite work on the nose, since simplicial sets are much more
rigid than topological spaces. For example, consider the naive definition of homotopies: Two
maps f,g: X — Y are said to be homotopic, f ~ g, if there exists a map 7: A' x X — Y such
that the diagram

{0} x X

| X

Alxx 1
T ////
(1} x X I

commutes. This relation is not an equivalence relation! For example, if d1: AY ~ {0} — Al and
do: A® ~ {1} — A are the two maps from the 0-simplex to the 1-simplex, then d; ~ dg, but
do # dy. So the relation is not symmetric (nor transitive). However, as we will see, everything
works fine as long as we work with Kan complexes!

So the upshot of this section will be that instead of replacing topological spaces by arbitrary
simplicial sets as a habitat for homotopy theory, we should replace them with Kan complexes.
In view of Theorem 2.19, this fits perfectly with Grothendieck’s homotopy hypothesis that
oo-groupoids should essentially be topological spaces.

§3.1. Fibrations and lifting properties

We start with several definitions that generalise the horn filling properties from Definition 2.8.

3.1. Definition. — We say that a map f: X — Y of simplicial sets has lifting against
i: A — B if every lifting problem

— 5 X

A
B’ Y

e

has a solution.

3.2. Definition. — Let f: X — Y be a map of simplicial sets.

(a) We call f a Kan fibration if it has lifting agains all horn inclusions A} — A" for n > 1
and 0 < i < n. We call f a left, right, or inner fibration, if it has lifting against all horn
inclusions for 0 < i < n, all 0 < i < n, or 0 < i < n, respectively.

(b) We call f a trivial fibration if it has lifting against all boundary inclusions 0A™ — A™ for
all n > 0.

3.3. Example. — A simplicial set X is a Kan complex if and only if X — = is a Kan
fibration, and a quasi-category if and only if X — = is an inner fibration. Here and in the
following we put * := A® for convenience. Furthermore, if f: X — Y is a Kan fibration and Y’
is a Kan complex, then X is a Kan complex too. Similarly, if f is an inner fibration and Y is a
quasi-category, then X is a quasi-category too.
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To analyse lifting properties, we need to introduce yet another technical notion.

3.4. Definition. — A class X of morphisms of simplicial sets is called saturated if the
following conditions are satisfied:

(a) X is closed under pushouts: If (A — B) € ¥ and A — C is an arbitrary map of simplicial
sets, then (C — Bl C) € X.

(b) X is closed under retracts: If we’re given a commutative diagram
id 4/

1/

Al— A — A

i’l // lz /) Ji’
B ——B—PB
/W

id g/

such that (i: A — B) € X, then also (i': A’ — B') € X.
(c) X is closed under coproducts: If (A; — B;) € ¥, then also ([[4; — [[ B;) € X.

(d) X is closed under (countable) infinite compositions: If Ay — Ay — Ag — --- are all in ¥,
then also (A9 — colim,>g A4,) € X.

For an arbitrary class ¥ of morphisms in sSet, the saturation of ¥, sat(X), is the smallest
saturated class containing X..

3.5. Lemma. — A morphism f: X —Y of simplicial sets has lifting against all (A — B) € &
if and only f has lifting against all (A — B) € sat(X).

Proof sketch. It’s straightforward to check that the class of morphisms that f has lifting against
is saturated as in Definition 3.4. O

3.6. Definition. — (a) A morphism of simplicial sets is called anodyne if it is contained
in sat{A]" - A™ | n > 1, 0 < i < n}, the saturation of all horn inclusions. Similarly, a
morphism is called left, right, or inner anodyne if it is contained in the saturation of those
horn inclusions where 0 < i <n, 0 <t < n, or 0 < i < n, respectively.

(b) A morphism of simplicial set is a cofibration if it is contained in sat{OA™ — A™ | n > 0},
the saturation of all boundary inclusions.

3.7. Example. — Using Lemma 3.5, we see that Kan fibrations have lifting against all
anodyne morphisms and left/right/inner fibrations have lifting against all left/right/inner
anodyne morphisms. Furthermore, trivial fibrations have lifting against all cofibrations.

3.8. Lemma. — A map i: A — B is simplicial sets is a cofibration if and only if i is injective
in every degree.

Proof sketch. It’s straightforward to check that degree-wise injectivity is closed under pushouts,
retracts, coproducts, and infinite compositions, whence all cofibrations are degree-wise injective.
Conversely, a degree-wise injective map can be built from boundary inclusions by successively
adding simplices. This successive procedures needs pushouts (to add new simplices), coproducts
(to add arbitrarily many simplices at once), and infinite compositions. O
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3.9. Lemma. — If A — B is anodyne and A’ — B’ is a cofibration, then
AXB/UAXA/BXA/—>B><B/

is anodyne again. Analogous assertions are true for left/right/inner anodyne maps.

Proof sketch. Fix A — B’ and consider the class ¥ of all morphisms A — B for which
Ax B 'Ugxa Bx A — B x B’ is anodyne. Then Y is easily checked to be saturated. Hence it
suffices to consider the case where A — B is a horn inclusion A} — A". By the same argument,
we can reduce to the case where A” — B’ is a boundary inclusion OA™ — A™. So it suffices to
check that A} x A™ Uznygam A" x 0A™ — A™ x A™ is anodyne. This can be done by hand,
explicitly writing said fnap as a sequence of horn inclusions. For a complete proof in all its
gory details, see [Lan21, Lemma 1.3.31]. O

3.10. Corollary. — Ifi: A — B is a cofibration and f: X — Y is a Kan fibration, then
F(B7 X) - F(B7 Y) XF(4,Y) F(Aa X)

18 a Kan fibration. Ifi: A — B is anodyne, then the map above is even a trivial fibration.
Analogous conclusions are true for left/right/inner fibrations and left/right/inner anodyne
cofibrations.

Proof sketch. By playing around with the universal properties of pushouts and pullbacks as
well as the adjunction from 2.6, we find that the following lifting problems are equivalent:

A} F(B, X) A;‘XBI_IA?M‘A”XA*;X
l ///’/} J and J ///’/ Jf
AT F(B,Y) xpa,y) F(4, X) A" x B Y

Since AT x B LArx A A" x A — A™ x B is anodyne by Lemma 3.9 and f: X — Y has lifting
against all anodyne maps by Lemma 3.5, the lifting problem on the right can be solved, proving
that F(B, X) — F(B,Y) xpa,y) F(4, X) indeed has lifting against all horn inclusions. If
A — B is anodyne, then the same argument shows that we even get lifting against all boundary
inclusions. The other assertions are entirely analogous. O

3.11. Corollary. — Let X be a Kan complex, C a quasi-category, and B an arbitrary
simplicial set. Then F(B, X) is a Kan complex and F(B,C) is a quasi-category. In particular,
Ar(C) is a quasi-category again, and if x € C is an object, then the slice C,; from 2.11 is a
quasi-category too.

Proof. For the first two assertions, apply Corollary 3.10 to the cofibration ) — B and the Kan
fibration X — = or the inner fibration C — =, respectively. The assertion about Ar(C) is just
the case B = Al. Finally, for C,, we use that (s,t): Ar(C) — C x C is an inner fibration by
Corollary 3.10 applied to the cofibration 9A! — Al. Hence its pullback C, / — {z} x C must
be an inner fibration too and so C,, is a quasi-category by Example 3.3. 0

We conclude this subsection with an immensely useful lemma.
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3.12. Lemma (“Quillen’s small object argument”). — FEwvery morphism of simplicial sets
f: X =Y can be factored as

fx-Lx -ty

where i is anodyne and f is a Kan fibration. Similarly, every morphism of simplicial sets can
be factored into a left/right/inner anodyne map followed by a left/right/inner fibration, and
also into a cofibration followed by a trivial fibration.

Proof. We only prove the first assertion; the others are completely analogous. Let
A — X
E(f)=<q 0= J /i lf n=>1,0<i<n
A" — = Y

and consider the simplicial set S(f) defined as the pushout

I A7 X
oEx(f)
l »
I a"——s()
ex(f)

Then X — S(f) is anodyne, because it is a pushout of a coproduct of horn inclusions, and f
factors as f: X — S(f) — Y. Let Xy := X and fy := f. Inductively putting X, +1 = S(fn),
we get factorisations

i X — x, I

for all n > 0, where X — X,, is anodyne. Now let X = colim, > X,, and let f:X—-Y
be the induced map. Since anodyne maps are closed under infinite compositions, X — X is
anodyne. So it suffices to show that f is a Kan fibration. Note that A? is built from finitely
many simplices, which are in turn glued along finitely many subsimplices. Hence, for every
map o: A" — X, each of these finitely many simplices must occur at some finite stage of the
colimit X := colim,>o X, and each gluing condition must be satisfied at some finite stage.
Consequently, every o: A — X must factor through X,, — X for m > 0. Consequently, by
construction of X,,11, every lifting problem involving ¢ can be solved as

A} Xm ’ Xonp1 —— X
| I
An Y
which proves that f: X — Y is a Kan fibration, as desired. ]

§3.2. Homotopy groups

The goal of this subsection is to introduce homotopy groups of Kan complexes (Construction 3.15)
and to prove an analogue of Whitehead’s theorem (Theorem 3.18). We start noting that the
naive definition of homotopies from the beginning of §3 works fine if X is Kan.
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3.13. Definition. — Let X be a Kan complex.

(a) We say that x,y € X belong to the same connected component and write = ~ y if there is
a l-simplex A! — X from z to y. By Theorem 2.19, this is an equivalence relation and
the notation is compatible with 2.15. We let 7o(X) := X/~ denote the set of connected
components of X.

(b) Let A be an arbitrary simplicial set. We say that f,g: A — X are homotopic and write
f ~ g if and only if they belong to the same connected component of F(A, X), which is a
Kan complex by Corollary 3.11. A homotopy n: f = g is a 1-simplex A' — F(A, X) from

f tog.

3.14. Construction. — Let A C B be an inclusion of arbitrary simplicial sets and X C Y
be an inclusion of Kan complexes. Consider the following pullback (taken in sSet):

F((B,4),(Y,X)) — F(B,Y)

| ]

F(A, X) F(A,Y)

Note that F(B,Y) — F(A,Y) is a Kan fibration by Corollary 3.10 and F(A, X) is a Kan
complex by Corollary 3.11. Therefore F((B, A), (Y, X)) is a Kan complex too.

3.15. Construction. — Let X be a Kan complex, x € X a point, and n > 1. Furthermore,
recall from Construction 2.21 that we use (0" and 90" to denote the n-cube (A" and its
boundary U, 07! x ({0} U {1}) x O"~%. We define the n'* homotopy group of X with basepoint
T as

(X, ) = m F((O",00"), (X, z)).

As the name suggests, m, (X, z) should be a group, so let’s construct a group operation! Given
elements [a], [] € mp (X, ), represented by maps of pairs «, 8: (O",00") — (X, z), we can
define a map (o, 8): A x 0! — X by (a, B)|at013xn—1 = a and (o, B)|aq1.2)wn-1 = B;
this is possible since o and 3 agree on the “overlap” {1} x (0"~!, as they’re both equal to
const x there. Now consider the extension problem

2 n—1 2 n—1 (o, B)Uconstz
A2 X O™ Uy A% x gt (2 )0eonts

A2 % Dn—l

Since the vertical arrow is anodyne by Lemma 3.9, this extension problem has a solution . By
construction, 9]y(a.2) xn-1y = const z. We then define [a] - [B] := [I] 0,21 xpn-1]-

3.16. Remark. — Let us explain how Construction 3.15 is related to the usual construction
of the group structure on m, (X, z) from topology, as this nicely illustrates the “rigidity” of
simplicial sets and how said rigidity is overcome by the Kan condition. First, observe that
A2 xOn = AL s Ot U1y xon—1 AlL2E 5 071 is simply given by “stacking one cube on
top of another”. In topological spaces, we can identify two stacked cubes with another cube,
which immediately yields the group operation. In simplicial sets, this identification no longer
works; in fact, there isn’t even a suitable map A! x O0"~! — A? x ("~!. But instead we can
use the zigzag A2 x On~1 5 A2 x O 1 — A2 x O"! thanks to the Kan condition.
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3.17. Lemma. — Let X be a Kan complez, let x € X be a point, and let n > 1.

(a) The operation - from Construction 3.15 is well-defined (that is, independent of the choices
of a, B, and V) and defines a group structure on m,(X, ).

(b) Letn > 2. By “permuting the coordinates of the cube (0" ” we obtain operations +1,+2, ..., n,
where +1 = -. Then these operations all coincide and are commutative.

Proof sketch. All assertions in (a) can be proved by solving extension problems of the form

AxO" ' Uyguppn1 Bx 0O —— X

(*) l
Bx O !

where A — B is anodyne (so that a solution always exists by Lemma 3.9).(3)

Let’s start with independence of the choice of 9. So let ¥’ be another choice. Using the same
idea as in 2.12, we can pose an extension problem (x), with (A — B) = (A — A3). Restricting
any solution to A{023} x 0"~ yields a homotopy of pairs V| af0.2) xn-1 = V| 102y ypn-1- TO
show that the choices of oz and 8 don’t matter, suppose we're given homotopies of pairs a ~ o’
and f ~ " and let [/] - [B'] = [¥|at0.2)xn-1]- Using the given homotopies, we can write
down an extension problem (%), with (A — B) = (A! x A2 — Al x A?). Restricting to
Al x Al02} 5 071 yields a homotopy of pairs 9| aqo.2) w1 =~ ¥|af0.2) 1. This shows
well-definedness. To show associativity, choose (A — B) = (A0 U ATLZEy ARS3  A3) A
neutral element is const z: (0", 00") — (X, z); to show [a] - [const ] = [a] = [const z] - [¢]
for all «, simply solve the corresponding lifting problem via degenerate simplices. Finally, to
construct inverses, we take inspiration from 2.15 and write down extension problems () with
(A— B) = (A3 — A?) and (A — B) = (A3 — A?) to construct a left and a right inverse. This
finishes the proof sketch of (a).

For (b), we use the Eckmann—Hilton trick: We can show simultaneously that -; = -2 and
that both operations are commutative by verifying the single identity

(la] -1 [8]) -2 ([a'T -1 [8']) = ([e] -2 [@']) -1 ([8] -2 [B])

for all a, o/, 8, and 132 To show the Eckmann-Hilton identity, consider the extension
problem

(o, B), (¢, B")) Uconst z b%

-

A2 x A2 x O LIA2 A2 x o002 A? x A? x g2 ¢

J ,,,,,,_,_4__,,;),,,,,,

A2 x A2 x O
which has a solution by Lemma 3.9. Then observe that for any solution p, both sides of the
Eckmann—Hilton identity are given by [p| 10,2} x A{0.2} x(n—2]- O]
3.18. Theorem (“Whitehead’s theorem for Kan complexes”). — Let f: X — Y be a

morphism of Kan complexes. Then f is a homotopy equivalence if and only if it induces a
bijection mo(X) = mo(Y) and isomorphisms mp (X, x) = 7, (Y, f(x)) for all z € X and alln > 1.

3D Also note that the diagram from Construction 3.15 is of this form too, with (A — B) = (A? — A?)
B21f you haven’t seen this trick before, it will probably blow your mind.
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The proof of Theorem 3.18 will occupy the rest of this subsection. The first step is an
analogue of the long exact sequence of a Serre fibration.

3.19. Lemma (“Long exact sequence of a fibration”). — Let f: X — Y be a Kan fibration
between Kan complezes. Let x € X, let y = f(x) be its image, and let F == f~Y{y} = {y} xy X
be the fibre over y. Then there exists a long exact sequence of groups/pointed sets

s (Fyx) — mp (X, x) — m (Y, y) 2, Tn—1(Fyx) — -

(X, 2) — m (Y, y) -5 mo(F) — mo(X) — mo(Y) .

In low degrees, exactness means the following:

(a) There is an action m(Y,y) X mo(F) — mo(F) in such a way that the boundary map
0: m(Y,y) — mo(F) is given by acting on [x] € mo(F'), the stabiliser of [x] is precisely
the image of m (X, x) — m(Y,y), and two elements of wo(F) map to the same element in
mo(X) if and only if they lie in the same orbit of the w1 (Y, y)-action.

(b) An element in mo(X) maps to the class [y] € mo(Y') if and only if it lies in the image of
7o(F) — mo(X).

Proof sketch. You can take any proof of the long exact sequence of a Serre fibration, like [Hat02,
Theorem 4.41] and adapt the arguments to the simplicial setting. To illustrate how this can
be done, we’ll explain how to construct the boundary map 9. So let [«] € m,41(Y,y), where
a: (O 90" — (Y, y) is a map of pairs as usual. Consider the lifting problem

{0} x O" Uggyrm A" x 00" <228 X

Al x O a Y

which has a solution ¥ by Lemma 3.9. Then 9|y gn: {1} x 0" — X factors through F' — X
and it maps {1} x 900" to 2. Thus we can define d[a] := [V|1}xon] € mn(F, 7). O

3.20. Remark. — We will often use Lemma 3.19 in conjunction with the five lemma to
deduce that a map of Kan complexes induces a bijection on 7y and isomorphisms on 7, for all
basepoints and all n > 1 (and is thus a homotopy equivalence by Theorem 3.18). But the five
lemma only applies for exact sequences of groups, not pointed sets. However, these arguments
can be saved using the group action from Lemma 3.19(a). We will usually skip the verification
in low degrees and just cite the five lemma.

We also need an alternative description of homotopy groups. This is how Goerss and
Jardine define them in [GJ99, §1.7]; we chose the cubical approach since it makes the group
multiplication easier to visualise.

3.21. Lemma. — Let X be a Kan complez, let x € X, and let n > 0. Then there is a
bijection
(X, z) = m F((A", 0A"), (X, z)) .

Proof sketch. By cutting out a single n-simplex from [1", we can obtain a sub-simplicial set
C™ C 0" such that 000" C C™ is anodyne (in fact, it can be obtained by successively filling
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horns) and O"/C™ = A™/JA™. For example, in the case n = 2, we can choose C" as in the

following picture:
[ ]

[ J
% "
-
—_— @ [ ]
o0

In general, the n-simplex A™ — 0" that we cut out to obtain C™ sends the vertex {i} to the
vertex {1} x {0}"%.

Now observe that since z is just a point, we have F((B, A), (X,z)) = F((B/A,*), (X, z))

for every inclusion A C B of simplicial sets. Since 0"/C™ = A™/JA"™, we only need to prove
mo F((O",00"), (X, z)) = m F((O",C™), (X, z)). This follows from a more general claim:

PN

1/

"

g
x|

(X) Let A" C A be anodyne and let A C B be any inclusion of simplicial sets. Then we have a
bijection 7o F((B, A), (X, z)) = mo F((B, 4, (X, x)).

To prove (X), put F :=F((B, A),(X,z)) and F' :=F((B,A), (X, z)) for short. Consider the
pullback P := F(A', {z}) xpar,x) F(A,X). Then F' — P is a Kan fibration, since it is a
pullback of F(B,X) — F(A, X), which is Kan by Corollary 3.10. Manipulating pullbacks,
we find F = F(A,{z}) xp F'. Now F(A4,{z}) = = is just a point, so F is a fibre of the Kan
fibration F/ — P. Furthermore, P — F(A’, {x}) = * is a trivial fibration, since it is a pullback
of F(A, X) — F(A’, X), which is a trivial fibration by Corollary 3.10. By Lemma 3.22 below,
this means that P — = is a homotopy equivalence and so all homotopy groups of P vanish.
Using the long exact sequence from Lemma 3.19 (for every basepoint in F’; a single basepoint
won’t suffice), we can conclude 7 (F') = mo(F’), as claimed. Note that this works even though
we only have an exact sequence of pointed sets on mg. This finishes the proof. Another proof of

(a more general version of) (X) is in [F-HC;, Lemma V.3.13]. O

3.22. Lemma. — If f: X — Y is a trivial fibration between Kan complezes®?), then f is a
homotopy equivalence. Similarly, if F': C — D is a trivial fibration between quasi-categories,
then F is an equivalence as in Example 2.23.

Proof. Since trivial fibrations have lifting against all cofibrations, we can use the lifting problems

(gof,idx)

0 x 0y x Xu{lyx x — 202 x
| |y amd | s s
Y Y Alx X - x .y

to first construct a map g: Y — X such that f o g = idy and then to construct a homotopy
n: go f = idx. Similarly, if F': C — D is a trivial fibration between quasi-categories, we get
a functor G: D — C such that F o G = idp and a natural transformation n: G o F' = idc.
To show that 7 is an equivalence in F(C,C) (and thus prove that F' and G are mutually
inverse equivalences of quasi-categories), we lift furthermore against A! x C — N(J) x C, where

= {o _ o} is the “free-living isomorphism”, the category with two objects and a pair of
mutually inverse isomorphisms between them. O

(3-3)The only reason why we restrict ourselves to Kan complexes (or quasi-categories) is that we haven’t defined
what a homotopy equivalence of arbitrary simplicial sets would be. The lifting problems in the proof can be
solved for arbitrary trivial fibrations f: X — Y, with no assumptions on X or Y.
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The crucial step in the proof of Theorem 3.18 is to show a “compression lemma”, as in the
proof of Whitehead’s theorem in topology (compare to [Hat02, Lemma 4.6]).

3.23. Lemma (“Compression lemma”). — Let X be a connected®*) Kan complex such that
(X, z) =0 for all v € X and alln > 1. Let A C B be an inclusion of simplicial sets,
f:B— X amap andn: A' x A — X a homotopy from f|a to constx. Then n can be extended
to a homotopy 7: A' x B — X from f to const z.

Proof. We can construct 77 simplex by simplex, so it suffices to treat the case A = JA™ and
B = A" for some n > 0. Consider the extension problem

{0} % A" Uggyxonn A x A" L2, x

|

Al x A"

which has a solution ¥ by Lemma 3.9. Then 9|{1},pan = const z, hence (1}, a» defines an
element in 7o F((A",0A"), (X, z)) = m(X,z) = 0 using Lemma 3.21 and our assumption
on X. Hence there is a homotopy ¥': Al x A" — X such that ¥'|s1.9a» = constz as
well as ¥'[(gyxan = |q1yxan and ¥'[{1ycan = constx (in other words, ¥ is a homotopy
ﬁ\{l}x An = const x relative to the boundary OA™). To construct 7, we can now simply compose
the homotopies ¢ and ¢ (which we do similarly to Construction 3.15 and Remark 3.16, by
solving an extension problem along the anodyne map A? x A" — A? x A" and then restricting
to A0} 5 AM), O

3.24. Lemma. — If X is a Kan complex as in Lemma 3.23, then X — * is a trivial fibration.

Proof. We have to show that every extension problem of the following form is solvable:

A" —7— X

-
-
-
-
-
-

An

Using Lemma 3.23 (applied to A = () and B = 9A"), there is a homotopy 7: Al x 0A™ — X
from o to const x. Now consider the extension problem

(n, const )
_—

Al x OA™ |_|{1}><8An {1} x A" X

Al x A"

which has a solution ¥ by Lemma 3.9 as usual. Then 9{p;an provides a solution of the original
extension problem. O

3.25. Lemma. — Let f: X — Y be a Kan fibration between Kan complexes and assume f
satisfies the condition from Theorem 3.18. Then f is a trivial fibration.

BN That is, mo(X) = *.
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Proof. We have to show that every extension problem of the following form is solvable:
OA™ — 7 X
| )
PN

Let n: Al x A™ — A" be a homotopy from ida» to the constant map constn (such a homotopy
can easily be constructed by hand). Then o on: Al x A™ — Y is a homotopy from ¢ to const ¥,
where y = o(n). Now let F = f~{y} = {y} xy X be the fibre over y and consider the lifting
problem

{0} x 0A™ -
| )

Al x pan ZMatoan,

which can be solved by Lemma 3.9. Then 9|(jx9an: {1} X A™ — X factors through F' — X.
Using the long exact sequence from Lemma 3.19 and the assumption on f, we see 7, (F,z) =0
for all x € F and all n > 0. Hence F' — = is a trivial fibration by Lemma 3.24 and so
I f13xoan: {1} X DA™ — F can be extended to a map J: {1} x A" — F. Finally, consider the

lifting problem

Al X DA™ Upyyepan {1} x A" 22 x

ST

Al x A? Y
which can be solved by Lemma 3.9. Then pl(pyxan provides a solution for the original lifting
problem and we’re done. O

Proof of Theorem 3.18. Let’s first assume that f: X — Y is a homotopy equivalence. Then f
clearly induces a bijection 7y(X) = 7p(Y). But to get isomorphisms 7, (X, x) = m,(Y,y) for
all x € X, y = f(z), and all n > 1, we have to show that f: (X,z) — (Y,y) is also a pointed
homotopy equivalence, which is not entirely trivial.

It suffices to show that moF((Y,y),(Z,2)) — moF((X,z),(Z,z)) is surjective for every
pointed Kan complex (Z, z). Indeed, if this is true, then plugging in (Z, z) = (X, x) yields a
pointed map g: (Y,y) — (X, z) together with a pointed homotopy go f ~ id(x 4. In particular,
g is a homotopy equivalence too. Repeating the argument with g, we obtain h: (X, z) — (Y,y)
together with h o g ~id(y,,). Then g is a pointed homotopy equivalence and thus f must be a
pointed homotopy equivalence too. To show that w9 F((Y,y),(Z,z2)) — mo F((X, ), (Z, 2)) is
surjective, first note that we have Kan fibrations

evy: F(X,Z) — F({z},Z2)=Z and evy: F(Y,Z) —F({y}.2)=Z

by Corollary 3.10. Using Construction 3.14, we see that the fibres of these fibrations are given
by ev,{z} = F((X,z),(Z,2)) and ev, {z} = F((Y,y),(Z, 2)). Using Lemma 3.19, we obtain
a diagram of exact sequences

o 7T1(Z,Z) — FoF((Y,y),(Z,Z)) — WoF(K Z) — TF[)(Z) —_

| | I |

- —— m(Z,2) — mF((X,2),(Z,2)) — mF(X,2) — mo(Z) — ---
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Since we assume f: X — Y to be an unpointed homotopy equivalence, it induces a bijection
moF(Y,Z) = moF(X, Z), as indicated above. Then a diagram chase involving Lemma 3.19(a)
shows that mo F((Y,y), (Z,2)) — mo F((X, ), (Z, z)) is surjective. As argued above, this is what
we need.

Conversely, assume that f: X — Y induces a bijection mo(X) = m(Y) and isomorphisms
Tn(X,2) = m,(Y,y) for all x € X, y = f(z), and all n > 1. Lemma 3.12 allows us to choose a
factorisation

fx-ux-Ly

where ¢ is anodyne and f is a Kan fibration. Then ¢ and f are homotopy equivalences. Indeed,
Corollary 3.10 shows that F(X,Z) — F(X, Z) is a trivial fibration for every Kan complex
Z, hence a bijection on w9 by Lemma 3.22. Plugging in Z = X and Z = X shows that i is
a homotopy equivalence, as claimed. The Kan fibration f: X — Y is a trivial fibration by
Lemma 3.25, hence a homotopy equivalence by Lemma 3.22. We are done! O

§3.3. Simplicial approximation and model categories

3.26. Theorem (Simplicial approximation). — For every Kan complex X we have a bijection
m0(X) = mo(| X|) and isomorphisms m, (X, z) = m,(| X |, x) for all z € X and alln > 1. Simi-
larly, for every topological space Y we have a bijection my(Y') = mo(SingY') and isomorphisms
(Y, y) = 7, (Sing Y, y) for ally € Y and alln > 1. In particular, the adjunction

|- |: Kan = Top :Sing

from 2.4 induces homotopy equivalences uy : X — Sing |X| for all Kan complexes X and weak
equivalences cy : |Sing Y| — Y for every topological space Y . |

The proof of Theorem 3.26 is a technical headache. For a full proof, have a look at Fabian’s
and Christoph Winges’ lecture notes [F-HCy, §V.5]; several versions of this theorem can also
be found in [Hat02, §2.C].

Theorem 3.26 is an incarnation of Grothendieck’s homotopy hypothesis. 1t tells us, essentially,
that as long as we’re only interested in topological spaces up to weak equivalence, or CW-
complexes up to homotopy equivalence, we can safely pass to the category of Kan complexes,
or better yet, to the quasi-category An from Example 2.23(a). In particular, everything we
would ever like to know about homotopy groups (or homology groups etc.) will be captured
by An! We’ll see through many examples how this point of view leads to clean, abstract, and
conceptually satisfying proofs of many classical topological results and ultimately to a deeper
understanding of homotopy theory.

At this point it seems natural to leave a few words about model categories. Historically,
these have played a dominating role in the development of co-category theory and to this day
they are an indispensible tool in the foundations of the topic (especially in the proof of Lurie’s
straightening/unstraightening equivalence, Theorem 5.4) as well as in many other areas of
topology. So dismissing them as a tool of the past would be blatantly ignorant and outright
disrespectful. Still, model categories run contrary to the modern point of view that I'm trying
to get across in these notes, and so I'll try to avoid them entirely—which is, of course, only
achievable by conveniently hiding their unavoidable uses in black boxes. But at the very least,
I should tell you the definition.
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3.27. Definition. — Let A be a category with finite limits and colimits. A model structure
on A consists of 3 classes of morphisms C, F, and W (cofibrations, fibrations, and weak
equivalences) satisfying the following properties:

(a) All isomorphisms of A are contained in each of the classes C, F, W, and these classes are
all closed under retracts.

(b) W is closed under 2-out-of-3. That is, if two of f, g, and g o f are weak equivalences, then
so is the third.

(¢) A lifting problem

R

a T
/7(
|

b——y

with ¢ € C' a cofibration and f € F' a fibration always has a solution provided that ¢ is a
trivial cofibration (a cofibration that is also a weak equivalence) or f is a trivial fibration
(a fibration that is also a weak equivalence).

(d) Every morphism in A can be factored into a cofibration followed by a trivial fibration and
into a trivial cofibration followed by a fibration. That is, if a — y is a morphism in A,
then there exist factorisations

a—x—y and a—b—y,

where (¢ — z) € Cand (x —y) € FNW as well as (a — b) e CNW and (b — y) € F.
Sometimes these factorisations are required to be functorial (which is satisfied in virtually
all examples).

A category A equipped with a model structure is called a model category. If A is a model
category, then z € A is called cofibrant if the map from the initial object to x is a cofibration,
and fibrant if the map from z to the terminal object is a fibration. We call = bifibrant if it is
both fibrant and cofibrant.

3.28. Example. — Basically, the entirety of §3.1 can be summarised by saying that sSet
carries a model structure in which cofibrations are exactly that, fibrations are Kan fibrations,
and weak equivalences are morphisms that can be factored into an anodyne map followed by a
trivial fibration. This model structure is called the Kan—Quillen model structure.

3.29. Example. — As the Kan—Quillen model structure “models” the quasi-category An
from Example 2.23, it seems natural to ask whether there is another model structure on sSet
that “models” Cats,. The naive attempt would be to ask that fibrations be inner fibrations and
that trivial cofibrations be inner anodyne maps. But there are examples of cofibrations between
quasi-categories that are equivalences in Cat., but not inner anodyne; for example, the functor
{0} — N(J), where J = {8 " o} is the “free-living isomorphism”. It was an insight of Joyal
how this can be fixed: There is a model structure on sSet, called the Joyal model structure
such that cofibrations are just that and weak equivalences are those maps A — B such that
mocore F(B,C) — mcore F(A,C) is bijective for every quasi-category C. Here 7 core means
the set of equivalence classes of objects; once we’ve proved the hard part of Theorem 2.19,
this notation will be consistent with Definition 3.13(a). Weak equivalences in the Joyal model
structure are called Joyal equivalences. We’ll give another characterisation in Lemma 3.30
below.
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Fibrant objects in the Joyal model structure are precisely quasi-categories. General fibrations
in the Joyal model structure are harder to pin down. However, fibrations between quasi-
categories are characterised by a lifting property: They are those inner fibrations that also have
lifing against {0} — N(J). We'll call these isofibrations and we’ll meet them again in model
category fact 5.12(b). For proofs see [Joy08, Theorem 6.12] or [F-HCyy, Theorem VIII.23].

3.30. Lemma. — A map A — B of simplicial sets is a Joyal equivalence if and only if
F(B,C) — F(A,C) is an equivalence in Catoo for every quasi-category C.

Proof. The “if” part is trivial, so assume A — B is a Joyal equivalence as in Example 3.29.
By Lemma 3.12, we may choose an inner anodyne map B — B into a quasi-category and a
factorisation A — A — B into an inner anodyne map followed by an inner fibration. Then A is
a quasi-category too. Note that F(A,C) — F(A,C) is a trivial fibration by Corollary 3.10 and
thus an equivalence of quasi-categories by Lemma 3.22; the same is true for F(B,C) — F(B,C).
So it’s enough to show that F(B,C) — F(A,C) is an equivalence of quasi-categories, and for
this, it’s enough to show that our functor F': A — B is an equivalence of quasi-categories.

We know that F*: mycore F(B,C) — mgcoreF(A,C) is bijective for every quasi-category
C. Plugging in C = A and choosing a preimage of id 4 yields a functor G: B — A together
with an equivalence G o F' ~ idy. Since F* and (G o F)* are bijective, it follows that
G*: mycore F(A,C) — mycore F(B,C) must too be bijective for every quasi-category C. By the
same argument, we obtain H: A — B together with an equivalence H o G ~ idg. Then G must
be an isomorphism in ho(Cat,) and so F must be too. This shows that F' is an equivalence in
Catso, as desired. ]

3.31. Example. — There are also several model structures on Top. For example, there is
the Serre—Quillen model structure, in which cofibrations are retracts of relative CW-inclusions,
weak equivalences are just that, and fibrations are Serre fibrations.

An adjunction L: A 2 B : R between model categories is called a Quillen adjunction if the
left adjoint L preserves cofibrations and trivial cofibrations, or equivalently, if the right adjoint
R preserves fibrations and trivial fibrations. It is called a Quillen equivalence if, additionally,
the following conditions hold:

(a) For every cofibrant object 2z € A and every trivial cofibration i: L(z) — y into a fibrant
object in B, the composition R(i) o u,: v — RL(z) — R(y) is a weak equivalence in A.

(b) For every fibrant object y € B and every trivial fibration f: 2 — R(y) from a cofibrant
object in A, the composition ¢, o L(f): L(z) — LR(y) — v is a weak equivalence in B.

Then one way to understand Theorem 3.26 is that the adjunction |- |: sSet = Top : Sing from
2.4 is a Quillen equivalence.
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§4. Joyal’s lifting theorem

Let’s begin by stating the theorem that this section owes its name to. We won’t give a proof;
the proof is not too difficult, at least compared to our later black box Theorem 5.4, but it
uses some constructions (joins and thin slices) that we’ve avoided so far and will continue to
avoid. If you're interested, Joyal’s original proof [Joy02, Theorem 2.2] as well as the accounts
in [Lan21, Theorem 2.1.8] or [L-Ker, Tag 01HO] are all very readable.

4.1. Theorem (Joyal’s lifting theorem). — Let p: C — D be an inner fibration of quasi-
categories. Then for all n > 2, every lifting problem of the form

A —— C A —C
J //// lp or l //// lp
A" ; D A" /4> D

in which the 1-simplex A101} C Ay — C or Aln=1n} C A — C is sent to an equivalence in C,
admits a solution. |

§4.1. Consequences of Joyal’s lifting theorem

This subsection is devoted to convincing you what a ridiculously strong result Theorem 4.1
actually is. We begin with some simple corollaries and work our way up to two highly non-trivial
theorems.

4.2. Corollary (“Animae and Kan complexes are the same”). — A quasi-category C is a Kan
complex if and only if it is an anima, that s, if and only if all its morphisms are equivalences.

Proof. We’ve seen in Theorem 2.19 that Kan complexes are animae. So let’s assume C is an
anima. Since C is a quasi-category, it suffices to show that all outer horns Aj — C and A]} — C
have fillers. For n = 1, this is clear, since we can extend {0} — C or {1} — C to a degenerate
simplex A! — C. For n > 2, we can apply Theorem 4.1 to the inner fibration p: C — *. O

4.3. Corollary (“Left fibrations over animae are Kan fibrations”). — Let Y be a Kan complex
and let f: X —Y be a left fibration. Then f is a Kan fibration and thus X is a Kan complex.
A dual assertion holds for right fibrations.

Proof sketch. We must show that for all n > 1 every lifting problem

A — X

|l

A" —— Y

has a solution. Let’s first consider the case n = 1. Since every morphism of Y is an equivalence
by Corollary 4.2, the map A! — Y extends to a map N(J) — Y, where J = {& __ o} is
the “free-living isomorphism”, the category with two objects and a pair of mutually inverse
isomorphisms between them. It can be shown via explicit horn filling that {1} — N(J) is
both left and right anodyne. Since f is a left fibration, we get a lift N(J) — X, which upon
restriction along A' — N(.J) yields a solution of our original lifting problem.
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Now let n > 2. It suffices to show that every morphism in X is an equivalence, because
then Theorem 4.1 will solve our lifting problem. So let a: x — y be a morphism in X and
consider the map o: A2 — X represented by

Since Y is an anima, f(a) is an equivalence and so ¥ := f o o: A3 — Y can be extended to a
map ¥: A2 - Y. Since f: X — Y is a left fibration, we can lift ¥ to a map 7: A? — X such
that 7| A2=0 and f oo = 9. The 2-simplex & shows that « has a left inverse 3. Repeating the
argument with 3, we see that J itself has a left inverse. Then 8 must be an equivalence. Hence
its right inverse o must be an equivalence too. O

4.4. Corollary (“Hom¢ takes values in animae”). — Let C be a quasi-category. Then for all
z,y € C, the slice category projection t: C,; — C from 2.11 is a left fibration and Home (z,y) is
an anima.

Proof sketch. By 2.11, t: C,; — C is a pullback of (s,t): Ar(C) — C x C, which is an inner
fibration by Corollary 3.10. Hence ¢: C,; — C is an inner fibration too and we only need to
solve outer horn lifting problems

n
0 z/

|
A" e

for all n > 1. Write C,; = {x} x¢ s Ar(C) as in 2.11. By the usual adjunction tricks, a horn
lifting problem as above is equivalent to an extension problem

AR % A Uya g A™ x {1 L C

|

A" x Al

with the additional condition that f satisfies f| Apx{oy = const x and the extension must satisfy
fl Anx oy = const z. Such an extension problem can be written as a sequence of horn filling
problems. Each horn is either an inner horn, which can be filled by Definition 2.8, or a horn
whose first edge is sent to const x, which can be filled by Theorem 4.1, or a horn that can be
filled with a degenerate simplex. Up to the horn filling combinatorics, which we skip as usual,
this proves that ¢: C,, — C is a left fibration.

To prove that Home(z,y) is an anima, recall the pullback diagram

Home(z,y) —— Cyy
N
{y} C

from 2.11. It follows that Home(x,y) — {y} is a left fibration. Hence Home(x,y) is a Kan
complex by Corollary 4.3. O
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4.5. Theorem (“Equivalences of functors can be checked pointwise”). — Let F,G: C — D
be functors of quasi-categories and let n: F = G be a natural transformation (that is, a 1-
simpler A' — F(C,D) from F to G). Then 7 is an equivalence of functors if and only if
Ne: F(x) — G(x) is an equivalence in D for all x € C.

If all n,: F(x) — G(x) are equivalences, we can choose inverses ¥, : G(x) — F(x), but
already that step is non-canonical, since inverses are no longer unique in quasi-categories. To
assemble the 1, into a natural transformation ¥: G = F involves infinitely more non-canonical
choices, and we have to make them all in a coherent way. This is an impossible task to do by
hand, but incredibly, Theorem 4.5 does it for us!

Proof sketch of Theorem 4.5. The “only if” part is clear. To prove the “if” part, we start with
some general observations. Let i: A — B be a cofibration of simplicial sets and consider lifting
problems of the form

A2 —— F(B,D) A§x BUpa g A*x A —— D
(%) J /,/) l or equivalently — (sx) J ////
A2 F(A,D) A2x B

Consider those (##) for which the 1-simplex A{®1} x {b} — AZ x B — D is an equivalence in D
for all b € By. We claim:

(X) Let 3 be the class of all cofibrations i: A — B such that every extension problem (), for
which A1} x (b} — A2 x B — D is an equivalence in D for all b € By, can be solved.
Then X is saturated and contains OA™ — A" for all n > 0.

Saturatedness of ¥ is straightforward to check. To see that ¥ contains JA™ — A™, one uses
Theorem 4.1; as usual, we skip the horn filling combinatorics. A full argument is in Fabian’s
notes [F-HCy, Lemma VIIL.2].

By (X) and Lemma 3.8, ¥ contains all cofibrations of simplicial sets. In particular, ¥ contains
it Jlyec{r} — C. Now let n: F' = G be a natural transformation such that 7, : F(x) — G(z) is
an equivalence for all # € C. To construct a left inverse of 1, consider the map o: A2 — F(C, D)
represented by

F

F :n>.G

Our assumption on 7 means that its image under i*: F(C,D) — F([I,ec{z}, D) = [[pec D is
an equivalence. Hence i* o o can be extended to a 2-simplex A% — F([[,cc{z}, D) and we
obtain a lifting diagram

A2 F(C,D)

|
Al F(H{x},D)

zeC

which has a solution by what the above arguments. Hence 7 has a left inverse ¥: G = F.
Again, J,: G(x) — F(x) must be equivalences for all x € C. Repeating the argument with ¢
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shows that 9 must have a left inverse too. Then ¥ must be an equivalence and so its right
inverse 7 must be an equivalence too. O

A similar miracle as Theorem 4.5 is the following theorem.

4.6. Theorem (“Fully faithful & essentially surjective implies equivalence”). — A functor
F: C — D of co-categories is an equivalence if and only if the following conditions are satisfied:

(a) F is fully faithful. That is, F induces homotopy equivalences of animae
Home (z,y) — Homp (F(z), F(y))

forall z,y € C.

(b) F is essentially surjective. That is, F' induces a surjection my core(C) — mo core(D).

4.7. Remark. — The “only if” part of Theorem 4.6 is easy. For later use, we remark that
F: C — D being fully faithful implies that g core(C) — mp core(D) is injective. Indeed, this
is purely an assertion about the homotopy categories of C and D and it follows from the fact
that if F': C — D is a fully faithful functor of quasi-categories, then ho(F'): ho(C) — ho(D)
is a fully faithful functor of ordinary categories. This in turn follows from the fact that
Homy,oc)(z,y) = mo Home(w, y), which is straightforward to check from 2.13.

To prove the “if” part of Theorem 4.6, let’s first consider the case where C and D are animae.

4.8. Lemma. — Let F': C — D be a fully faithful and essentially surjective functor of animae.
Then F is a homotopy equivalence.

Proof. Since C and D are animae, we have C = core(C) and D = core(D). By Remark 4.7 and
the fact that F' is essentially surjective, we see that C — D is a bijection on path components.
Hence we may assume without loss of generality that C and D are connected. Now choose
x € C and observe that

Tnt1(C, ) = 1y (Homc(a:, x), idx)

for all n > 0. Indeed, by the pullback square from 2.11, a map (0", d00") — (Home(z, x),id,)
is equivalently a morphism (0" x A! — C such that 900" x A' U™ x {0,1} — C is constant on
x. But that’s just a map (0", 00" — (C,x), as claimed.

Hence F being fully faithful implies that m,41(C, ) = mp41(D, F(z)) is an isomorphism for
all n > 0. But then F' is a homotopy equivalence by Theorem 3.18. ]

Furthermore we need:

4.9. Lemma. — Let C be a quasi-category and let C[S1] C C be a (not necessarily full)
sub-quasi-category spanned by a collection S1 C Cy of morphisms as in 2.16. Then for all
z,y€C

Homeg,(2,y) — Home(z,y)

is an equivalence onto the set of path components of morphisms from Si.
Proof sketch. By unravelling 2.11, an n-simplex A" — Homg¢(z,y) is the same as a map
o: Al x A" — C such that O'|{0}><An = 0l{1yxan = constz. Then o defines an n-simplex

A" — Homgyg, (7, y) if and only if 0 maps all morphisms in A' x A" to S;. Note that all
morphisms in {0} x A™ and {1} x A™ are mapped to id,, which is contained S; because we
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assume that Sy contains all identities. So it suffices to check that a1,y Al x {i} — C is
contained in S; for all i = 0,...,n, because all other morphisms in A! x A" are generated
under compositions by these as well as the morphisms in {0} x A™ and {1} x A™. This means
that an n-simplex A" — Home(z,y) belongs to Homeg, (7, y) if and only if all its vertices
correspond to morphisms in Si. In other words, Homeyg,((z,y) € Home(x,y) is the collection
of path components of morphisms from Sp, as desired. O

Proof sketch of Theorem 4.6. Assume F is fully faithful and essentially surjective. We’ll show
that core F(K,C) — core F(K, D) is a homotopy equivalence of animae for all simplicial sets K
(note that both F(K,C) and F(K, D) are indeed quasi-categories by Corollary 3.11). Once we
have this, plugging in K = D yields a functor G: D — C with an equivalence G o F' ~ id¢. It’s
straightforward to see that GG is again fully faithful and essentially surjective, so repeating the
argument with G shows that G has a left inverse too. Then G must be an equivalence and so
its right inverse F' must be an equivalence too.

Case K = x. Since coreF(x,C) = core(C), we must show that core(C) — core(D) is
a homotopy equivalence of animae. By Lemma 4.9, Homgecy(7,y) — Home(z,y) is an
equivalence onto those path components that correspond to equivalences from x to y. The
same is true for D, whence core(C) — core(D) is fully faithful again. Clearly, it is essentially
surjective t0o, so Lemma 4.8 shows that core(C) — core(D) must be a homotopy equivalence.

Case K = A", n>1. Let I" := Uglz_ol AU=LE C A" Tt’s straightforward to check that
I — A™ is inner anodyne, so F(A",C) — F(I",C) is a trivial fibration by Corollary 3.10. The
same is true for D. We may thus replace K = A™ by K = I". Now we claim:

(X) Ifi: A — B is a cofibration of simplicial sets, then i*: core F(B,C) — coreF(A,C) is a
Kan fibration. Furthermore, for all xg,x1,...,x, € C, the following diagram is a pullback
diagram of Kan complexes and its vertical arrows are Kan fibrations:

Home (zg, z1) X - -+ x Home(2p—1, Ty, core F(I",C)

l : J

{zo} x -+ x {zp} core(C) x -+ x core(C)

We know that F induces a homotopy equivalence (core(C))"*! ~ (core(D))"*! by the case
K = . Furthermore, since we assume F' to be fully faithful, we know that F induces
homotopy equivalences [];_; Home(z;-1, ;) ~ [[j—; Homp(F(x;-1), F(z;)). So if we believe
(X) (and its analogue for D), then Lemma 3.19 plus the five lemma (plus Remark 3.20) show
that core F(I",C) — core F(I", D) induces a bijection on mp and isomorphisms on 7, for all
basepoints and all n > 1. Hence core F(I",C) — core F(I™, D) must be a homotopy equivalence
by Theorem 3.18.

To prove (K), first note that F(B,C) — F(A,C) is an inner fibration by Corollary 3.10.
Furthermore, if m > 2 and o: AJ* — core F(B,C) is any m-dimensional horn (we allow j =0
or j = m), then any m-simplex 7: A™ — F(B,C) with E|A;_n = 0 is already contained in
core F(B,C). Indeed, equivalences in C are closed under 2-out-of-3, hence the edges of A" ~ A;-”
will automatically be mapped to equivalences too. This observation immediately shows that
i*: core F(B,C) — coreF(A,C) is an inner fibration again. Furthermore, Theorem 4.1 shows
that i* has lifting against Aj" — A™ and A} — A™ for all m > 2. It remains to deal with the
case m = 1, that is, to show lifting agains {0} — A! and {1} — A!. Let’s sketch how to prove
the former; the latter is analogous. Building B from A by successively attaching simplices, we
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can reduce to the case where i: IAF — A¥ is a simplex boundary inclusion. The case k = 0 is
trivial. For k > 1, the map OAF — AF is bijective on 0-simplices and so it suffices to show that
any extension problem

8AkxAH@MMmAkxm}—%ﬁC

AR s Al

in which o]gja1: {j} x A — C is an equivalence in C for every O-simplex j € (0AF)o, admits
a solution. Indeed, it follows from Theorem 4.5 that any extension 7: A¥ x Al — C will
automatically define a map A' — core F(A¥,C). To construct the desired extension, write it as
a sequence of horn filling problems; each inner horn can be filled by Definition 2.8 and each
outer horn by Theorem 4.1. As usual, we skip the horn filling combinatorics. This finishes the
proof that i*: core F(B,C) — F(A,C) is a Kan fibration.

Choosing i to be the cofibration {0}LI- - -U{n} — I", we see that core F(I",C) — (core(C))"*
is indeed a Kan fibration. It remains to show that we get a pullback diagram. We can write
I™ as an iterated pushout I = A{0:1} Uy - U1y Aln=11} and thus F(I™,C) as an iterated
pullback F(I",C) = Ar(C) X¢cs - - - Xtc,s Ar(C). Plugging in the definition of Home (x;—1, x;)
from 2.11 yields the desired pullback diagram—except for one problem: The left vertical arrow
reads F(I",C) — C""! instead of core F(I",C) — (core(C))™*!. To get core into the picture,
observe that as a consequence of Corollary 4.2, core: QCat — Kan is a right adjoint to the
inclusion Kan C QCat. Hence core turns pullbacks in QCat into pullbacks in Kan. However,
the pullbacks at hand are supposed to be taken in sSet, and in general it’s not true that
pullbacks in QCat or Kan coincide with those in sSet.(*!) But if a pullback of quasi-categories,
taken in sSet, happens to be a quasi-category again, then it’s automatically a pullback in
QCat too, and likewise for a pullback of Kan complexes that happens to be Kan again. Since
we've seen that F(I™,C) — C™*! is an inner fibration and core F(I",C) — (core(C))" ! is a
Kan fibration, this is is true in our situation. So core preserves the pullback at hand and we
conclude that

core(Home (g, z1) % - -+ x Home (21, 2,)) ——— core F(I",C)

J - |

core({zo} X -+ x {zn}) core(C) x -+ x core(C)

is a pullback of simplicial sets. But {xo} X - -+ x {z,,} and Home¢ (20, z1) X - - - X Home (2,—1, 2
are Kan complexes (the latter by Corollary 4.4), hence coincide with their cores. This shows
that we get a pullback as desired, thus finishing the proof of (X) and the case K = A™.

Case K is finite-dimensional. A simplicial set K is called finite-dimensional if it has
non-degenerate simplices in only finitely many degrees. We use induction on maximal dimension
d of a non-degenerate simplex. The case d = 0 follows from the case K = A" above. For
the inductive step, we can write a (d + 1)-dimensional simplicial set K as a pushout of some
d-dimensional simplicial set along a disjoint union [[9A%T! — [] A%l of simplex boundary
inclusions. Accordingly, F(K,C) and F(K, D) can be written as pullbacks. By arguments as in

(4D1It’s not even true that pullbacks always exist in QCat and Kan.
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(X), we still get pullbacks after applying core and the legs coreF(H AdHL C) — F(]_[ /Aany C)
and coreF(]_[ AL D) — F(]_[ 8Ad+1,D) are Kan fibrations. Using the inductive hypothesis
and the case K = A% together with Lemma 3.19 and the five lemma (plus Remark 3.20), we
see that core F(K,C) — core F(K,D) induces a bijection on 7y and isomorphisms on m, for all
basepoints and all n > 1. Hence core F(K,C) — core F(K, D) must be a homotopy equivalence
by Theorem 3.18.

General case. Write K = colimg>¢ skq K, where sky K is the d-skeleton of K. It is defined
as the left Kan extension

skeg K 1= Lanpon _ pon (K| A, ) ,

where AZ), C A is the full subcategory spanned by [0],...,[d]. It’s straightforward to
see, using the Kan extension formula from Lemma 1.15, that sky K is d-dimensional and the
transition maps skq K — skgy1 K are cofibrations. By the finite-dimensional case, F' induces
equivalences core F(skq K,C) — core F(skq K, D) for all d > 0.

By the colimit above, F(K,C) = limg>o F(skq K,C). This limit is preserved by core. Indeed,
(X)) shows that core F(skyy1 K,C) — core F(sky K, C) is a Kan fibration and we can apply an
argument as above. The same applies to D instead of C. So it remains to see that equivalences
of Kan complexes are preserved under limits along Kan fibrations. This can be shown using a
Milnor sequence for homotopy groups, for example, or by hand, using a straightforward, but
technical argument. See [F-HCjp, Lemma VII.12] for example. O

§4.2. Localisations of co-categories

4.10. Construction. — Let C be a quasi-category and W C C; a subset of morphisms. We
wish to construct the localisation C — C[W 1], that is, the universal functor of quasi-categories
that sends the morphisms from W to equivalences. To do so, consider the the pushout

[[a! ——c¢
w

l I

[[NV) —¢C
w

in simplicial sets, where J := {® _ ~ o} is the “free-living isomorphism”, the category with two
objects and a pair of mutually inverse isomorphisms between them. By Lemma 3.12, we can
choose an inner anodyne map C — C[W~!] into a quasi-category. We call the composition
p: C — C[W~!] the localisation of C at W. We'll check in a moment that p is independent of
the choices (up to equivalence), so the definite article is justified.

4.11. Lemma. — For every quasi-category D, the functor p: C — C[W 1] from Construc-
tion 4.10 above induces an equivalence

p*: Homcag,, (C[W_l], D) = Hom‘évaLtoo (C,D) € Homcat (C,D),
where Homg/atoo (C,D) C Homcas,, (C, D) is the collection of path components of those functors

F:C — D that send W to equivalences in D.
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Proof. Let FY(C, D) C F(C, D) be the full sub-quasi-category (as in 2.16) spanned by those
functors F': C — D that send W to equivalences in D. We know from Theorem 2.24
that Homca (C[W 1], D) ~ core F(C[W '], D) and Homcat., (C,D) ~ core F(C, D); it’s then
straightforward to check that

Hom{,, (C,D) ~ coreFV(C,D).

Since C — C[W~!] is inner anodyne by Construction 4.10, F(C[W ~!],D) — F(C,D) is a trivial
fibration by Corollary 3.10.

We'll show that core F(C, D) — core FW (C, D) is a trivial fibration too to finish the proof.
This is straightforward, but a little annoying thanks to technicalities. The pushout from
Construction 4.10 shows that

F(C,D) F(C,D)

Lo
[[F(N(J), D) — J[F(A", D)

w w

is a pullback of simplicial sets. Note that F(C,D) — F(C,D) factors through the full sub-
quasi-category FW(C,D) C F(C,D) and F(N(J),D) — F(A',D) factors through the full
sub-quasi-category F{Oﬁl}(AI, D) C F(A!, D). Since pullbacks behave well under passing to
sub-simplicial sets, the following diagram is a pullback too:

F(C,D) FY(c,D)

Los
[[F(N(), D) — J[F~H (AL, D)

To finish the proof, it’s enough to show the following two claims:
(Xy) The pullback above stays a pullback after applying core everywhere.
(X3) The map core F(N(J), D) — core FIO= (AL D) is a trivial fibration.

To prove (K1), observe that F(N(J), D) — F(A!, D) is an inner fibration by Corollary 3.10 and
core F(N(J), D) — core F(A!, D) is a Kan fibration by claim (X) in the proof of Theorem 4.6.
By an argument similar to Lemma 4.9, the fact that FIO"U (Al D) € F(A!,D) is a full
sub-quasi-category implies that core F{OHI}(Al,D) C coreF(Al, D) is a collection of path
components. By inspection, this means that F(N(.J), D) — F{I°~U(A! D) must be an inner
fibration too and core F(N(J), D) — core F{*"1 (Al D) must be a Kan fibration too. By the
same argument as in the proof of Theorem 4.6 it follows that core preserves the pullback, as
required.

To prove (K2), we claim core F(N(J),D) = core F(N(J), core(D)). Indeed, an n-simplex
A™ — core F(N(J), D) is the same as an n-simplex A™ — F(N(J), D) all of whose edges are
mapped to equivalences; by 2.6 and Theorem 4.5, that’s the same as a map o: N(J) x A" — D
such that ofy A {2} ¥ A7} — D maps to an equivalence for all € N(J) and all

edges Alv7} C A", But then all morphisms in N(J) x A" must be mapped to equivalences,
because every morphism in N(J) is already an equivalence. So o necessarily factors through
core(D) C D, as desired.
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Since core(D) is a Kan complex by Corollary 4.2, F(N(J), core(D)) is a Kan complex by
Corollary 3.11 and so core F(N(J),core(D)) = F(N(J),core(D)). By analogous arguments,
we get isomorphisms core F{IO71H (AL D) = core FI*~H (AL, core(D)) = F(AL, core(D)). Now
A' — N(J) is anodyne (in fact, both left and right anodyne) by an explicit horn filling argument.
Hence F(N(J), core(D)) — F(A?, core(D)) is a trivial fibration by Corollary 3.10. This finishes
the proof of (Ks) and we are done. O

4.12. Corollary/Warning. — If C is a (small) ordinary category and W a collection of
morphisms in C, then the localisation N(C)[W '] from Construction 4.10 is not necessarily the
nerve of an ordinary category. But the homotopy category ho(N(C)[W 1)) is equivalent to the
localisation of C at W in the world of ordinary categories.

Proof sketch. For counterexamples see Theorem 4.13 or the discussion in 6.34 below. The asser-
tion about ho(N(C)[W ~!]) follows easily from a combination of Lemma 4.11 and Lemma 2.14
as well as the universal property of localisations in ordinary category theory. O

So localisations provide another way to construct non-trivial examples of quasi-categories.
In fact, both An and Cats, can be constructed in this way:

4.13. Theorem. — If Kan® and QCat® are the Kan-enriched categories from Example 2.23,
then there are canonical equivalences of quasi-categories

N(Kan)[{homotopy equz’valences}fl] = NA(KanA) = An,
N(QCat)[{equivalences of quasi—categom’es}_l] = NA(QCatA) = Catys . |

4.14. Remark. — It’s not hard to construct the functors in Theorem 4.13: By a direct
inspection of their constructions, we can build a map N(Kan) — N2 (Kan®) of simplicial sets
(or rather simplicial classes, but we’ll ignore the set-theoretic difficulties). Using Lemma 4.11,
we only need to check that this map sends homotopy equivalences in Kan to equivalences in
N A(KanA)7 which is clear from the unravelling in Example 2.23. An analogous argument works
of course for N2 (QCat?).

However, proving that these functors are equivalences is not easy. There is a general notion
of simplicial model categories: These are model categories A (Definition 3.27) together with a
simplicial enrichment A® that interacts with the model structure in a certain way. One can
show that the model structures on sSet from Examples 3.28 and 3.29 can be made into simplicial
model structures. In general, if A is a simplicial model category and A% C A, (A2) C 42
is the full subcategory respectively the full sub-simplicially enriched category spanned by the
bifibrant objects, there is an equivalence of quasi-categories

N(ACf)[{Weak equivalences} '] — NA((AA)Cf) :
A proof can be found in [L-HA, Theorem 1.3.4.20].
4.15. Remark. — For a general model category A, it’s customary to call
Aoo = N(A)[{weak equivalences} |

the underlying quasi-category of A. Its homotopy category ho(As) is called the homotopy
category of A. By Corollary/Warning 4.12, this agrees with the ordinary localisation of A°f at
the weak equivalences. Furthermore, if the factorisations from Definition 3.27(d) can be chosen
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functorially (which is always the case in practice), then Ay, could be obtained equally well by
inverting the weak equivalences in either of A°, Af, or A itself, where A°, A' C A denote the
full subcategories spanned by the cofibrant or fibrant objects, respectively. So in practice, all
possible alternative definitions of A, agree.

We'll sketch the argument why N(A°) — N(A) becomes an equivalences after localisation
at all weak equivalences; the other cases are entirely analogous. Let’s assume that A4 has
functorial cofibrant replacements. That is, for x € A the map from the initial object to x factors
functorially through a trivial fibration 7, : ¢(x) — x, where ¢(z) is cofibrant. Then we get a
natural transformation 7: ¢(—) = idy(4) of endofunctors of N(A). Using Lemma 4.11, we can
show that this natural transformation passes to the localisation at all weak equivalences.(*2)
After the localisation, n becomes an equivalence of endofunctors by Theorem 4.5. Then
N(A®) — N(A) and ¢: N(A) — N(A°) become equivalences of quasi-categories after localisation
at all weak equivalences, as desired.

In general, it’s hard to describe morphisms in any localisation. However, if A is a simplicial
model category, then Remark 4.14 and Theorem 2.24 provide convenient access to the Hom
animae in As.

(42Here’s the full argument: Put W := {weak equivalences} for short; we wish to construct a natural transfor-
mation N(A)[W™'] x A' = N(A)[W~']. It’s clear from the construction that N(A)[W '] x A' can also be
described as the localisation of N(A) x A" at W x {ido} UW x {id1}. Thus, by Lemma 4.11, it’s enough to
provide a natural transformation N(A) x A" — N(A)[W '] that sends these morphisms to equivalences. Now
the composition of 17: N(A) x A' — N(A) with the localisation functor N(A) — N(A)[W '] does just that.

47



§5. LURIE’S STRAIGHTENING EQUIVALENCE

§5. Lurie’s straightening equivalence

We've seen in 2.11 how to construct the Hom animae Home(z, y) in a quasi-category C. But we
never explained how to assemble these values into a functor Home: C°P x C — An (where C°P
is as in 2.17). In this section, we give such a construction and prove the Yoneda lemma. To do
this, we’ll use Lurie’s straightening/unstraightening equivalence, which deals with the problem of
constructing functors F': C — An and F': C — Caty,. In the end, straightening/unstraightening
will not only allow us to prove Yoneda’s lemma, but the statement itself will be indispensible
for developing quasi-category theory as a higher analogue of ordinary category theory.

§5.1. Cocartesian fibrations and the straightening equivalence

5.1. Some informal motivation. — Let’s think about what a functor F': C — Cat looks
like. Suppose z,y € C are objects and a: x — y is a morphism. Then F(z), F(y) will be
quasi-categories and F'(«): F(x) — F(y) will be a functor between them. So for every u € F(x),

C . o
T e oy
Catoy o N
B \ Ay :
aloo \u N \ ! el
l 7 ™ ® ! :
¢ y ; ‘/
F@), [———— { [Fy)
[ s F(a) ( |
\\ ) \l ® |
N / . wy

Now let’s turn this picture upside down! Take F(x) and F(y) and place them above = and y,
respectively. We would like to think of them as the fibres over x and y in some kind of fibration

p:U—C:

F(z) F(y)
.- LT
B e 2 -
u - 4 N Tt / N
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But, of course, U shouldn’t just be a disjoint union of some fibres. Instead, we need to capture
somehow that the values F'(x) of the functor F' “vary functorially in z”. To do this, we connect
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every u € F(x) to its image v ~ F'(a)(u) by a new 1-simplex ¢: u — v. Then we keep adding
further simplices to make sure that the object we end up with is a quasi-category. For example,
in our picture we have a morphism v — w in F(y), so we have to add a 2-simplex o: A? — U
in such a way that o|a.2} : © — w is a composition of ¢ and v — w.

To summarise, we’'ve given some vague motivation why functors F': C — Caty, should
correspond to certain fibrations p: & — C, in such a way that the values F(x) correspond
to the fibres p~'{x}. Furthermore, we’ve motivated that for every a: z — y in C and every
u € p~Ha} ~ F(x), there should be a special 1-simplex : u — v that connects u to its image
under F(a). Every other 1-simplex from u to an object in p~!{y} should arise as a composition
with some morphism v — w in p~!{y} ~ F(y). These vague ideas are captured in a precise
sense by the following definition:

5.2. Definition. — Let p: &/ — C be an inner fibration of quasi-categories.

(a) A morphism ¢: u — v in U is called p-cocartesian if, for every n > 2, every lifting problem

b —— U

/7!
J /// J/p

A" —— C

in which A0 C AP is sent to ¢, has a solution.

(b) We call p a cocartesian fibration if every lifting problem

) —— U

A
l /// J/p

Al ——¢C

has a solution in which A! is sent to a p-cocartesian morphism.
There are dual notions of p-cartesian morphisms and cartesian fibrations, in which we use
Aln=1n} € A7 A" and {1} — A! instead.

It’s easy to identify those cocartesian fibrations that correspond to functors F': C — An.
5.3. Lemma (“Left fibrations are cocartesian fibrations whose fibres are animae”). — For a
cocartesian fibration p: U — C, the following conditions are equivalent:

(a) Every morphism in U is p-cocartesian.

(b) p:U — C is a left fibration.

(c) All fibres p~*{x} for x € C are animae.

Proof sketch. The equivalence (a) < (b) is clear and the implication (b) = (c¢) follows from

Corollary 4.3. To prove (¢) = (a), let ¢: u — v be a morphism in ¢. We wish to show that ¢ is
p-cocartesian. Suppose we're given a lifting problem of the sort we’re interested in: a diagram
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such that o]0, is ¢: u — v. We will construct a new lifting problem

d _
AR 2 Arlﬂrl AN

/;'
l " J lp

An dq AnJrl C

such that 0 = @ o d; (note that d; maps AL} 46 A02} 50 o is now the image of A{%2} under
7). Since p is an inner fibration, we’ll be able to solve the new lifting problem and get a solution
for our original one.

Let’s construct &! By Definition 5.2(b), applied to p(p): Al — C, we can choose a p-
cocartesian morphism ¢': u — v’ such that v’ € p~*{p(v)}. By Definition 5.2(a), applied to
a suitable A3 — U, we can find a morphism v: v — v such that ¢ ~ 1 o ¢'. Note that 1
is an equivalence since p~!{p(v)} is an anima by assumption. Now we construct & piece by
piece. We put 5|d1(Ag) = o and we send {1} to v’ as well as A1 6 ¢©'. Furthermore, we send
Al012} to the 2-simplex witnessing ¢ ~ 1) 0 . The rest of AT < (dy(A}) U A1%1L2) can be
filled by a sequence of horn filling problems in which either the first edge is ¢, so a filler exists
by Definition 5.2(a), or the first edge is : v — v/, so a filler exists by Joyal’s lifting theorem
(Theorem 4.1) since 9 is an equivalence. As usual, we skip the horn filling combinatorics. [

We can now state the straightening/unstraightening equivalence. As was, unfortunately, clear
from the beginning, we won’t give a proof here. The most readable proof available is probably
due to Gijs Heuts [FHR21] with contributions by Fabian Hebestreit and Jaco Ruit, building on
previous work by Cisinski and Nguyen. Lurie’s original proof can be found in [L-HTT, §3.2].
There’s also another approach by Cisinski [Cis19] in which straightening/unstraightening is
much easier to obtain, but much more work is needed to identify An C Cato, with the full
sub-quasi-category spanned by the Kan complexes.

5.4. Theorem (Straightening/unstraightening). — Let C be a quasi-category.

(a) Let Cocart(C) C Caty /e be the (non-full!) sub-quasi-category spanned by cocartesian
fibrations over C and those maps that preserve cocartesian morphisms (see 2.16). Then
there are inverse equivalences of quasi-categories

St(©er) ; Cocart(C) = F(C, Catao) : Un(®et)

called “straightening” and “unstraightening”. For a cocartesian fibration p: U — C, the
value of St (p): C — Caty at x € C is given by the fibre p~'{x}. Furthermore,
F:C — D is a functor, then the unstraightening equivalence sends the precomposition
functor — o F: F(D, Cats) — F(C, Cats) to the pullback F*: Cocart(D) — Cocart(C).

(b) Let Left(C) C Cato e be the full sub-quasi-category spanned by the left fibrations over C
(see 2.16). Then the equivalences from (a) restrict to equivalences

St0eft): Left(C) é F(C,An) : UnUeft)
Dually, there are equivalences Cart(C) ~ F(CP, Cato,) and Right(C) ~ F(C°P, An). Here C°P

is the opposite quasi-category from 2.17. |
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Most of the time, one can treat Theorem 5.4 as a black box and work purely with the

statement, without knowing how exactly and we don’t need to know how exactly the functors
Stleocart) and Unl®@®) are constructed!

Still, we’ll spend the rest of §5.1 to give you some idea how the construction works. In 5.6,

we’ll explain the effect of straightening on morphisms. After that, we’ll discuss two (hopefully
enlightening) classical examples in the language of straightening/unstraightening in 5.7 and 5.8.
But let’s begin by giving some examples.

5.5. Example. — Let C be a quasi-category. The following are examples of cocartesian
fibrations and their unstraightenings.

(@)

For every quasi-category D, the unique functor D — = is a cocartesian fibrations, with
the cocartesian morphisms given by the equivalences in D. This is an easy application of
Joyal’s lifting theorem (Theorem 4.1). Furthermore, since cocartesian fibrations are clearly
preserved under pullbacks, we see that pry: D x C — C is a cocartesian fibration for every
quasi-category C. The pry-cocartesian morphisms in D x C are precisely those that are
equivalences in the D-component. The straightening of pry: D x C — C is the constant
functor const D: C — Catoo; this follows from the pullback statement in Theorem 5.4(a),
but it’s probably also pretty clear intuitively.

For every = € C, we've seen in Corollary 4.4 that ¢: C,; — C is even a left fibration.
The fibre of ¢t over y € C is Hom¢(z,y) by 2.11, so we can use the straightening of
t as our definition of the Hom functor Hom¢(z, —): C — An. Analogously, the dual
construction s: C;, — C is a right fibration and its cartesian straightening is, by definition,
the contravariant Hom functor Home(—,y): C°? — An. This still leaves the question how
to construct the two-variable Hom functor Home: C°P x C — An, which we’ll discuss in
Constructions 5.21 and 5.22 below.

The target projection ¢t: Ar(C) — C from 2.11 is a cocartesian fibration, and its is our
definition of the functor C,_: C — Cat that sends x € C to the slice quasi-category C/,.
A morphism ¢: (a: v — u') — (8: v — v') in Ar(C), that is, a commutative diagram

.
Vi B

Q\LQ

in C, is t-cocartesian if and only if u — v is an equivalence in C. Proving this is a somewhat
subtle and will lead us on a detour in §5.2. One way to see the “if”-part (which is the
difficult part) would be to reformulate a lifting problem for ¢ against Afj — A" into a
lifting problem for C — * against AJ x Al Uapx 1y A" X {1} — A™ x Al as in the proof
of Corollary 3.10. Then one proves, using Joyal’s lifting problem (Theorem 4.1), that a
lifting problem of the latter kind is always solvable if the original lifting problem maps
A1} C A2 to a morphism ¢ as above.

However, a much nicer proof of the “if”-part is provided by Lemma 5.13 and Lemma 5.16
below (except that there are some black boxes involved ...). For the “only if”-part, it’s
enough to write down the correct lifting diagrams; we leave this to you.

5.6. Straightening/unstraightening on morphisms — Suppose we're given a cocartesian
fibration p: U4 — C and let F': C — Cat, be its straightening. We know what F' does on objects:
It sends = € C to the fibre p~!{z}. We'll now explain what F does on morphisms. To this end,
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let Ar(cocart) (U) C Ar(U) denote the full sub-quasi-category spanned by the p-cocartertesian
morphisms. Then
Ar(cocart) @) — Ar(C) x,cU

is a trivial fibration.(>!) To see this, first consider the case where p is a left fibration. Then
Ar(eart) @) = Ar(U) by Lemma 5.3(a). Furthermore, {0} — Al is left anodyne. Hence the map
above is a trivial fibration by Corollary 3.10. In general, we can adapt the proof of Corollary 3.10
to show that Ar(©*®a™) (1) — Ar(C) x, ¢ U has lifting against JA™ — A™: Rewrite such a lifting
problem as a lifting problem for p: U« — C against OA™ x Al Uoanxioy A" x {0} — A" x Al
The latter is a sequence of horn lifting problems, each of which can be solved either because p
is an inner fibration or by employing Definition 5.2(a).

Given a morphism «: x — y in C, we can now give the desired description of the functor
F(a): p~Haz} — p~Hy} as follows: Pull back Ar(®®) @f) — Ar(C) x,c U along {a} — Ar(C)
to obtain a trivial fibration {a} X o) Ar(U) — {a} XscU = {x} xcU = p~'{x}. Every trivial
fibration admits a section. By choosing such a section and composing with the target projections
t: Ar(U) — U and t: Ar(C) — C, we obtain (up to natural equivalence) the desired functor

F(a): pHa} — {a} Xare) ArU) — {y} xeU = p~Hy} .

With (a lot) more care, one can continue these considerations to give a complete description of
the functor F': C — Cats. This was first done by Haugseng and is described in [Lan21, §3.3].
The proofs of straightening/unstraightening in [FHR21] or [L-HTT, §3.2] proceed instead by
constructing a simplicially enriched functor €[C] — sSet®, as they deduce Theorem 5.4 from a
suitable Quillen equivalence of model categories.

5.7. Straightening/unstraightening and stacks — We’ll briefly explain the relation
between Theorem 5.4 and the language of stacks from algebraic geometry. If you already know
stacks, this will hopefully make Theorem 5.4 less mysterious. If you’d like to learn about stacks,
this remark will hopefully make the literature on stacks less mysterious. If you don’t care about
stacks at all, you can safely skip this remark.

In algebraic geometry, one is naturally lead to functors whose values should be groupoids.
For example, given a scheme S and a group scheme G acting on S, one would like to study
the functor [S/G]: (Sch;g)°® — Grpd that sends any scheme X over S to the groupoid of
G x-torsors, where Gx = G xg X is the base change of G to X. A morphism f: X — Y
in Sch /g should be sent to the pullback functor f*: {Gy-torsors} — {Gx-torsors}. Here one
quickly runs into a problem: If g: Y — Z is another morphism in Sch,g, then the associated
pullback functors come with a natural equivalence f* o g* ~ (go f)*, but that equivalence is
not an equality. So [S/G] can’t exist as a functor [S/G]: (Sch/g)°® — Grpd into the category
of groupoids; instead, it’s a functor

[S/G]: N(Sch/s)” — Grpd®

into the 2-category of groupoids as introduced in Example 2.25. The ancient algebraic geometers
didn’t have the language to deal with functors into a 2-category, but they made do with the
tools of their time: They instead constructed a functor p: &/ — Sch/g in such a way that

(5‘1)Intuitively, this says that given a morphism a: # — y in C and an object u € p~*{z}, then lifting o to a
p-cocartesian morphism ¢: u — v can not only be done, but even in a unique way (up to contractible ambiguity).
This fits perfectly into the picture from 5.1: Such a p-cocartesian lift o connects u € p~'{z} ~ F(x) to its image
under F(a): F(z) — F(y). So ¢ should be unique.
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N(p): N(U) — N(Sch/g) is a right fibration whose straightening St(ish) (N (p)) ~ [S/G] is the
functor above.(®?) Explicitly, U is the category of pairs (X, P), where X € Sch/s and P is a
Gx-torsor. Morphisms (X,P) — (Y, Q) in U are pairs (f, ) where f: X — Y is a morphism
in Sch g and a: f*Q > P is an isomorphism of Gx-torsors. See [Ols16, Example 8.1.10] or
[Stacks, Tag 036Z].

More generally, a fibred category is a functor p: Y — C of ordinary categories such that
N(p): N(U) — N(C) is a cartesian fibration.(>*) The classical definition of cartesian morphisms,
see [Ols16, Definition 3.1.1] or [Stacks, Tag 02XK], differs from Definition 5.2(a), but it’s still
equivalent, as we’ll see in Lemma 5.16. By Theorem 5.4, the data of a fibred category defines a
functor St(°ar) . N(C)°P — Catyo, which necessarily factors through the full sub-quasi-category
Cat(® C Cato, from Example 2.25, because the fibres of N(p): N(U) — N(C) must be nerves of
ordinary categories again, Conversely, we show in footnote (5.2) below that the unstraightening
of such a functor is necessarily the nerve of an ordinary category.

A category fibred in groupoids is a fibred category p: U — C such that all fibres are groupoids;
equivalently, the associated functor Sgleart) . N(C)°P — Cat(® factors through Grpd(2) C Cat®.
Finally, if C is equipped with a Grothendieck topology, we call p: U — C a stack if the functor
St (N(p)): C°P — Grpd® is a sheaf. To formulate the sheaf condition, one needs an
appropriate notion of limits in Grpd® (or in An), which we’ll see in Definition 6.9. Fortunately,
these limits can be pinned down in explicit terms; for example, it’s not too hard to unravel
Lemma 6.14 to arrive at the description from [Ols16, §4.2] or [Stacks, Tag 026B]. In particular,
the result is (the nerve of) a groupoid again.

Thus, by exclusively working on the fibration side of the cartesian straightening equivalence,
the theory of stacks can be and has been developed within the framework of ordinary category

G-21t’s not a coincidence that the unstraightening of [S/G] is the nerve of an ordinary category. Let C be any
ordinary category, let F': N(C)°? — Cats be any functor that lands in the full sub-quasi-category Cat® C Catoo
from Example 2.25, and let p: U — N(C) be the cartesian unstraightening of F'. Then U is equivalent to the
nerve of an ordinary category. We’ll give a sketch of the proof, which uses the notion of homotopy pullbacks
from §5.2. First, it’s enough to show that Homy,(u,v) is a discrete anima for all u,v € U, because then the
essentialy surjective functor uy : U — N(ho(U)) (given by the unit of the adjunction ho 4 N) is also fully faithful,
hence an equivalence by Theorem 4.6. To prove that Homy(u,v) is discrete, observe that we have a map
Homy (u, v) — Homy(c)(p(u), p(v)). Since the target is a discrete anima, the source Homy (u, v) is a disjoint
union of the fibres of this map. So it’s enough to show that each individual fibre is a discrete anima. Restricting
to the fibre over @ € Homyc)(p(u), p(v)) amounts to base changing along the map a: A" — N(C). So we may
assume N(C) = AL

Now {0} — A' is fully faithful. Hence, if Uy := {0} x a1 U denotes the fibre over 0, then Uy — U is fully
faithful too. But Uy is also equivalent to the nerve of an ordinary category, because we assume our original
functor F takes values in Cat® C Catoo. So if u,v € Uy, then Homy(u,v) ~ Homy, (u,v) is a discrete anima.
The same reasoning applies if u and v both belong to the fibre over 1. If p(u) = 1 and p(v) = 0, then the map
Homy (u,v) — Homa1(1,0) ~ @ forces Homy(u,v) =~ (), which is discrete too. It remains to deal with the case
p(u) = 0 and p(v) = 1. After choosing a p-cartesian lift ¢: v’ — v of 0 — 1, the dual of Lemma 5.16 below
provides a homotopy pullback

Homy (u, ') —*— Homy (u,v)

T

Homa1 (0, 0) 204, Homa1(0, 1)

The bottom horizontal arrow is clearly a homotopy equivalence, so the top arrow must be one as well, whence
Homy, (u, u') ~ Homy(u,v). As we already know Homy,(u,u’) to be discrete, we're done.

(531t follows from the uniqueness statement in Lemma 2.7(b) that any map between nerves of ordinary categories
is automatically an inner fibration. So to check whether such a map is a cartesian fibration, it’s enough to show
the existence of cartesian lifts.
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theory. But with today’s tools, its actually possible to talk about stacks in the intended way:
as functors into Grpd(Q). I find the latter much easier.

We’ve seen in 5.7 that Theorem 5.4 is already interesting for functors into Grpd(Q) C An.
But there’s an even simpler case: functors into sets! As it turns out, even this simplest possible
special case is interesting and recovers classical theory.

5.8. Straightening/unstraightening and covering theory. — An anima is called discrete
if it is homotopy equivalent to a disjoint union of copies of the point *. Equivalently, all path
components are contractible. Considering sets as discrete animae, it’s easy to construct a functor
N(Set) — An; this functor is fully faithful and an equivalence onto the full sub-quasi-category
spanned by the discrete animae.(®4)

Let X be an anima. A covering of X is a Kan fibration (or equivalently a left fibration,
see Corollary 4.3) p: X’ — X such that for all # € X, the fibres p~!{z} are discrete animae.
This recovers the usual notion of coverings from topology. More precisely, let’s call a covering
p: X' — X strict if the fibres p~'{x} are not only equivalent to but isomorphic to disjoint
unions of copies of . Then every covering is equivalent to a strict covering and the adjunction
|- |: Kan = Top : Sing from 2.4 transform strict coverings of animae into usual coverings of
topological spaces and vice versa. (59

We let Cov(X) C Left(X) denote the full sub-quasi-category spanned by the coverings of
X. Under the straightening equivalence from Theorem 5.4(b), coverings p: X’ — X correspond
to those functors F': X — An that land in discrete animae. Thus, we get an equivalence of
quasi-categories

Cov(X) — F(X,N(Set)) .

Now recall F(X,N(Set)) = N(Fun(ho(X), Set)) from Lemma 2.14. But what is ho(X)? We
know X ~ Sing|X| from the simplicial approximation theorem, hence ho(X) ~ ho(Sing|X]).
By the description in 2.13, the objects of ho(Sing | X|) are given by Sing | X|, the points of | X].
The morphisms of ho(Sing|X]|) are equivalence classes of Sing; | X|, that is, equivalence classes
of paths in X. A quick unravelling of definitions shows that the equivalence relation is precisely

N et’s sketch how to do this: One can equip Set with a trivial Kan enrichment Set® in which Fg_a (S, T) is
just a disjoint union of Homge (S, T) many points. Sending S — HS cg * then defines a fully faithful simplicially

enriched functor Set® — Kan®. Applying N®(=), we obtain a fully faithful functor of quasi-categories
N(Set) = N2 (Set®) — N2 (Kan®), whose essential image are precisely the discrete animae.

(5-5To see that every covering p: X’ — X is equivalent to a strict one, we need to use some details of the
construction of the equivalence from Theorem 5.4(b): Since the functor F: X — An associated to X lands
in discrete animae, we can factor it, up to equivalence, through a functor Fy: X — N(Set). By Lemma 2.14,
Fy is induced by a functor of ordinary categories Fo: ho(X) — Set. If p: U — ho(X) is the Grothendieck
construction of Fy, then N(p): N(U) — N(ho(X)) can be shown to be a strict covering. Hence the pullback
N(U) XN(ho(x)) X — X is a strict covering too and equivalent to our original covering p.

Now suppose p: X’ — X is a strict covering. Using that the fibres of p are disjoint unions of copies of * together
with the lifting properties of Kan fibrations, it’s easy to see that for every A™ — X, the pullback A™ x x X’
consists of a disjoint union of copies of A™. This means that the preimage of any cell in the CW-complex |X|
under |p|: |X’'| — |X]| is a disjoint union of copies of that cell. Via some technical arguments that we omit, this
shows that |p| is a covering in the usual sense. Conversely, if g: Y/ — Y is a covering of topological spaces, q
is Serre fibration. Sing turns Serre fibrations into Kan fibrations because |- |: Kan & Top : Sing is a Quillen
adjunction (even a Quillen equivalence) by Example 3.31. Hence Singq: SingY’ — SingY is a Kan fibration.
This could also be shown by an easy direct argument (observe that the pair (|A"[,|A}|) is homeomorphic
to ([0,1]"7* x [0,1],[0,1]™"* x {0}) and use the homotopy lifting property of covering spaces, see [Ha‘tOQ,
Proposition 1.30| for example). Since Sing preserves pullbacks and sends discrete topological spaces to disjoint
unions of copies of %, we see that Sing ¢ is indeed a strict covering.
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for two paths to be homotopic. Hence ho(Sing | X|) is precisely the fundamental groupoid 11;|X|
of the topological space | X|, and therefore ho(X) ~ II;|X|. We have thus proved a classical
classification result from topology:

5.9. Theorem (Classification of covering animae). — Let X be an anima. Then Cov(X)
is equivalent to the nerve of the ordinary category Fun(Il;|X|,Set). In particular, there’s an
equivalence of ordinary categories

ho(Cov (X)) ~ Fun(II;|X|, Set) .

It might not be immediately obvious, but Theorem 5.9 comprises all you would ever want to
know about covering theory. Since it fits the theme of these notes, let us spell this out in detail:

5.10. Corollary. — Suppose X is connected and let a basepoint x € X be chosen.

(a) There’s a Galois correspondence (that is, a bijection) between connected coverings of X
and subgroups H C m1(X, x).

(b) X is simply connected (that is, m(X,x) = 0) if and only if every covering p: X' — X
admits a section s: X — X' if and only if every covering of X splits into a disjoint union
of copies of X.

(¢) Cov(X) contains a unique object p: X — X (up to equivalence) with the property that
X is simply connected. This covering p: X — X is called the universal covering of X.
If Autx ()N() denotes the group of deck transformations of )?, that is, the automorphism
group of p: X — X in ho(Cov(X)), then Auty (X) = 71 (X, z).

(d) Suppose p': X' — X is a covering and ¥’ € X' is a point such that p(z’) = x. Let
f:(Z,z) — (X,x) be a morphism of pointed animae, where Z is connected too. Then the
pointed lifting problem

(Z,2) _r, (X, x)

has a solution if and only if the image of f«: m(Z,z) — m (X, x) is contained in the
image of py: m (X', 2") — m (X, ). In this case, the lift f' is necessarily unique.

Proof sketch. Let’s denote G := 71(X, z) for short. The crucial observation is that II;|X| is
equivalent to its full sub-groupoid spanned by {z}. This full sub-groupoid consists of one
element x with Hompy, | x|(z,7) = G many automorphisms. Therefore, the functor category
Fun(I1;] X, Set) is equivalent to the category G'-Set of sets together with a left action of G and
we obtain an equivalence of quasi-categories

Cov(X) ~ N(G-Set) .

With this observation, (a) is immediate: We just have to note that a G-set S is connected—that
is, S can’t be written as a disjoint union of two non-empty G-sets—if and only if S consists of
a single G-orbit. This in turn happens if and only if S = G/H is the set of left cosets for some
subgroup H C G. Part (b) is just as trivial: We have G = 0 if and only if every G-set S has a
fixed point (or in other words, the map S — * admits a G-equivariant section). Furthermore,
G = 0 if and only if every G-set is a disjoint union of fixed points.
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For (c), consider G with the natural action of itself as a G-set. We let p: X — X be the
associated covering. Then Aut x(X ) Autg- set(G,G) = G. Furthermore, it’s easy to see that
X is simply connected. Indeed, if g: Y — Xisa covering of X then pog: Y — X is a covering
of X and so g determines a morphism in Cov(X). This morphism corresponds to a morphism
S — G of G-sets. Every such morphism has a section, which shows that every covering of
X has a section and so X is simply connected by (b). Conversely, suppose p: X' — X is a
covering of X such that X’ is simply connected. Let S be the associated G-set; by (a), we
must have S = G/H for some subgroup H C G. Let 7: G — G/H be the canonical projection.
By abuse of notation, 7: X — X' also denotes the associated morphism in Cov(X). It’s easy
to see that 7 is a covering of X’.6) Since X’ is simply connected, 7 must admit a section
s: X’ — X. But then 7: G — G/H also admits a section, which is only possible if H is the
trivial subgroup.

For (d), the “only if”-part is trivial. For the “if”-part, we may assume that X’ is connected;
otherwise just replace X’ by the connected component of z’. Then X’ corresponds to a G-set
of the form G/H. Furthermore, we must have 71 (X', 2') = H. To see this, construct a map
7 X — X' as in the proof of (c). This is necessarily the universal covering of X'. Then
Autx/(X) C Auty(X) = G is the subgroup of those automorphisms 7: G — G that satisfy
mot = . Hence indeed Aut X/(X ). To solve our lifting problem, note that a lift of f is equivalent
to a section of the pullback covering pz: Z x x X’ — Z. Since straightening/unstraightening
transforms pullbacks into precompositions (see Theorem 5.4(a)), pz corresponds to the set
G/H with 71(Z, z)-action induced by fy: m(Z, 2) — m1(X,z) = G. By assumption, the image
of fx is contained in H, so the action is trivial. Hence G/H is a disjoint union of fixed points;
each fixed point determines a section of py. Together with the requirement f’(z) = 2/, we then
get a unique solution. O

§5.2. Digression: Homotopy pullbacks

After getting acquainted with straightening/unstraightening, our next goal is to prove Yoneda’s
lemma. But before we can do that, we need to go on a brief detour about homotopy pullbacks.
These guys will allow us to compute Hom, () and Home ,, 0 terms of Hom¢ for any quasi-
category C, which will be used countless times throughout the rest of this text.

5.11. “Definition” — Suppose we're given a diagram of Kan complexes or quasi-categories
X — X C—— ('
| o] o | |
y — Y’ D—T7D

that commutes up to homotopy or up to natural equivalence, respectively (so that the corre-
sponding diagram in An or Cate,-commutes; see the discussion in Example 2.23). We say that
the diagram is a homotopy pullback if its image in An or Caty is a pullback in the co-categorical
sense (which we will only define in Definition 6.9(a) below).

(5-6We only need to show that 7 is a Kan fibration, because the fact that the fibres of 7 are discrete follows
easily from the fact that the fibres of p: X’ — X and pom = p: X — X are both discrete. To show that 7 is a
Kan fibration, consider any simplex o: A™ — X’ and its image poo: A™ — X in X. To solve any horn lifting
problem involving o, we may as well base change X and X along p o 0. But the pullbacks A™ X pos, x,» X' and
A™ Xpo0.x.5 X are both disjoint unions of copies of A" because we assume p: X’ — X and p: X — X to be
coverings. So the new horn lifting problem has a solution for trivial reasons.
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As stated, this “definition” doesn’t lead to vicious circles, but once you try to prove anything
with it, it surely does. So let’s just say there is a way to define homotopy pullbacks properly,
in any model category. This is done in any sensible treatment of model categories; see [Cis19,
Definition 2.3.22] or [F-HCryy, Definition VIIL.49(vi)]. For the Kan—Quillen model structure
and the Joyal model structure on sSet (see Examples 3.28 and 3.29) the above “definition” is
recovered, albeit not obviously so. |

5.12. Model category fact. — A pullback diagram in a model category is automatically a
homotopy pullback diagram if all objects are fibrant and at least one of the legs is a fibration.
See [Cis19, Proposition 2.3.27] for a proof. In the examples at hand, we deduce:

(a) A pullback of Kan complexes is automatically a homotopy pullback if at least one if its
legs is a Kan fibration.

(b) A pullback of quasi-categories is automatically a homotopy pullback if at least one of its
legs is an isofibration (or categorical fibration in Lurie’s terminology). That is, it is an
inner fibration and has the lifting property against {0} — N(J). Here J := {e __ e} is the
category of two objects and a pair of mutually inverse isomorphisms between them, so
lifting against {0} — N(JJ) means that we can lift equivalences.

So homotopy pullbacks, or equivalently, pullbacks in An or Cat., can be computed as follows:
First write down the diagram as a diagram of simplicial sets. Then replace one of its legs by an
equivalence followed by a Kan fibration or an isofibration; this can be done by Lemma 3.12.(57)
Finally, take the usual pullback along that Kan or isofibration.

As a consequence, with some care, homotopy pullbacks can usually be manipulated in the
same way as ordinary pullbacks. We’ll use this freely throughout the rest of this section. M

5.13. Lemma. — Let C be a quasi-category and let a: x — y, o’ : ' — 3 be morphisms in
C. Then there exists a homotopy pullback diagram of animae

HomAr(c)((a: r—y), (2 — y’)) —— Home(y,y')

T

Home (z, 2") Home(z,y')

Qg

Here the pre- and postcomposition maps o and o, are defined by means of the functors
Home(z,—): C — An and Home(—,y'): C°P — An from Example 5.5(b). [

5.14. Remark. — The only proof I know is in Fabian’s handwritten notes [F-HCy, Proposi-
tion VIIL.5]. It’s not particularly difficult: You work directly with the definition of Hom Ar(c) to
write it as an honest pullback in which both legs are Kan fibrations. Then you check that the
corners of the pullback are homotopy equivalent to Home(z, 2’), Home/(y, 3'), and Home (2, /),
respectively. Along the way, you should also check (but this will be quite apparent from the
description in 5.6) that the maps you obtain are really the pre- and postcomposition maps a*
and o/, as defined above.

Also note that in the case where C is an ordinary category we recover our original description
of morphisms in an arrow category from Construction 1.13. Indeed, in this case all Hom

(6-No replace a functor of quasi-categories by an equivalence followed by an isofibration, a small variation
of the argument from Lemma 3.12 is needed. The problem is that N(J) has countably many non-degenerate
simplices, whereas A" had only finitely many. This has the effect that it’s no longer sufficient to iterate the
construction of S(f) countably many times. To fix this, we simply do X; many iterations instead of Xy many.

o7


https://cisinski.app.uni-regensburg.de/CatLR.pdf#thm.2.3.22
https://cisinski.app.uni-regensburg.de/CatLR.pdf#thm.2.3.27

§5. LURIE’S STRAIGHTENING EQUIVALENCE

animae are discrete (that is, sets), hence the ambiguity of a* and «, up to homotopy goes
away. Furthermore, any map of discrete Kan complexes is automatically a Kan fibration, so
the homotopy pullback is a pullback on the nose by model category fact 5.12(a). If you think
about this pullback briefly, that’s exactly how morphisms in Ar(C) are described.

5.15. Corollary. — Let C be a quasi-category, let y € C be an object, and let a: x — y and
o : 2" — y be morphisms in C. Then there exists a homotopy pullback diagram of animae

Home (a:z—y), (a2 —y) — {a}

l o J

Home (x, 2) O Home (z,y)

Here the postcomposition map o, is again defined as in Lemma 5.13.

Proof sketch. We use the following pullback square from 2.11:
C,y — Ar(C)
| =
{y} C

In general, its straightforward to check that Hom in a pullback of quasi-categories is the pullback
of Hom in each component. Then we plug in Lemma 5.13 and check that everything works
out with homotopy pullbacks too. For a complete proof, see [F-HCyy, Corollary VIIL.6], where
Fabian deduces the result from Lemma 5.13 as we do here, or [L-HTT, Lemma 5.5.5.12], in
which Lurie gives a direct argument. O

Homotopy pullbacks can be used to give an equivalent characterisation of cocartesian edges.
In fact, the terminology (co)cartesian morphism was originally introduced in the classical theory
of stacks (see 5.7), where it was defined using the criterion from Lemma 5.16 below.(®®) The
equivalence with Definition 5.2(a) is due to Lurie; see [L-HTT, Proposition 2.4.4.3] or [Lan21,
Corollary 3.1.16].

5.16. Lemma. — Let p: U — C be an inner fibration of quasi-categories. Then a morphism
©: u — v is p-cocartesian if and only if the following diagram is a homotopy pullback of animae
for every w e U:

o

Homy, (v, w) Homyy (u, w)
pl Jh JP
p(p)*
Home (p(v), p(w)) —— Home (p(u), p(w))
Here the precomposition maps ¢* and p(p)* are once again defined as in Lemma 5.13. |

To finish our excursion into homotopy pullbacks, we introduce a variant of cocartesian
fibrations that is occasionally quite useful, but will only play a very minor role in these notes.

G8)0f course, in the classical theory the homotopy pullback of animae was replaced by an ordinary pullback
of sets. But observe that a homotopy pullback of simplicial sets, in which all participating objects are disjoint
unions of copies of #, must automatically be an ordinary pullback. The reason is that any map between two such
simplicial sets is automatically a Kan fibration and any homotopy equivalence is automatically an isomorphism.
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5.17. Definition. — Let p: & — C be an inner fibration of quasi-categories.

(a) Let ¢: u — v be a morphism in U, corresponding to a map ¢: A — U. We call ¢ a
locally p-cocartesian morphism if it is pyo,-cocartesian, where ppoy : Al Xpop,c U — Al
denotes the pullback of p along po p: Al — C.

(b)  We call p a locally cocartesian fibration if the pullback p,: Al Xacld — Al is a cocartesian
fibration for every a: A! — C.

There are dual notions of locally p-cartesian morphisms and locally cartesian fibrations.

5.18. Corollary. — Let p: U — C be a locally cocartesian fibration. Then p is a cocartesian
fibration if and only if the set of locally p-cartesian morphisms is closed under composition.

Proof sketch. First assume that p is a cocartesian fibration. Then cocartesian lifts are unique
up to equivalence, as we’ve seen in 5.6. A morphism being cocartesian is preserved under
pullbacks. Hence every p-cocartesian morphism ¢ is also pje,-cocartesian. The above-mentioned
uniqueness then implies that every locally p-cocartesian morphism must also be p-cocartesian.
So locally p-cocartesian morphisms being closed under composition reduces to the same assertion
about p-cocartesian morphisms, which is easy to check (for example, using Lemma 5.16).(5'9)

Conversely, assume that locally p-cocartesian morphisms are closed under compositions. Let
p: u — v be locally p-cocartesian. We wish to show that ¢ is also p-cocartesian. To this end,
we’ll verify that the diagram from Lemma 5.16 is a homotopy pullback for all w € Y. Using
Theorem 3.18, Lemma 3.19, and the five lemma (plus Remark 3.20), it’s enough to show that
for every o € Home(p(v), p(w)), the induced map on homotopy fibres over « is a homotopy
equivalence. So fix a: p(v) — p(w) in C. Let Uy, = Al x, cU be the fibre over a. Furthermore,
let ¢: v — v’ be a locally p-cocartesian lift of « (so that p(v') = p(w)). We claim that the
homotopy-commutative diagram

* 4)D>X<

Homy,, (v, w) Homy (v, w) Homy (u, w)

(*) l ", Jp /i, Jp
{idp(w)} o Hom¢ (p(v),p(w)) Ple)*, Home (p(u),p(w))

exhibits Homy,,, (v',w) both as the homotopy fibre of Homy (v, w) — Home(p(v), p(w)) over
{a} and the homotopy fibre of Homy,(u,w) — Home(p(u), p(w)) over {aop(v)}. As explained
above, if we could show this, we would be done.

To see this, observe that Hom animae in pullbacks are given as pullbacks of Hom animae in
the respective factors (which is straightforward to see from 2.11 and we’ll see a more general
assertion in Lemma 6.76(a)). Combining this with the assumption that v is locally p-cocartesian
and Lemma 5.16, we see that the following diagram consists of a homotopy pullback square
and a pullback square on the nose:

*
Homy,, (v, w) LA Homy,, (v, w) Homy (v, w)

l N lp ] l”

Hom1(0,0) —— Homa1(0,1) —*— Home (p(v), p(w))

(5:9) Closedness under composition is also clear intuitively: If 8: y — z is another morphism in C and we compose
a p-cocartesian lift of o with a p-cocartesian lift of 3, then we have connected an element of F(z) with its image
under F(8) o F(a) ~ F(Boa): F(x) — F(z). And that’s a p-cocartesian lift of 8 o a.
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Hence the outer rectangle must be a homotopy pullback too. Since Homa1(0,0) ~ # ~ {idp(w)},
it follows that the left square in (x) is a homotopy pullback. Since, by assumption, any choice
of composition ¥ o ¢ is locally p-cocartesian, the same argument can be used to show that the
outer rectangle in (x) is a homotopy pullback too. This proves that Homup(w) (v',w) agrees with
both homotopy fibres in question and we’re done. O

§5.3. Yoneda’s lemma

5.19. Theorem (Quasi-categorical Yoneda lemma). — Let C be a quasi-category, x € C an
object, and E: C — An a functor. Then evaluation at id, induces an equivalence of animae

€Viq,, * HomF(C,An) (HOIDC (l’, _)7 E) — E(ﬂj‘) :

Here Home(x,—): C — An is the functor from Example 5.5(b). A dual statement holds for the
contravariant Hom functor Home(—, z) and F(C°P, An).

For the proof we need, more or less, the fact that * ~ {id,} — C,, is a left anodyne map.
This is proved in [Lan21, Lemma 4.1.4] or [F-HCy, Corollary D.7]. Their proofs use some
constructions we haven’t mentioned yet, but we can circumvent these at the cost of showing a
slightly weaker statement, which will still be sufficient for our purposes.

5.20. Lemma. — Let C be a quasi-category and x € C an object. For every left fibration
X — C, the natural map

F(Cy/, X) — F(#,X) Xp(sc) F(Cy/,C)
s an equivalence of quasi-categories.

Proof sketch. We call a cofibration A — B of simplicial sets weakly left anodyne if the natural
map F(B,X) — F(A,X) xpac) F(B,C) is an equivalence of quasi-categories for all left
fibrations X — C. Every left anodyne map is weakly left anodyne by Corollary 3.10. Our goal
is to show that * — C,, is weakly left anodyne.

The idea to show this is as follows: Intuitively, it’s clear that id, € C,, is an initial object.
Therefore, there should be a natural transformation 7: const{id,} = id¢, ;- So 1 witnesses the
fact that  — C,, is a homotopy equivalence—except that C,, is not an anima. Still, as we’ll
see, 1 can then be leveraged to show the desired statement.

To construct 7, we can proceed as follows: The identity on Ar(C) is adjoint to a map
Ar(C) x Al — C. Combining this with the map C ~ F(x,C) — F(Al,C) ~ Ar(C) induced by
A' — % provides a map Ar(C) x Al — Ar(C); restricting this to C, / yields the desired map
n: Cyy X Al — C,/. Putting C;/ = (Cyy X Al)/(Cx/ x {0}), it’s easy to check that 7 factors
through a map 7: C;/ — C,/. The map * — C,, induces a map Al ~ 59— C;‘/. This fits into a
diagram

% Al *
l 11/ l 7/ l
Coy v/ u Cey

which exhibits * — C,, as a retract of Al — C: /- Hence to show that *+ — C,, is weakly left
anodyne, it’s enough to show the same for A — C;‘/. For this, note that {0} — Al is left
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anodyne, and so is the composition {0} — A! — C;/ since it is a pushout of C, x {0} — C,/ x Al
It’s easy to check that being weakly left anodyne is closed under 2-out-of-3, and so A! — C /
must be weakly left anodyne too. O

Proof sketch of Theorem 5.19. Let p: U — C be the unstraightening of £': C — An. Then

Homp (¢ An) (Homc(ac, -), E) ~ Homp,ef () (t: Cpy—Cip:U — C)
~ Honlcmoo/c (t: Coy—Cipr U — C)

using the straightening equivalence (Theorem 5.4(b)) and the fact that Left(C) — Cateoc is
fully faithful. By Corollary 5.15, the diagram

Homgas . ((t: Coy — C), (p: U — C))

| |

HomCatoo (Ca:/a Z/{) HomCatoo (C:c/7 C)

*

is a homotopy pullback, where = is sent to ¢: C,; — C. Now recall from Theorem 2.24
that Homcat., (—, —) ~ core F(—, —). Furthermore, we claim that the following diagrams are
homotopy pullbacks:

F(Cx/,u) - F(CI/,C) coreF(Cw/,U) — coreF(Cz/,C)
l 1, l and l an J
U C core(U) core(C)

For the left one, we use Lemma 5.20 and model category fact 5.12(b): We only need to check
that p: U — C is an isofibration. But any left fibration has lifting against {0} — N(J), as
this map is left anodyne (by an explicit horn filling argument). To see that the right square
is a homotopy pullback too, we need to check that core: QCat — Kan preserves homotopy
pullbacks. The deeper reason for this is of course that core: Cato, — An is right adjoint to
the inclusion An C Caty, (see Example 6.3(a)). For a direct argument, we can use 5.12: By
an easy application of Joyal’s lifting theorem (Theorem 4.1), core transforms isofibrations into
Kan fibrations and then by arguments as in the proof of Theorem 4.6 we can show that core
preserves pullbacks of quasi-categories in which at least one leg is an isofibration.

Combining the homotopy pullbacks so far (this kind of manipulation is fine by 5.12), we
find that

Homcatoo/c((t: Coy—C)y(p: U — C)) — > %

| s

core(U) core(C)

is a homotopy pullback, where * is sent to € core(C). As observed above, U — C is an
isofibration and so core() — (C) is a Kan fibration. Thus, the homotopy pullback agrees with
the ordinary pullback. Now core(U) X ore(cy {7} = core(U xc {z}) = U xc {r} ~ F(z) using
that the fibres U x¢ {x} = p~{z} of p are animae and compute the values of F. This is what
we wanted to prove. O

61



§5. LURIE’S STRAIGHTENING EQUIVALENCE

Finally, we would like to construct the functor Home: C°P x C — An. There are several
ways to do this and we’ll outline two possibilities in Constructions 5.21 and 5.22 below. We
won’t prove that they are equivalent (they are), but we won’t ever need that either. So you can
just choose whichever is your favourite.

5.21. Construction. — Consider the functor C,_: C — Cats, from Example 5.5(c). For
every x € C there is a natural functor C,, — C, so we would expect that C,_ lifts to a functor
C/—: C — Catyc. To construct such a lift, first note that for all quasi-categories D and all
y € D, we have an equivalence F(C,D,,) =~ F(C, D), consty (in fact, even an isomorphism of
simplicial sets), as can be checked by a simple calculation. Furthermore, Theorem 5.4(a) and
Example 5.5(a) imply that F(C, Catec)/constc = Cocart(C) (pr,: cxc—c)y holds. So to lift our
functor C,_ to Caty, ¢, it suffices to observe that the following diagram is a morphism of
cocartesian fibrations over C:

Are) L e x e

tl 11/
Pro

C

By the dual of Corollary 4.4, C;, — C is a right fibration for all z € C, hence C,_: C — Caty ¢
takes values in the full sub-quasi-category Right(C) C Cat,,/¢. Since Right(C) ~ F(C°P, An) by
the dual of Theorem 5.4(b), we obtain a functor

St(right)
=

Ye: € < Right(C) F(CP, An),

which we take as our definition of the Yoneda embedding (we’ll see in Corollary 5.27 below
that it is indeed fully faithful). Finally, we let Hom¢: C°P x C — An be the image of &¢ under
the “currying” equivalence F(C,F(C°P, An)) ~ F(C? x C,An). We define the twisted arrow
quasi-category (s,t): TwAr(C) — C°P x C to be the unstraightening of Hom¢: C°? x C — An
via Theorem 5.4(b).

Construction 5.21 has the advantage that it allows for a straightforward proof of Corol-
lary 5.27 below. On the downside, however, the unstraightening TwAr(C) is very inexplicit
in this description. So alternatively, one can write down an explicit simplicial model for
(s,t): TwAr(C) — C° x C and define Home to be its straightening,.

5.22. Construction. — For an ordinary category C, we define TwAr(C) to be the ordinary
category whose objects are arrows a:: © — y in C and whose morphisms (a: © — y) — (o/: 2/ —
y') are “twisted” commutative squares

—

T
al 1/ Ja
Y

/

x/

— sy

There are functors s: TwAr(C) — C° and ¢t: TwAr(C) — C that send a: * — y to x and v,
respectively. For a quasi-category C, we re-define TwAr(C) to be the simplicial set given by

TwAr(C),, == Homgget (N([n] % [n]),C) .
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Here [n]°P x [n] is the join of the totally ordered sets [n]°P and [n]. In general, if Z and J are
ordinary categories, we let Z x J be the category obtained from the disjoint union Z LI J by
adding precisely one morphism ¢ — j foralli € Z, j € J.

The natural maps (A™)°P = N([n]°?) — N([n]°P? * [n]) and A™ = N([n]) — N([n]P x [n])
induce maps of simplicial sets s: TwAr(C) — C° and t: TwAr(C) — C. It turns out that
(s,t): TwAr(C) — C° x C is always a left fibration; in particular, TwAr(C) is a quasi-category.
See [L-HA, Proposition 5.2.1.3] or [Lan21, Proposition 4.2.4] for proofs. We can then define
Homge: C°? x C — An to be the straightening of (s,t): TwAr(C) — C°? x C.

5.23. Remark. — If C is an ordinary category, then N(TwAr(C)) ~ TwAr(N(C)), no
matter how you define the right-hand side. So the notational overload checks out. If you use
Construction 5.22, this equivalence is even an isomorphism of simplicial sets and straightforward
to verify. If you use Construction 5.21 instead, the proof is still not too hard, but it requires you
to know how straightening /unstraightening works under the hood, at least for ordinary categories
(in which case straightening/unstraightening is known as the Grothendieck construction).

Let’s do three quick reality checks for our newly constructed functor Home:

5.24. Lemma. — Let Hom¢: C°P? x C — An be the functor from Construction 5.21 or from
Construction 5.22. For all x,y € C, the restrictions

Home |(zyxc: C — An and Homg |copyyy: CP — An
agree with the functors Home(x, —) and Home(—,y) constructed in Example 5.5(b).

Proof sketch, assuming Construction 5.21. It’s straightforward to see from the construction
that Home |copy (1 : C°P — An is the straightening of the right fibration C,, — C, which is also
the definition of Hom¢(—,y) in Example 5.5(b). Now let &/ — C be the unstraightening of
Homg |(z)xc- Note that evaluating a functor 7': C°P — An at z € C°P is the same as restriction
along F(C°P, An) — F({z}, An) ~ An. By the dual of Theorem 5.4(b), this corresponds to the
pullback functor z*: Right(C) — Right({z}) ~ An under the right straightening equivalence.
So Homg |{z}><C can be described as the composition

c
Home |(yyxc: € — Right(€) > Right({z}) ~ An.

5.10)

By “inspection”( , this means that the following diagram is a homotopy pullback:

U {z} xC

||

Are) . e xc

10 Unfortunately, verifying that the above diagram is a homotopy pullback requires us to know a little more
about how the straightening/unstraightening equivalence is constructed. The idea is to rewrite the equivalence
Home |(zyxc ~ z* 0 (C,_) as a pullback Home |(z3xc ~ (C/—) Xconstc const{z} in the functor quasi-category
F(C, Catoo) and then to transform this into a pullback in the quasi-category Cocart(C) via Theorem 5.4(a). This
immediately yields that the diagram is a pullback in Cocart(C), hence a homotopy pullback of quasi-categories.
However, to make this argument work as stated, we would need Lemma 6.12 below, which would lead to circular
reasoning. So instead, one has to show that x* o (C /—) can be written as a homotopy pullback in a suitable
simplicial model category whose underlying quasi-category (in the sense of Remarks 4.14 and 4.15) is F(C, Catoo).
In fact, the proof of Theorem 5.4 works by deducing it from a Quillen equivalence between simplicial model
categories . ..
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To compute this homotopy pullback, we use model category fact 5.12(b): We claim that
(s,t): Ar(C) — C x C is already an isofibration. Indeed, it’s an inner fibration by Corollary 3.10
and lifting of equivalences follows easily from Theorem 4.5. So we can just take the pullback on
the nose, which is C,, by 2.11. But Home(z, —): C — An was defined to be the straightening
of t: C,; — C. This shows Homg |(;}x¢ ~ Home (7, —). O

Proof sketch, assuming Construction 5.22. In this case, we need to show that the pullbacks of
(s,t): TwAr(C) — C° x C along {z} x C — C°? x C and C°? x {y} — C°P x C are equivalent
to C,; — C and (C/,)°® — CP, respectively. This is not quite trivial; see [L-HA, Proposi-
tion 5.2.1.10] or [Lan21, Lemma 4.2.7]. O

5.25. Lemma. — Let F': C — D be a functor of quasi-categories. Then the natural maps
Home(z,y) — Homp(F(z), F(y)) assemble into a natural transformation

Home(—, —) = Homp (F(-), F(—))
in F(C°P? x C,An). Here Hom¢ and Homp are the functors from Constructions 5.21 or 5.22.

Proof sketch, assuming Construction 5.21. Consider the morphism t: C X pp s Ar(D) — D. It
is a cocartesian fibration, which can be shown using Lemmas 5.13 and 5.16 in the same way as
Example 5.5(c). Hence the following diagram is a diagram of cocartesian fibrations over C:

AT(C) — C XF,D,s AT(D) Xt,D,FC ﬂ CxC

/M l 1/
t

t pro

C

After unravelling Construction 5.21 and using the fact that precompositions correspond to
pullbacks under straightening/unstraightening (see Theorem 5.4(a)), the diagram above will
induce the desired natural transformation Hom¢(—, —) = Homp(F(—), F(—)), provided we
can show the following claim:

(X) The cocartesian straightening of the middle vertical arrow is the composite functor

D,_
¢ 5D =5 Catyyp 25 Catog e

To prove (X) it’s enough to show that the straightening of t: C xpp s Ar(D) — D is F*oD,_,
since once again, precompositions correspond to pullbacks. Now the following diagram is a
homotopy pullback:

C XFD,s AI‘(D) —— CxD

J Jh lFXid'D
Ar(D) — Y pxp

(in fact, it’s a pullback on the nose, and (s,t): Ar(D) — D x D is an isofibration; see the
argument in the proof of Lemma 5.24). By a similar “inspection” as in the proof of Lemma 5.24,
this observation shows that the straightening of ¢: C xpp s Ar(D) — D is indeed F* o D,_,
thus proving (X). O

64


http://people.math.harvard.edu/~lurie/papers/HA.pdf#theorem.5.2.1.10

§5.3. YONEDA’S LEMMA

Proof sketch, assuming Construction 5.22. It’s clear from the construction that F' induces a
map TwAr(C) — TwAr(D). By the universal property of pullbacks, this factors over a map

TWAI'(C) I (COp X C) XFOPXF,'DOPX'D,(S,t) TWAI'(D) .

The latter is a morphism of left fibrations over C°? x C. Since precompositions correspond
to pullbacks under straightening/unstraightening (see Theorem 5.4(a)), we get a natural
transformation Home(—, —) = Homp(—, —) o (F°P x F') ~ Homp(F'(—), F(—)), as desired. [

5.26. Lemma. — Let F,G: C — D be functors of quasi-categories and let n: F = G be
a natural transformation. Then the natural transformation from Lemma 5.25 as well as 1.,
postcomposition with n, and n*, precomposition with n, fit into a commutative diagram

Home(—, —) —c Homp (G(-),G(-))

Fﬂ /M Hﬁ*

Homp(F(—),F(—)) . HomD(F(—),G(—))

in the quasi-category F(C°P x C, An).

Proof sketch. First observe that if C’ is another quasi-category, then Homey e ~ Home x Home:
holds in F((C x C")°P x (C x C’), An). Depending on whether you use Construction 5.21 or
Construction 5.22, this basically reduces to the observations that Ar(C x C’) = Ar(C) x Ar(C’)
and TwAr(C x C') = TwAr(C) x TwAr(C’), respectively, but in each case you need some model-
category arguments to do the reduction, similar to the “inspection” in the proof of Lemma 5.24.
We’ll skip these arguments.

Now we regard 7 as a functor n: A! x C — D. Then Lemma 5.25 can be applied to 7 to
obtain a natural transformation

Homai ¢(—, =) == Homp (n(=),n(-))

in the functor quasi-category F((A! x C)°P x (Al x C),An). Applying the usual “currying”
isomorphism, we obtain F((A! x C)°P x (A! x C), An) = F((A!)°P x A, F(C° x C, An)). Since
(AN)P x Al = Al x Al = 2] an object in F((AY)° x Al F(C° x C,An)) corresponds to
a commutative square in F(C°? x C, An). By unravelling the constructions, Homai ¢ (—, —)
corresponds to the following square:

Home(—, —) x Homa1(1,0) == Hom¢(—, —) x Homa1(1,1)

ﬂ ﬂ

Home(—, —) x Homp1(0,0) == Hom¢(—, —) x Homp1(0,1)

Indeed, this follows from the fact that Homa1, ~ Homa1 x Homg, as we’ve checked above;
also note that Homa1(1,0) sits in the top left corner rather than Homa1(0,0) because of the
way in which we identified (A!)°P x Al with (0?. Now observe that Homa1(1,0) = ), whereas
Homa1(0,0) = Homa1(0,1) = Homai1(1,1) = *. This implies that the top left corner of
the diagram above is const (), whereas the other corners are given by Home(—, —). Similarly,
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Homp(n(—),n(—)) corresponds to the following commutative square:

Homp (G(~), F(~)) === Homp (G(-),G(~))

A

Homp (F(=), F(—)) === Homp (F(-),G(-))

*

n

The natural transformation Hompiye(—,—) = Homp(n(—),n(—)) from Lemma 5.25 corre-
sponds to a morphism between these commutative squares. By inspection, this yields the
desired commutative square. O

5.27. Corollary. — For every quasi-category C, the Yoneda embedding &¢: C — F(C°P, An)
1s fully faithful.

Proof sketch. We must show that J¢ induces equivalences
Homg ('I7 y) — HomF(COP,An) (HOII]C(—, .CC), HOmC(—, y))

for all x,y € C. It’s clear from Theorem 5.19 that both sides are equivalent via evaluation at id,.
If you go with Construction 5.21, it’s straightforward to see that the morphism induced by k¢
is an inverse to evaluation at id,, so it is an equivalence too. If you prefer Construction 5.22,
this needs a little more work, which we omit. ]

We finish this section with two final remarks.

5.28. Model independence. — Recall from 0.3 that, at least in an ideal version of these
notes, we planned to proceed via the following steps:

(a) First, throughout §§2-5, we would set up the framework of quasi-categories.

(b) After that, we would identify a few key model-independent statements and prove (or black
box) them in the model of quasi-categories.

(c) Finally, starting from §6, all further proofs would be done in a model-independent fashion.

Step (a) is done by now, whereas step (c) lays ahead. So let’s talk about what the key statements
from step (b) are supposed to be. Of course, Theorems 4.5 and 4.6 are among them, as are
Theorem 5.19 as well as Lemmas 5.24, 5.25, and 5.26. In each of these cases, it’s clear that the
statement is really a model-independent one, even though we formulated them in the model of
quasi-categories. Somewhat surprisingly though, Theorem 5.4 can also be reformulated in a
model-independent way. In particular, there are model-independent definitions of cocartesian
and left fibrations! Indeed, if p: U — C is a functor of co-categories, Lemma 5.16 provides a
model-independent definition of a morphism ¢: u — v in U being p-cocartesian.The condition
that cocartesian lifts exist (Definition 5.2(b)) can be replaced by the condition that

Ar(cocart)(u) - AI"(C)

l i g

U p

is a pullback in Cate, where Ar(©)(1f) C Ar(U) is the full sub-co-category spanned by the
p-cocartesian morphisms. This model-independent definition of cocartesian fibrations recovers
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Definition 5.2, as we’ll see in Lemma 5.29 below. Finally, in light of Lemma 5.3, we can redefine
p to be a left fibration if it is a cocartesian fibration and Ar(©°®™®) (14) C Ar(if) is an equivalence
of co-categories.

In particular, Theorem 5.4 can be reinterpreted as a model-independent statement about an
equivalence of oco-categories Cocart(C) ~ Fun(C, Caty,) for any oco-category C. This statement
absolutely belongs to step (b) and it will play a much more prominent role in our treatment of
oo-categories than it does in ordinary category theory.

The example of cocartesian and left fibrations is only the first of many instances where our
constructions with quasi-categories can be retconned into model-independent constructions.
We’ll see more of that in model category fact 6.13.

5.29. Lemma. — The functor Ar(®) 1) — U xc , Ar(C) is always fully faithful (where
the pullback is taken in Catso). Furthermore, the following conditions are equivalent:

(a) Ar@) @)y — Y xc, Ar(C) is also essentially surjective. In particular, it must be
an equivalence (by Theorem 4.6), so that p: U — C is a cocartesian fibration in the
model-independent sense.

(b)  For every factorisation p: U — U — C into an equivalence of quasi-categories followed by
an isofibration, U' — C is a cocartesian fibration in the old sense.

(¢)  For some factorisation p: U — U' — C into an equivalence of quasi-categories followed by
an isofibration, U' — C is a cocartesian fibration in the old sense.

Proof sketch. To show that Ar(®) (1f) — U x¢ , Ar(C) is fully faithful, use Lemma 5.13 to
compute Hom on either side and Lemma 5.16 to show that they coincide. This is fun to figure
out yourself so we’ll leave it to you.

The implication (b) = (c¢) is trivial. For (¢) = (a), it’s enough to show that the functor
Ar(eocat) 41y — Y x ¢, Ar(C) is essentially surjective, because U — U’ is an equivalence of quasi-
categories. Since U’ — C is a cocartesian fibration, it’s an isofibration too, hence the pullback
U xc s Ar(C) in Cato, can also be taken in simplicial sets (see 5.12(b)). Furthermore, the
condition from Definition 5.2(b) translates into Ar(®% ") — U’ x¢ , Ar(C) being surjective
on O-simplices. Hence it must be an essentially surjective functor of quasi-categories.

By the same reasoning, to show (a) = (b), we must show that for all factorisations
p: U — U — C into an equivalence followed by an isofibration, the map of simplicial sets
Ar(eoeat) 4y — Y’ xc , Ar(C) is surjective on O-simplices. The condition from (a) tells us
this map is an equivalence of quasi-categories. In particular, it hits every equivalence class
of O-simplices. To show that it really hits every O-simplex, it then suffices to show that
Ar(coart) @4y Y xe o Ar(C) is an isofibration. Observe that Ar(U’) — U’ x¢ Ar(C) is an
isofibration—it’s an inner fibration by Corollary 3.10 and lifting of equivalences can be shown by
a straightforward argument, using that the isofibration 4’ — C admits lifting of equivalences too.
Since Ar(®®) (1) C Ar(U’) is a full sub-quasi-category in the sense of 2.16 and furthermore
closed under equivalences, the map Ar(®°®™®) (4") — Ar(U’) must be an isofibration. It follows
that Ar(©®™) (") — 1’ x¢ 4 Ar(C) is an isofibration too, as desired. O

5.30. Functoriality of the Yoneda lemma. — Let C be a quasi-category. Let’s write
Fun(C°P, An) =: PSh(C) for the oco-category of presheaves on C.(>11) For an object z € C and a

1971 §1 we had defined PSh(C) := Fun(C, Set) for ordinary categories. This is, of course, not compatible with
the new definition. In the following, all presheaves will be presheaves of animae and we’ll never talk about
presheaves of sets again.
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presheaf F: C°P — An, the dual of Theorem 5.19 tells us that
eviq, : Hompgy(c) (Jic(x), E) = E(x)

is an equivalence. It turns out that this equivalence is functorial both in z and in E. Of
course, thanks to Theorem 4.5, the only difficulty lies in making the map eviq, functorial.
It’s straightforward to make it functorial in E, but I couldn’t find any easy argument for
functoriality in x. So if you do, please tell me!

One way of producing this natural transformation is to construct it on the level of simplicially
enriched functors. Implicitly, this requires that the construction of Home: C°P xC — An via sim-
plicially enriched functors agrees with our construction; at least in the case of Construction 5.22,
this was done by Lurie [L-HA, Proposition 5.2.1.11]. A somewhat nicer argument, which is at
least model-independent (but makes heavy use of §6), goes as follows: Let’s instead construct
an inverse of eviq, in a functorial way. That is, we are looking for a natural transformation

1+ idpgnc)y = Hompgy ey (&e(—), —) -

We'll see in Lemma 6.31 that idpgyc) is the oo-categorical left Kan extension of k¢ along itself.
So it’s enough to construct a natural transformation &¢ = &§ Hompgy(cy(&e(—), —); this can be
taken to be the image of the natural transformation Home (—, —) = Hompgyc)(&c(—), &e(—))
from Lemma 5.25 under the “currying” equivalence Fun(C°? x C, An) ~ Fun(C, PSh(C)).

Even though this argument looks super fishy, I think it doesn’t run into vicious circles.
As far as I can see, we only used material up to Lemma 6.31, whereas the first time we need
functoriality of the Yoneda lemma will be, conveniently, in Lemma 6.32.
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§6. oo-Category theory

Armed with Lurie’s straightening equivalence and the quasi-categorical Yoneda lemma, we will
spend §§6.1-6.4 redeveloping the theory from §1 (and more) in the setting of quasi-categories.
In §6.5 we will see a first major application to topology. After that, there will be a lengthy
appendix (§§6.6-6.10) in which we discuss presentable co-categories and prove Lurie’s adjoint
functor theorem.

Even though, implicitly, we work with quasi-categories, our arguments in §§6.1-6.4 will
be almost entirely model-independent; the same is true, at least in large parts, for §§6.5-6.10.
So from now on, instead of quasi-categories, we’ll simply write oco-categories. We’ll consider
ordinary categories as oco-categories via the nerve construction, but we’ll always suppress N
in our notation.(%!) Furthermore, we’ll write Fun(C, D) instead of F(C, D) for oo-categories C
and D. We'll only switch back to the old terminology in the few instances where non-model-
independent arguments are used. I believe these few exceptions could easily be treated in any
other model of co-categories as well. Also recall from 5.28 that many constructions and results
so far (like cocartesian/left fibrations) can be reformulated in a model-independent fashion,
and this is how we’re going to use them.

§6.1. Adjunctions

6.1. Definition. — Let L: C — D be a functor of co-categories.

(a) Let y € D. An object x € C is a right adjoint object to y under L if there exists an
equivalence
Home(—,z) ~ Homp (L(-),y)

in the functor category Fun(C°P, An).
(b) A functor R: D — C is a right adjoint of L if there exists an equivalence

HomC(_a R(_>) ~ Homp (L(_)7 _)
in the functor category Fun(C°? x D, Set). In this case we write L - R.

6.2. Lemma (“Adjoints can be constructed pointwise”). — A functor L: C — D has a right
adjoint if and only if every y € D has a right adjoint object x € C.

Proof. One implication is trivial: If R: D — C is a right adjoint of L, then R(y) is a right adjoint
object of y for every y € D. For the other implication, consider Homp(L(—),—): C°? x D — An
as a functor R: D — Fun(C°?, An). Our assumption implies that R takes values in the image
of the Yoneda embedding X¢: C — Fun(C°P, An); namely, R(y) ~ Home(—,z) if z € C is a
right adjoint object of y € D under L. Since X¢ is an equivalence onto its image, we obtain a

functor R: D — C with the required properties. ]

6.3. Example. — It’s clear that any adjunction of ordinary categories is also an adjunction
of oco-categories. Furthermore, we already know some non-trivial examples of adjunctions of
oo-categories:

(6-D1n particular, the partially ordered set [n] is now identified with its nerve, the quasi-category A™. However,
we’ll continue to write A™. There are at least to reasons for this. First, I believe A™ is notationally easier to
parse for a human brain. Second, once we reach §7, we’ll consider simplicial objects in co-categories, and it will
become necessary to keep the co-category A™ and the object [n] € A notationally separate.
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(a) The inclusion An C Caty, is fully faithful (by Theorem 2.24 and Corollary 3.11) and
has both adjoints: A right adjoint core: Cats, — An and a left adjoint |-|: Cate, — An
sending C to |C|, the localisation of C at all its morphisms.

(b) For every oo-category C, the functor — x C: Cats — Cats has a right adjoint, which
sends an co-category D to Fun(C, D).

Both (a) and (b) can easily be seen using Lemma 6.2: For (a), it’s enough to check that the
functors i: core(D) — D and p: C — |C| induce functorial equivalences

Tse HomAn(—,core(D)) —= Homcgt (—, D), p*: HomAn(|C|,—) = Homcyt, (C, —)

via post- and precomposition, respectively. Indeed, equivalences can be checked pointwise by
Theorem 4.5 and then we can apply Lemma 4.11 (and a similar assertion for core). For (b),
observe that we have an evaluation functor ev: Fun(C,D) x C — D for all co-categories C and
D. If we work with quasi-categories, this functor is simply given by the counit of the adjunction
— x C: sSet = sSet : F(C, —). Using Lemma 6.2, it’s enough to show that the composition

Homcay, (—, Fun(C, D)) LN Homca, (— % C,Fun(C, D) x C) =% Homcy (— x C, D)

is an equivalence. Again, Theorem 4.5 allows us to check this pointwise, and then Theorem 2.24
reduces everything to the adjunction — x C: sSet = sSet : F(C, —) of ordinary categories.

In particular, (b) allows us to define a functor Fun(C, —): Cats, — Cato. With a little
more work(®?) | these functors can be assembled into a two-argument functor

Fun(—, —): Catl x Cato, — Caty .
Next, we’ll characterise adjunctions in terms of unit and counit.

6.4. Construction. — Let L: C 2= D : R be an adjunction. We obtain a natural trans-
formation u: ide¢ = RL, called the unit of the adjunction, as follows: Consider the natural
transformations Hom¢(—, —) = Homp(L(—), L(—)) ~ Homp(—, RL(—)), where the first one
is induced by functoriality of L and the second by the given adjunction. We can consider these
as a natural transformation &¢ = X¢ o RL in Fun(C, Fun(C°P, An)). Since K¢ is fully faithful,
we obtain a natural transformation w: ide = RL, as desired. Dually, there is also a counit
c¢: LR = idp, as usual.

(6-2)Here’s the argument: First, let # * be the discrete category on two objects. In Remark 6.10 below, we’ll
construct a functor lim: Fun(# #, Cates) — Cates. Under the identification Fun(x #, Cates) >~ Cateo X Catoo,
this functor sends a pair (C, D) of co-categories to the product C x D. By “currying”, this functor corresponds to a
functor P: Cate — Fun(Cats, Cate) sending C to P(C) ~ — X C: Catoo — Catoo. By the way, this is also how
you construct the functor — xC in (b). As we’ve seen above, P(C) is a left adjoint, and so P factors through the full
sub-oo-category Fun®™(Cateo, Cateo) € Fun(Catoo, Cates) spanned by the left adjoint functors. By Corollary 6.8
below, extracting adjoints induces an equivalence of co-categories Fun®(Catoo, Cateo) =~ Fun®™(Cateo, Cateo)°P.
Thus, P°P can be regarded as a functor P°P: Cate®® — Fun™(Cateo, Cateo), sending C to P°P(C) ~ Fun(C, —).
“Currying” back, we obtain the desired functor Fun(—, —): Cat2l x Cate — Cate.

It’s true that the functor core Fun(—, —) agrees with Homcat. (—, —), but this is not so easy to see (and
we won'’t need it). One way would be to turn F(—, —): QCat x QCat — QCat into a Kan-enriched functor
and show that N®(F(—, —)) agrees with Fun(—,—). This is easy since N® turns Kan-enriched adjunctions
into adjunctions of co-categories. Then one has to check that Homcai. (—, —) agrees with N® applied to
core F(—,—): QCat x QCat — Kan. At least for Construction 5.22, this is done in [L—HA, Proposition 5.2.1.11].
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6.5. Lemma (Triangle identities). — Let L: C = D : R be an adjunction of co-categories.
Then there are commutative diagrams

=—— LRL —— RLR
Nk ST

where i, and ip are pointwise'53) the identity (so they are equivalences by Theorem 4.5).
Conversely, if L, R are functors and v : id¢ = RL, ¢: LR = idp are natural transformations
that fit into diagrams as above, where iy, and ir are equivalences (not necessarily pointwise the
identity), then L and R determine an adjunction.

Proof. First observe that the composites

Homp (L(—), —) =% Homp (RL(—), R(—)) 2% Homg (—, R(—)),
Home (—, R(—)) == Homp (L(=), LR(=)) = Homp (L(-), —)

agree pointwise with the adjunction equivalence Homp(L(—), —) ~ Hom¢(—, R(—)) and its
inverse, and are thus an equivalences themselves (Theorem 4.5). Indeed, Yoneda’s lemma
(see the dual of Theorem 5.19) tells us that for every fixed x € C, a natural transformation
Homp(L(z), —) = Homp(z, R(—)) is determined up to contractible choice by the image of
idg(z): L(z) — L(x), which is a morphism # — RL(x). For the adjunction equivalence
Homp(L(—),—) ~ Home(—, R(—)), that morphism is the unit uy: @ — RL(x) by definition.
But the image of idy(,): L(z) — L(x) under u* o R is also u,. The same argument applies to
show that ¢, o L agrees pointwise with Home(—, R(—)) ~ Homp(L(—), —).
Now to prove the triangle identities, consider the diagram of natural transformations

Homyp (L(-), —) £ Home (RL(—), R(—)) — Home (—, R(—))

Lﬂ Va HL
Homp (LRL(-), LR(-)) 5 Homp(L(~), LR(-))

(cL)* C*ﬂ 11/ HC*

Homp (LRL(—), —) ECDIN Homp (L(—), —)

"

The top right square commutes by functoriality of L, the bottom right square commutes
since pre- and postcomposition commute, and the left cell commuting is a consequence of
¢: LR = idp being a natural transformation (see Lemma 5.26). Now walking around the
bottom part of the diagram shows that (cL)* o (Lu)*: Homp(L(—),—) = Homp(L(—),—)
agrees with ¢, o L o u™ o R, which is pointwise the identity as seen above. This establishes the
first triangle identity; the second one is analogous.

Conversely, if L, R are functors and « : id¢ = RL, ¢: LR = idp are natural transformations
satisfying the triangle identities, then the commutative diagram above (together with its dual)

(6:3) For ordinary categories, if two natural transformations agree pointwise, then they already agree. Indeed, in
the ordinary world, a natural transformation is just pointwise data, subject to certain conditions. But this no
longer works in co-land. Nevertheless, it should be true that i;, and ir are just idz and idg. If you know why,
please tell me. In any case, this slightly weaker form of the triangle identities doesn’t cause any problems.
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shows that u* o R and ¢, o L induce equivalences between Homp(L(—), —) and Hom¢(—, R(—))
(which are pointwise inverse if i;, and ip are pointwise the identity). O

6.6. Corollary. — Let L: C 2 D : R be an adjunction and let T be another category. Then
the pre- and postcomposition functors determine adjunctions

Lo—: Fun(Z,C) = Fun(Z,D) :Ro —,
—oR: Fun(C,Z) = Fun(D,Z) : — o L.

Proof. The proof of Corollary 1.5 can be copied verbatim. O

To finish this subsection about adjunctions, we connect adjunctions to the theory of
straightening /unstraightening. This won’t be needed in the rest of this text (so feel free to skip
it), but it’s nice to know and a standard fact in other treatments of co-categories.

6.7. Lemma. — Let F: C — D be a functor of co-categories, corresponding to a functor
Al — Catoo (see Ezample 2.23), which in turn corresponds to a cocartesian fibration p: U — A'
by Theorem 5.4(a). Then the following are equivalent:

(a) F admits a right adjoint G: D — C.

(b) The cocartesian fibration p: U — Al is also a cartesian fibration.

Furthermore, in this case G agrees with the functor classified by the cartesian straightening
St (p): (A1)°P — Caty.

Proof. The crucial observation is the following claim:

(X) The functor Homp(F(—),—): C°? x D — An is equivalent to the composition

op ig. xi1 op Homy,
CPxD——UPxU —= An.

Here the first arrow is given by ig: C ~ {0} xa1r U = U andiy: D ~ {1} xa1 U — U.

To prove (X), first observe that ig: C — U and i1: D — U are fully faithful. Indeed, Hom
animae in pullbacks are given as pullbacks of Hom animae in the respective factors (which
is straightforward to see from 2.11 and we’ll see a more general assertion in Lemma 6.76(a)).
So pullbacks of fully faithful functors are still fully faithful and it remains to observe that
{0} — Al and {1} — A! are both fully faithful, which is obvious. Now consider the following
commutative square in Cate:

C—=2¢C
Rt
c—t.p

It can be viewed as a natural transformation constC = F in Fun(A!, Cats,). After cocartesian
unstraightening, it thus induces a morphism ¢: A! x C — U in Cocart(A'). Consider the

composite

(AIXC)OPXD&UOPXU%

By unravelling the definitions and using that i;: D — U is fully faithful, this composite can
be regarded as a natural transformation n: Homy,(ig(—),i1(—)) = Homy (i1 F(—),i1(—)) in
Fun(C°? x D, An). We wish to show that 7 is an equivalence of functors. By Theorem 4.5
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this can be checked pointwise. So fix z € C, y € D. By unravelling the constructions
Ny : Homy(io(w),41(y)) — Homy (i1 F(x),41(y)) is given by precomposition with the mor-
phism ¢, : ig(z) — 1 F(z) in U. As we've seen in 5.1, ¢, is a cocartesian morphism. Since
Hompa1(1,1) ~ Homa1(0,1), Lemma 5.16 implies that precomposition with ¢, must be an
equivalence. Thus 7 is an equivalence of functors, as desired. To finish the proof of (X)), it re-
mains to observe Homy (i1 F'(—), —) ~ Homp(F'(—), —) as we've checked above that i;: D — U
is fully faithful.

Now assume that p: i/ — Al is a cartesian fibration too and let G': D — C correspond
to St (p): (AP — Cateo. Then (X) and its dual provide an equivalences of functors
Homp(F(—),—) ~ Homy(io(—),i1(—)) ~ Home(—,G(—)), so F and G are adjoints. This
proves (b) = (a).

Conversely, suppose G: D — C is a right adjoint of F. Fix y € D. Then (X) and the fact
that g is fully faithful shows

Homy, (io(—), i0G(y)) ~ Home(—, G(y)) ~ Homp (F(—),y) ~ Homy (io(—),i1(y)) .

The image of id;¢/(,) defines a morphism )y : ioG(y) — 41(y) in U. Furthermore, Yoneda’s
lemma (or more precisely, the dual of Theorem 5.19) shows that any natural transformation
Home¢(—, G(y)) ~ Homyy(io(—), 0G(y)) = Homy(io(—),41(y)) is uniquely determined by the
image of idg(,). That uniqueness ensures that the chain of equivalences above is must be given
by postcomposition with ¢,. Hence the dual of Lemma 5.16 shows that 1, is a p-cartesian
morphism and we have constructed a sufficient supply of p-cartesian lifts. This finishes the

proof of (a) = (b). O
6.8. Corollary (“Extracting adjoints is functorial”). — Let Fun”, Fun® C Fun denote the
full sub-oo-categories spanned by the left/right adjoint functors and let Cat]go, Catljo C Catyo be

the non-full sub-co-categories (in the sense of 2.16) spanned by all objects but only the left/right
adjoint functors.

(a) For all co-categories C and D, sending a left adjoint functor L: C — D to its right adjoint
R: D — C can be turned into an equivalence of co-categories Fun®(C, D)°P ~ Fun®(D, ().

(b) There exists an equivalence of co-categories Catl ~ (Catl )P which is the identity on
objects and sends morphisms in Catgo, that s, left adjoint functors L: C — D, to their
right adjoints R: D — C.

Proof sketch. For the equivalence in (a), it suffices show that the essential images of Fun®(C, D)
and Fun®(D, C)°P under the fully faithful Yoneda embeddings

Fun®(D, C) Leda, Fun (D, Fun(C°?, An)) ~ Fun(C’ x D, An),

Fun®(C, D) = Fun®(C?, D7) 22,

Fun (C°?, Fun(D, An)) ~ Fun(C’ x D, An)

coincide. Using Lemma 6.2 and the definition of the Yoneda embedding, it’s straightfor-
ward to check that both essential images consist of those functors H: C°® x D — An such
that for every = € C there exists a y € D such that H(z,—) ~ Homp(y, —) and for every
y' € D there exists an 2/ € C such that H(—,y') ~ Homg(—,2’). This proves that there
exists an equivalence Fun'(C, D)? ~ Fun®(D, () as desired. Furthermore if L: C = D :R
is an adjunction, then the Yoneda embeddings above send both R and L to the functor
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Hom¢(—, R(—)) ~ Homp(L(—),—): C°? x D — An. So the equivalence we’ve constructed is
really given by extracting adjoints.

To prove (b), we grossly neglect set theory and regard both Cat{;o and CatoRo as objects in
Catso. This can be repaired by considering universes or, with some care, by imposing cardinality
bounds (similar to the argument in Lemma 7.18 below, where we do this in detail). We’ll show
that there exists a functorial bijection mo Homgas., (C, Catl ) = mo Homcys (C, (Cat® )oP) for
all co-categories C; if we can do this, then the Yoneda lemma in the ordinary category ho(Catyo)
will show that CatI;o and Catgo are isomorphic in the homotopy category, hence equivalent
as oo-categories. We know Homcg (C,Catl) ~ core Fun(C, Catl) by Theorem 2.24 and
Fun(C, CatL ) ~ Cocart(C) by Theorem 5.4(a). Let F': C — Cato, be a functor and p: U — C
be its cocartesian unstraightening. By Lemma 6.7, F' factors through Cattl(;o — Cateo if and
only if for all a: A! — C, the pullback p,: Al XacU — A' is not only a cocartesian, but
also a cartesian fibration. In other words, p is a locally cartesian fibration in the sense of
Definition 5.17. Since right adjoints compose, it’s clear that locally p-cartesian morphisms are
closed under composition, and so p is automatically a cartesian fibration by Corollary 5.18. In
summary, we obtain a bijection

7o Homegy (C, Cat ) = 7o core Bicart(C) ,

where we define Bicart(C) C Caty /¢ as the non-full sub-oo-category spanned by the bicartesian
fibrations. That is, objects of Bicart(C) are those p: U — C that are both cocartesian and carte-
sian fibrations, and morphisms are those functors in Caty, ¢ that preserve both p-cocartesian
and p-cartesian morphisms. In the same way, we find bijections

7o Hom C, (Cat?)oP) =~ 1, Hom C°P. Cat®) = 7y core Bicart(C) .
0 Catoo( ) 00 0 Catoo ) 00 0

Hence 7o Homegs_ (C, Caty ) = o Homeas. (C, (Catl )°P) and so Catl ~ (Cat} )°P, as argued
above. By unravelling the cases C ~ % and C ~ A! (the latter using Lemma 6.7), we find
that this adjunction is really the identity on objects and given by extracting adjoints on
morphisms. ]

§6.2. Limits and colimits

6.9. Definition. — Let Z and C be oco-categories.

(a) Let F: T — C be a functor of co-categories. A colimit of F', denoted colim F' (or sometimes
colim;ez F'(7)), is a left adjoint object of F' under const: C — Fun(Z,C) that sends z € C
to the constant functor with value x. Dually, a limit of F, denoted lim F' (or sometimes
lim;ec7 F'(7)), is a right adjoint object of F' under const.

(b) We say that C has all Z-shaped colimits or all Z-shaped limits if all functors Z — C admit
colimits or limits, respectively.

6.10. Remark. — If C has all Z-shaped colimits, then Lemma 6.2 implies that forming
colimits assembles into a functor colim: Fun(Z,C) — C. The same is true for limits.

6.11. Lemma. — Left adjoint functors between oco-categories preserve colimits and right
adjoint functors preserve limits.

Proof. The proof of Lemma 1.7 can be copied verbatim. O
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6.12. Lemma (“Colimits in functor oo-categories are computed pointwise.”). — Let C, D,
and I be oo-categories such that D has all Z-shaped colimits. Then Fun(C,D) has again all
Z-shaped colimits and the evaluation functor

evy: Fun(C,D) — Fun({z},D) ~ D
preserves L-shaped colimits for all x € C. A dual assertion holds for limits.
Proof. The proof of Lemma 1.8 can be copied verbatim. O

Our next goal is to analyse limits and colimits in the co-categories An and Cats,. We start
with a procedure for computing pullbacks and pushouts which is very useful in practice.

6.13. Pushouts and pullbacks in An and Caty,. — Pushouts and pullbacks in An or
Catso can be computed using the following recipe:

(a) Write down the diagram on the level of Kan complexes or quasi-categories.

(b) For pushouts, use Lemma 3.12 to replace one leg by a cofibration. For pullbacks, use
Lemma 3.12 to replace one leg by a Kan fibration/isofibration (depending on whether you
take the pullback in An or Caty, respectively).

(c) Take the pushout or pullback in sSet.

(d) For pushouts, the result of (¢) will usually not be a Kan complex/quasi-category, so we
need to use Lemma 3.12 once again to replace it by a Kan complex/quasi-category. For
pullbacks, this step is unnecessary.

We’ve already seen the case of pullbacks in “Definition” 5.11 and model category fact 5.12.
The procedure above is a consequence of the general model category fact that a pushout of
cofibrant objects in a model category is automatically a homotopy pushout too if at least one
leg is a cofibration, and a pullback of fibrant objects is a homotopy pullback if at least one
leg is a fibration. See [Cis19, Corollary 2.3.28] for a proof of the general fact and [L-HTT,
Theorem 4.2.4.1, Remark A.3.3.14] or [F-HCy, Theorem X.21] for a proof that homotopy
colimits/limits in a simplicial model category agree with colimits/limits in the underlying
oo-category.

The procedure above implies that many pullback constructions we’ve seen so far with
simplicial sets are also pullbacks in An or Cats, and can thus be reinterpreted as model-
independent constructions. For example, the diagram from 2.11 defining C,, and Hom¢ (z,y)
is also a pullback in Cat, because (s,t): Ar(C) — C x C is an isofibration (see the proof
of Lemma 5.24). As another example, if p: «f — C is a cocartesian fibration, then the fibre
p~H{x}, which computes the value of the associated functor Stleocart) . ¢, Catoo at z, can also
be identified with the oco-categorical pullback {x} x¢ U, because any cocartesian fibration p is
automatically an isofibration. We’ll often use these facts without mention. Let us also mention,
and later use without mention, that An C Caty, preserves both pushouts and pullbacks; in fact,
it preserves all limits and colimits by Example 6.3(a) and Lemma 6.11. |

But there’s also a description of limits and colimits that works in full generality and
doesn’t rely on the simplicial model.(%% To formulate this, we need to introduce some
notation. Let Z be an oco-category and let p: Y — T a cocartesian fibration. Furthermore, let

6914 like to see a proof of model category fact 6.13 using only Lemma 6.14 below; I'm not sure if this works,
so I'll leave it to you to figure out.
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Funz(Z,U) = Fun(Z,U) Xpyn(z,7) {idz}, the pullback being taken in Cato, (but we could take
it in sSet as well by model category fact 5.12) and let

Fun{™(Z, 1) € Funz (Z,U)

be the full sub-oo-category spanned by those Z — U such that all morphisms in Z are sent to
p-cocartesian morphisms. Note that if p is a left fibration, then

Fun{*“™ (T, 1) ~ Funy(7,U) ~ Homcat,. z (Z,U)

Indeed, the first equivalence is clear since in this case all morphisms in i/ are p-cocartesian by
Lemma 5.3. The second equivalence follows from Corollary 5.15 combined with the facts that
core: An — Caty preserves pullbacks (because it is a right adjoint by Example 6.3(a)) and
that Funz(Z,U) is already an anima (by Corollary 3.10 and Corollary 4.3).

6.14. Lemma. — Let F: T — Caty be a functor and let p: U — T be its cocartesian
unstraightening. Then the colimit and the limit of F' in Cato, are given by

coéizm F (i) ~ U[{cocartesian morphisms}_l] and hen% F(i) ~ Fun(Icocm) (Z,U).

In particular, if F' takes values in An, then the colimit and the limit of F' in An are given by

C(i)élll_n F(i) ~ U] and 121€Ilzl F(i) ~ Homcat,, . (Z,U) .

For the proof, we need the following lemma. In Corollary 6.17, a more general version of
Lemma 6.15 is proved, but we need this special case as an input.

6.15. Lemma. — For every co-category C, the functor Homcat  (C, —): Catoe — An pre-
serves pullbacks.

Proof sketch. As explained in footnote (6.2) in Example 6.3, Lurie constructs an equivalence of
functors Homcat (—, —) ~ core Fun(—, —) in [L-HA, Proposition 5.2.1.11], provided that you go
with Construction 5.22. Thanks to Lemma 5.24, this proves Homcay, (C, —) ~ core Fun(C, —),
no matter whether you use Construction 5.21 or 5.22. Now the claim is obvious, since both
core: Cato, — An and Fun(C, —): Cate — Catso are right adjoints by Example 6.3.

In fact, to show preservation of pullbacks in this way, we can get away with a little less
than Lurie’s result: We only need that Homcat  (C, —) and core Fun(C, —) agree on objects and
morphisms. The former is clear by Theorem 2.24. Unfortunately, the latter still needs some
care (and simplicial arguments): We know what core Fun(—, —) does on morphisms, because it
agrees with N (core F(—, —)) (the argument is in Example 6.3). For Homcy;__ (C, —), we need
to unravel what straightening does on morphisms; this is quite nasty, but doable via 5.6. [

Proof sketch of Lemma 6.14. The idea in all of these statements is that the unstraightening of
a constant functor const X is precisely the projection pry: X x Z — Z. Let’s first consider the
case of colimits in An and see where this ideas takes us. To show that |U/| is the desired colimit,
we want an equivalence Homay (U], —) ~ Hompyy,(z an) (F, const(—)). Let’s start manipulating
the right-hand side. By Theorem 5.4(b), Fun(Z, An) ~ Left(Z), hence

HomFun(I,An) (Fa COIlSt(—)) = HomLeft(I) (u7 Un(left) (COHSt(—))) .
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The unstraightening of const X : Z — An is the projection X x Z — Z, functorially in X € An
(this is a consequence of the fact that precomposition corresponds to pullback in Theorem 5.4(a)).
So we can continue our manipulations as follows:

HomLeft(I) (U, — x T) ~ Homcgy U,— x1I)
~ HomCatoo (Z/{, — X I) X Homcat o, (U,T) {p}
~ (Homgat,, (U, —) x Homcat,, (U, T)) XHomen,.. w,7) (P}

~ Homcay (U, —) .

oo/I(

In the first step we use that Left(Z) — Cat/r is fully faithful. In the second step we use
Corollary 5.15; by Lemma 6.12, the pullback is automatically functorial provided the square
from Corollary 5.15 is functorial, which it clearly is by construction. In the third step, we use
Homcay (U, — X T) ~ Homcay,, (U, —) x Homca, (U, Z) by Lemma 6.15. Finally, in the fourth
step we use that Homcat., (U, Z) XtHome,, w.z) {P} = {p} is just a point.

It remains to observe Homa, (||, —) ~ Homcat (U, —) because |-|: Catee — An is left
adjoint to the inclusion An C Cats. Thus, we have proved colim;ez F'(i) ~ |[U| by verifying
that || satisfies the desired universal property.

Let us now indicate the necessary changes to prove the other cases. For limits in An, we can
use a similar calculation; the crucial step is Homcag, (—, Funz(Z,U)) ~ Homcay, . ((—) x Z,U),
which uses Lemma 6.15, the adjunction from Example 6.3(b), and Corollary 5.15. We leave
the details to you. When taking colimits or limits in Cat.,, we can no longer argue that
Cocart(Z) — Caty 7 is fully faithful. Instead, in the colimit case, Homggeart(z)(U, — X I) C
Homgat_ /T (U,C x T) is a collection of path components by Lemma 4.9 and we have to check
that it agrees with Homcgy, (U[{cocartesian morphisms}~!], —) € Homcye., (U, —), which is
also a collection of path components by Lemma 4.11. This is straightforward. A similar
argument applies in the limit case. ]

6.16. Corollary. — Let F': T — C be a functor of co-categories. A natural transformation
cp: consty = F exhibits y € C as a limit of I if and only if the natural map

*. H =, limH F(i
¢+ Home(z,y) — lim Home (2, F(7))

is an equivalence for all x € C. A dual assertion holds for colimits.

Proof. The unstraightening of Home(x, F(—)): Z — An is the left fibration F*(C,,) — Z, the
pullback of the slice-oo-category projection t: C,, — C along F': Z — C. Hence, according
to Lemma 6.14, lim;ez Home(, F'(i)) ~ Homcas . (Z, F*(C;/)). Let us now manipulate the
right-hand side as follows:

oo /T

HomCatoo/I (I, F*(Caj/)) = HomCatoo (I, F*(Cm/)) Xt,HomCatoo (Z,7) {ldI}
~ Homgat, (Z, {z} xcs Ar(C) Xic.r T) Xy Homen. (z,7) 117}
~ {const &} XHomey, _ (7,0),s HoMCate, (Z, Ar(C)) X4 Homey,_ (z.0) {F}

~ Hompyy(z,c)(const z, F) .

In the first step we plug in Corollary 5.15 to write Homgag__ /7 8s a pullback. In the second
step, we plug in F"*(C,/) = {z} x¢ s Ar(C) x¢c,r Z. In the third step we use Lemma 6.15 and
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simplify the pullback. Finally, in the fourth step we write Homcat. (Z,C) ~ core Fun(Z,C)
and Homc,t (Z, Ar(C)) ~ Hom(A!, Fun(Z,C)) ~ core Ar(Fun(Z,C)) and use the definition of
Hompyy(z,c)(const x, F) from 2.11; as we’ve seen in model category fact 6.13, the pullbacks in
sSet from 2.11 can be taken in Cate as well, and since Hompyy,(z,¢)(const z, F') is an anima
anyway, it doesn’t matter that we apply core everywhere.

Therefore, at least pointwise, cj. takes the form cf.: Home(x,y) — Hompyyz c)(const z, F)
for all x € C. Since a natural transformation is an equivalence if and only if it is a pointwise
equivalence (Theorem 4.5), we are done. O

6.17. Corollary. — For every oo-category C, the functors Home(z,—): C — An and
Home(—,y): C°? — An preserve limits for all z,y € C (note that limits in C°P correspond to
colimits in C). Likewise, the Yoneda embedding &¢: C — Fun(C°P, An) preserves limits.

Proof. The first two assertions follow immediately from Corollary 6.16. The last one follows
from the first plus the fact that limits and equivalences in functor categories are pointwise by
Lemma 6.12 and Theorem 4.5. 0

§6.3. Cofinality

Our next goal is to develop a theory of cofinality for limits and colimits in co-categories. This

is summarised by the following theorem due to Joyal, with a first written proof appearing in
[L-HTT, Theorem 4.1.3.1].

6.18. Theorem (Joyal’s version of Quillen’s theorem A). — For a functor a: T — J of
oo-categories, the following are equivalent:

(a) For every co-category C and every F: J — C, the functor F has a colimit if and only if

Foa has a colimit. Furthermore, in this case the following natural map is an equivalence:

lim F((i)) — colim F(3).
G Fe ) = gl FO)

(b)  For every right fibration f: X — J, the following natural map is an equivalence:
HomCatoo/j(I,X) i HomCatoo/j (ja X) .
(¢c) For every j € J, the slice-oo-category Z;) =1 xg Jj; is weakly contractible. That is, we
have |Z;/| ~ *.
A dual assertion holds for limits, left fibrations, and the slice-oo-categories ;.

6.19. Definition. — If a: 7 — J satisfies the equivalent conditions from Theorem 6.18,
then « is called cofinal. Dually, « is called final if it satisfies the dual equivalent conditions for
limits.

6.20. Example. — The following are examples of cofinal functors:

(a) Right anodyne maps are cofinal. It’s clear from Corollary 3.10 and Corollary 5.15 that
the condition from Theorem 6.18(b) is satisfied.

(b) Right adjoint functors a: Z — J are cofinal. Indeed, if 5 is a left adjoint, then
a*: Fun(J,C) 2 Fun(Z,C) : 5* is an adjunction by Corollary 6.6 and so to verify the con-
dition colimz o™ ~ colim s from Theorem 6.18(a), it’s enough to check * oconst ~ const,
which is clear.
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(c) Localisations p: Z — Z[W™!] are cofinal. One way to see this is that localisations are
right anodyne, since by construction, p factors into Z — Z — Z[W ~!], where the second
arrow is inner anodyne and the first arrow is right anodyne, because A' — J is right
anodyne. Then (a) does it.

But of course there’s also a synthetic way to see this. Since the precomposition functor
p*: Fun(Z[W~1],C) — Fun(Z,C) is fully faithful by Lemma 4.11, we have

Hompyy(z,¢)(F' 0 p, const y) ~ Hompyy,zpw-1),¢) (F) const y) ,

functorially in F': Z[W~!] — C and all y € C, which proves that the condition from
Theorem 6.18(a) is satified.

Proof of Theorem 6.18, (a) < (b). Let F': J — An be a functor with unstraightening & — 7.
Then the pullback a*(U) — Z is the unstraightening of F'o a: Z — An. Lemma 6.14 shows
limje s F(j) ~ Homcat,,, (J,U). Similarly,

lllererF(a(z)) ~ Homcatm/z (I, o (Z/{)) ~ Homcatoo/I (Z,U);

here the second equivalence is a quick calculation using Corollary 5.15 and Corollary 6.16. This
shows that (b) holds if and only if (a) holds for functors F': J — An. Now let F: J — C
be an arbitrary functor. By Corollary 6.16, &¢: C — Fun(C°P, An) preserves limits and it is
fully faithful, so (a) holds for F': J — C if and only if it holds for ¢ o F': J — Fun(C°P, An).
Finally, limits in Fun(C°P, An) are computed pointwise by Lemma 6.12 and equivalences can
be checked pointwise by Theorem 4.5, so (a) holds for functors into Fun(C°P, An) if and only if
it holds for functors into An. This finishes the proof of (a) < (b). O

Before we can prove (a) = (¢) = (b), we need another lemma.

6.21. Lemma. — A cartesian fibration p: U — J satisfies the conclusion of Theorem 6.18(b)
if and only if the fibres p~'{j} of p are weakly contractible, that is, [p~*{j}| ~ = for all j € J.

Proof. Let E: J°° — Cato, be the straightening of p: Y — J and let f: X — J be a right
fibration with straightening F': J7°° — An. Then the cartesian straightening equivalence (the
dual of Theorem 5.4(a)) shows

HomCatoo/J (U, X) =~ HomCart(J) (Z/{a X) = HomFun(JOP,Catoo)(Eu F) :

Note that the first equivalence holds even though Cart(J) — Cat.,/ s is not fully faithful,
since we’re mapping into a right fibration where every morphism is cartesian (by the dual of
Lemma 5.3). Now |- |: Cato, — An is left adjoint to the inclusion An C Cats, by Example 6.3(a)
and that adjunction persists to functor-oco-categories by Corollary 6.6. Thus

HomF‘un(JOp,Catm)(E7 F) = HomF‘un(JOP,Catm) (|E’7 F) .
The cartesian straightening of id7: J — J is const *: J°P — An. By the same arguments as
above we then obtain

HomCatoo/J (J,X) ~ Hompun(jop,catoo)(const x, F) .

Putting everything together, we see that the condition from Theorem 6.18(b) is satisfied if and
only if p: U — J induces an equivalence |F| = const * in Fun(7°P, An). Since equivalences
can be checked pointwise (Theorem 4.5), this becomes precisely the condition that all fibres of
p are weakly contractible. O
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Note that Lemma 6.21 and Theorem 6.18(c) look very much alike, but are a priori two
different criteria for a cartesian fibration p: U — J to be cofinal. As a reality check, let’s see
that they are indeed equivalent. This isn’t necessary to complete our proof of Theorem 6.18,
but we’ll need it later.

6.22. Lemma. — Let p: U — J be a cartesian fibration. Then for every j € J, the natural
functor p~1{j} — U x7 Jj) admits a right adjoint. In particular, we obtain a homotopy
equivalence of animae [p~'{j}| =~ [U x 7 J;/I.

Proof sketch. By Lemma 6.2, right adjoints can be constructed pointwise. This can be done
as follows: Fix an object (u, @) € U x 7 J; /, given by an element u € U and a morphism
?:j — p(u)in J. Let ¢: v/ — u be a p-cartesian lift of . Then «’ € p~'{j} is a right adjoint
object to (u,p) under p~1{j} — U x 7 Jj/- To see this, note that, by construction, we have
a morphism c: (u',idj) — (u,®) in U x 7 J;; (which will play the role of the counit); using
Theorem 4.5, we have to show that the composition

Hom,,-1 3 (u”,u') — Homy/x ,7;, ((u",id;), (v, id;)) L, Homyx , 7, (u",id;), (u,®))

is an equivalence for all v” € p~1{j}. Now use the characterisation of cartesian morphisms
from the dual of Lemma 5.16 together with Corollary 5.15 and the fact that Hom animae in
pullbacks of co-categories are pullbacks of the respective Hom animae (which is straightforward
to see; we’ll prove a more general statement in Lemma 6.76(a)) to show that both sides are
equivalent to Homyy(u”, %) Xtiom ; (j p(u)) 1®} and that the morphism between them is equivalent
to the identity. We’ll leave the details to you. O

Proof of Theorem 6.18, (a) = (¢) = (b). Assume (a) holds true and consider the functor
Hom 7(jo,—): J — An for some jo € J. Its unstraightening is the slice-co-category pro-
jection t: J; , — J, hence colimje 7 Hom 7 (jo,j) ~ |Jj,/| by Lemma 6.14. But Jj,, has an
initial element given by idj,, and so {idj,} = Jj,, is an adjunction. Since adjunctions induce
homotopy equivalences after |- |, we conclude |Jj, /| ~ *.

Now consider Hom 7 (jo, a(—)): T — An. Its unstraightening is 7 , ~ T x 7 J;,, (here we
use that precomposition with a corresponds to pullback along « under the unstraightening

equivalence, see Theorem 5.4). Combining Lemma 6.14 with condition (a), we obtain

[T | = colimHomz (jo, a(i)) = colim Homz (o, j) = .

as claimed. This finishes the proof of the implication (a) = (¢).

Now assume (¢). We can factor a: Z — J into Z — I x 7,5 Ar(J) — J, where the first
functor sends i € 7 to the pair (i,idy(): a(i) — «(i)) and the second functor is induced by
the target projection t: Ar(J) — J. It’s straightforward to verify that Z — 7 x 7 ¢ Ar(J) is
right adjoint to the projection s: Z x 7 ¢ Ar(J) — Z.() By Example 6.20(b), we see that the
functor T — 7 x 7 s Ar(J) satisfies (a), hence also (b). Furthermore, a slight generalisation of
Example 5.5(c) (which can be proved by the same argument) shows that ¢: Z x 7 s Ar(J) — J
is a cocartesian fibration. Its fibres t71{j} ~ 7 x 7 J;, are weakly contractible. Hence

(6:5 For example, one could use Lemma 5.13; alternatively, unit and counit as well as the triangle identities are
easily constructed by hand.
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t: 7 xgsAr(J) — J satisfies (b) by Lemma 6.21. We conclude that a: Z — J must satisfy
(b) as well. Indeed, if f: X — J is a right fibration, then

Homcat,, (J, X) ~ Homca_,, (Z X 7,5 Ar(7), X)
~ Homcatoo/IXJ“s.Ar(J) (I X T Ar(j),t*(X)) .

In the first equivalence we use (b) for t: Z x 7 s Ar(J) — J. In the second equivalence we let
t*(X) — I xg, Ar(J) be the pullback of f along ¢t and use Lemma 6.23(a) below. Now a
pullback of a right fibration is again a right fibration, whence

(Z,1*(X))

Homct ) (I x 7.5 Ar(J), t*(X)) ~ Homcatw/IXJ AT

~ Homcatw/J(I,X).

oo/lxjysAr(J

In the first equivalence we use (b) for Z — Z x 7 ¢ Ar(J) and in the second we use Lemma 6.23(a)
below again. This finishes the proof of the implication (¢) = (b). O

§6.4. Kan extensions

We’re now working towards an oco-categorical analogue of Theorem 1.17. Our first goal is to
construct left Kan extensions for presheaf categories. As it turns out, this is most easily done
in the fibration picture.

6.23. Lemma. — Let F': C — D be a functor of co-categories.

(a) The pullback functor F*: Catyp — Caty e has a left adjoint, namely the forgetful
functor Caty, e — Cato/p that sends f: C' — C to Fo f: C' — D.
/ /

(b)  The inclusion Right(D) C Catep has a left adjoint that sends g: D' — D to q: Y — D,
where
D—Y-LD
is any factorisation of g into a cofinal functor followed by a right fibration.

(¢) The functor F*: Right(D) — Right(C) has a left adjoint Fy: Right(C) — Right(D). On
objects, F\ is given as follows: Let p: X — C be a right fibration and let

X —-vy-Lop

be any factorisation of F o p into a cofinal functor followed by a right fibration. Then we
have Fi(p: X — C) ~ (q: Y — D). In particular, all such factorisations are equivalent.

Proof. For (a), note that left adjoints can be constructed pointwise by Lemma 6.2, so its enough
to show that Fo f: C' — C is a left adjoint object to f: C' — C under F*. To this end, let
g: D' — D be an element in Cat., /p- We have a diagram

Homgas_ e (C',F*(D")) —— Homgat., (C', F*(D')) —— Homcg (C', D)

s s

(f} Homica (C',C) — % Homea (C', D)
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in which the left square is a pullback by Corollary 5.15 and the right square is a pullback by
Corollary 6.16. Hence the outer rectangle is a pullback too. Combining this with Corollary 5.15,
we obtain

Homcat . (C', F*(D')) ~ Homgas, ., (C', D).

Since every step in the argument can be made functorial in g: D’ — D, we have proved (a).

For (b), note that (a) combined with Theorem 6.18(b) immediately implies that ¢: Y — D is
a left adjoint object to g: D' — D under the inclusion Right(D) C Cat, /p- Since left adjoints
can be constructed pointwise by Lemma 6.2, we only need to check that such a factorisation
always exists. But that’s easy! For example, we could choose D' — Y to be right anodyne by
Lemma 3.12 and Example 6.20(a). If you’d like to avoid simplicial sets, we could also argue
as follows: Choose a factorisation D’ — Y’ — D into a right adjoint functor followed by a
cartesian fibration ¢’: Y/ — D as in the proof of Theorem 6.18. Then put

. (cart) .
(9: Y — D) := Un(right) (D ), Catoo EHR An) .

Finally, (c) follows from the combined powers of (a) and (b). O

In the following, we let PSh(C) := Fun(C°?, An) denote the co-category of presheaves on C.
6.24. Corollary. — Let F': C — D be a functor of co-categories. Then the precomposition
functor F*: PSh(D) — PSh(C) has a left adjoint Fy such that the diagram

C £ D
otcl /// lcko
PSh(C) —— PSL(D)

commutes in the co-category Catoo.

Proof. 1t’s clear from Lemma 6.23 and the right straightening equivalence (the dual of Theo-
rem 5.4(b)) that F} exists, so we only have to show that the diagram commutes. To this end,
first note that the natural transformation Home(—, —) = Homp(F(—), F(—)) gets transformed
into &¢ = F* o Xp o F under the equivalence in Fun(C° x C, An) ~ Fun(C, PSh(C)). Using
the adjunction Fy 4 F* as well as Corollary 6.6, this transformation is adjoint to a natural
transformation Fiodke = Kpo F.

So our diagram commutes up to natural transformation, and we have to show that said
natural transformation is an equivalence. By Theorem 4.5, this can be done pointwise. So choose
x € C. Under the straightening equivalence, the functor J¢(z) ~ Home(—, ) corresponds to
the right fibration C/, — C. Likewise, &p(F(z)) ~ Homp(—, F'(z)) corresponds to D/p(,) — D.
Using Lemma 6.23(c), we only have to show that the top horizontal arrow in the diagram

Cljz — Dyr)

| o]

c—r .p

is cofinal. But that’s easy! Both C,, and D,p(,) have terminal objects, hence there are
adjunctions C/, = {id;} and D,p(,) = {idp()}. Hence * — C/, and * — D,p(, are both
cofinal by Example 6.20(b). Since being cofinal is closed under 2-out-of-3 (for example, by the
condition from Theorem 6.18(a)), C/5 — D/p(,) must be cofinal too. O
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Corollary 6.24 allows us to compute Hom animae in functor oco-categories!

6.25. Corollary. — Gliven functors F,G: C — D of oco-categories, the anima of natural
transformations Hompyyc py(F, G) can be computed as the following limit:

( )lirTn Ar(O) Homp (F(z),G(y)) = lim (TWAI‘(C) G4, gop o ¢ FPXC, pop o p Homo, An) )
r—y)elwAr

Proof. By Lemma 6.14, the right-hand side can be computed as Homcat,, , 1y, a.(c) (TwAr(C),U),
where U denotes the unstraightening of Homp o (F°P x G) o (s,t): TwAr(C) — An. Since

unstraightening transforms compositions into pullbacks and the unstraightening of Homp is
TwAr(D) — D x D by Construction 5.21 or 5.22, we have a pullback diagram

u u' TwAr(D)
T
TwAr(C) -2, cov x ¢ E2XG, pop

Using Lemma 6.23(c), we see Homcat, , pyare) (TWAT(C),U) ~ Homcat, jcopy o (TWAL(C),U').
But these are both left fibrations over C°P x C, so the Hom anima on the right-hand side can
be equivalently computed as Hompyy(cor xc,an) (Home, Homp o (F°P x G)). Now the “currying’
equivalence Fun(C°? x C, An) ~ Fun(C,PSh(C)) sends Hom¢ to &¢ and Homp o (F°P x G) to
F* o Xp o G, hence the Hom anima under consideration is given by

)

Hompyn(c,psh(c)) (e, F* o &p o G) =~ Hompyn(c,psnpy) (Fi 0 e, &p o G)
~ Hompyy(c,psnp)) (£p o F,&p 0 G)
= HomFun(C,D) (F7 G) )
as claimed. For the first equivalence, we use that Fi o — is an adjoint of F'* o — by construction

and Corollary 6.6, the second equivalence follows from Corollary 6.24, and the third one since
&p: D — PSh(D) is fully faithful by Yoneda’s lemma (Corollary 5.27). O

WEe’ll now define and construct Kan extensions in the oo-categorical world.

6.26. Definition. — Let f: C — C' and F: C — D be functors of co-categories. A left
Kan extension of F along f, denoted Lang F': C' — D, is a left adjoint object to F' un-
der f*: Fun(C’,D) — Fun(C,D). Dually, a right Kan extension of F along f, denoted
Rany F': C' — D, is a right adjoint object to F under f*.

Kan extensions in the oco-categorical world can be computed by the same formula as in the
ordinary case (Lemma 1.15):

6.27. Lemma (Kan extension formula). — In the situation of Definition 6.26, assume that
for all ' € C' the following colimits exist in D:

colim F(z) = colim(C,,y — C . p
5 R, ) (@ )

Then Lany F' exists and Lang F(2') is given by that colimit.
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To prove this, we first show that taking colimits is functorial in both the indexing co-category
and the functor. As it will turn out during the proof, this is equivalent to constructing a partial
left adjoint to the Yoneda embedding &kp: D — PSh(D).

6.28. Lemma (“Colimits are functorial”). — Let D be an co-category. Let T C Catyp be
spanned by those ac: T — D that admit a colimit. Consider the functor D,_: D — Caty, p that
sends y € D to Dy, — D. Then D,_ lands in T and admits a left adjoint colim: T — D that
sends a.: T — D to colim;er (i) € D.

Proof. Formally, the functor D,_: D — Cat,/p is defined via

D 22, PSh(D) ~ Right(D) — Cateyp

using the Yoneda embedding and the right straightening equivalence (the dual of Theorem 5.4(b)).
It’s clear that D,_ takes values in 7. Indeed, D/, has a terminal object and so the colimit over
D,, — D is just y. To prove the second assertion, by Lemma 6.2, it’s enough to prove that for
every a: T — D, the colimit colim;ez a(i) € D is a left adjoint object to a under D,_: D — T.
This can be seen as follows: If ¢ ~ colim;c7 (i), then the associated natural transformation
a = const ¢ induces a functor us: Z — D/, in Caty,;p. We then get a natural transformation

D, i
Homp(c, —) == Homcat__ (D), D)—) == Homcas,p, (Z.D;_) .
Equivalences can be checked pointwise by Theorem 4.5. So choose y € D. We compute

Homcat, (Z.Dyy) ~ {0} XHomen (z.0),s Homcat., (Z, Ar(D) x;.p {y})
=~ {a} XHomCatoo(I,D),s :HOInCaLtOC (I, AI‘(D)) Xt,HomCatOo (Z,D) {const y}

= HomFun(I,D) (Oé, const y) )

and this agrees with Homp(c, y) by definition of ¢. In the first step we use Corollary 5.15 as
well as D/, ~ Ar(D) x;p {y}. In the second step we use Corollary 6.17. In the third step, we
use “currying” in the form of Homgat. (Z, Ar(D)) ~ Homcyi, (A, Fun(Z, D)) and then plug
in the definition of Homp,zp) as in 2.11. O

Proof of Lemma 6.27. Consider the diagram of functors

Fun(C, D) 2% Fun(C, PSh(D)) --------- » Fun(C', Right(D))

| |-
(idp x f°P)

Right(D x C°P) > Right (D x (C')°P)

(the vertical equivalences follow from the right straightening equivalence, see the dual of
Theorem 5.4(b)). Let F': C" — Right(D) denote the image of F' under the top row functors
and let T := T N Right(D), where T is defined as in Lemma 6.28. If we can show that F’
is contained in the full sub-co-category Fun(C’,7) C Fun(C’, Right(D)), then we can define
Lany F := colim o F’ € Fun(C’, D). It’s clear from the various equivalences and adjunctions
involved (more precisely, from Corollary 5.27, Lemma 6.23(c), and Lemma 6.28 combined with
Corollary 6.6) that Lan; F' is indeed a left adjoint object of F' under the precomposition functor
*: Fun(C’, D) — Fun(C, D).
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So we have to check that F’ is indeed contained in Fun(C’,T). The image of F under
(&p)« followed by the “currying” equivalence Fun(C, Fun(D°P, An)) ~ Fun(D x C, An) is
Homp(—, F(—)): D°? x C — An. Its right unstraightening is

TWAI"(D)OP Xtop pop Fop CP — D xCP.

Indeed, the right unstraightening of Homp: D°P x D — An is (s°P, t°P): TwAr(D)°? — D x DP
by definition (of either Homp or TwAr (D), see Constructions 5.21 and 5.22), and precomposition
with F': C — D corresponds to pullback along F°P.

By Lemma 6.23(c), the functor (idp x f°P); sends TwAr(D)P X o0 pop por CP — D x CP
to a cofinal replacement of TwAr(D)P Xop pop por CP — D x CP — D x (C')°P by a right
fibration. To figure out how such a cofinal replacement looks like, we claim the following:

(Xy) In the diagram below, both vertical arrows are cofinal:

TWAI'(D)OP Xt0p7'D0p7Fot0p TWAI'(C)OP Xf030p7cl750p TWAI'(C/)OP

/ N

C Xf,(,”,SOp TWAr(C/)Op TWAI'(D)Op Xt0p7DOp7Fop COp

To prove claim (X;), we first observe that for every co-category Z, both the source projection
sP: TwAr(Z)°? — 7 and the target projection t°P: TwAr(Z)°®? — Z°P are cofinal cartesian
fibrations. Indeed, cartesianness is clear since TwAr(Z)°° — Z x Z°P is a right fibration and
projection to either factor is cartesian. For cofinality, we use Lemma 6.21: The fibre of t°P
over i € I° is (t°P)~'{i} ~ T;; this follows from Lemma 5.24, regardless of which construction
of TwAr(Z) you use. Now Z); is weakly contractible since it has a terminal object. The same
argument applies to s°?. To apply this observation, observe that in the diagram above, the
left vertical arrow is a composition of a base change of t°P: TwAr(C)°® — C° and a base
change of s°P: TwAr(C')°? — C’. Since the conditions from Lemma 6.21 are stable under
base change, this proves that the left vertical arrow is indeed cofinal. Similarly, the right
vertical arrow is a composition of a base change of s°?: TwAr(C)°® — C and a base change of
t°P: TwAr(D)°? — D°P, whence the same argument applies.

So we may equivalently look for a cofinal replacement of C x ¢ ¢/ so0 TwAr(C')°P — D x (C')°P
by a right fibration. Once again, we won’t do this directly; instead, we claim another claim:

(X2) In the diagram below, the vertical arrows are cartesian fibrations over (C')°P and the
horizontal arrows preserve cartesian lifts:

Fxid cryop $OP | {oP
D x (C')P % o) 6 o TwAL(C)oP
i Jp% i
pra top

(C/)op

Indeed, by definition of TwAr(C’), the arrow labelled (s°P,t°P) is a right fibration, and it’s clear
that both arrows labelled pry are cartesian fibrations (see Example 5.5(a)). Hence t°P, being a
composition of cartesian fibrations, is cartesian too. Furthermore, by a simple unravelling, we
see that t°P-cartesian lifts are precisely the (s°P, t°P)-cartesian lifts of pry-cartesian lifts, which
immediately proves that (s°P,t°P) preserves cartesian lifts. Finally, it’s clear that F' x id(cryop
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preserves cartesian lifts, since these are given by those morphisms in C x (C")°P and D x (C")°P
that are equivalences in the first component. This proves claim (Xs).

The cartesian straightening St(¢*) (t°P) is a functor ¢’ — Cats. By the diagram above,
it comes with a natural transformation St(°®™) (1°P) = const D, so that St(®™) (¢°P) lifts to a
functor C;,_: C" — Caty/p. On objects, C,_ is given by sending 2’ € C’ to the slice category
C/y, which becomes an object in Caty,/p via

Clor — C 5D

Now that’s something we’ve seen before! Our assumption that the functor above admits a
colimit precisely tells us that C,_ restricts to a functor C,_: C' — 7. To finish the proof,
let c: Caty/p — Right(D) denote the left adjoint to Right(D) C Cat,,/p, which exists due
to Lemma 6.23(b). It’s clear from Theorem 6.18(a) that ¢ sends T to T, hence we obtain a
functor coC,_: C' — T. We claim that this finally allows us to compute the desired cofinal
replacement:

(M3) If p: X — D x (C')°P is a cofinal replacement of C X f.¢r o0 TwAr(C')? — D x (C")°P by
a right fibration, then the image of p under Right(D x (C')°P) ~ Fun(C’, Right(D)) will
coincide with coC,_.

To prove claim (K3), consider the following diagram, in which the dashed arrows are left adjoints
(whose existence we're going to prove below):

(Catoo/(C/)Op)/,DX(C,)Op — Cart((C’)Op)/DX(C,)Op — Fun(C’,Catoo/D)

| |
zl 1/ c! T 1/ Ca | T
v &

Catoo/px(cryor == ©---> Right (D x (C")°P) —=— Fun(C’, Right(D))

The horizontal equivalences as well as commutativity of the square on the right follow from the
cartesian straightening equivalence (the dual of Theorem 5.4). Furthermore, once we know that
the left adjoints exist, they will also form a commutative square on the right, since taking left
adjoints is always compatible with equivalences. The vertical equivalence on the left follows by
inspection (“a slice of a slice is a slice”). The vertical left adjoint ¢, exists by Corollary 6.6.
The horizontal left adjoint c: Catog/py (cryer — Right(D x (C')°P) exists by Lemma 6.23(b), and
it we claim that it induces a left adjoint

c: Cart((C")°P) o» — Right(D x (C')°P)

/Dx(C")

to the forgetful functor Right(D x (C")°P) — Cart((C")°P) px(cryor- Indeed, if U — D x (C')°P
and U' — D x (C')°P are objects in Cart((C")°P) px (cryor, then

HomCart((C’)Op)/Dx<c/)op (Z/{, ul) - Homcatw/DXw/)op (Z/[, ul)

is usually not an equivalence, only an inclusion of path components, since on the left-hand
side, cartesian lifts need to be preserved. However, if U’ — D x (C’)°P happens to be a right
fibration, then cartesian lifts are preserved automatically(®0), so in this case we do get an

6-91’s easy to get confused here: U’ — (C")°P need not be a right fibration, so we can’t appeal to (the dual
of) Lemma 5.3 directly. But the argument is still straightforward: If &’ — D x (C’)°P is a right fibration, then
any lift of a cartesian morphism in D x (C')°® will be cartesian again, thanks to (the dual of) Lemma 5.3. So
a morphism U — U’ in Cato px (cryor preserves cocartesian lifts if and only if « — D x (C')°P does. But the
latter is true by definition, since U — D x (C’)°P is a morphism in Cart((C’)°P) if U is an object of the slice
oo-category Cart((C")°P) /px(cryep-
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equivalence, which proves that c is still a left adjoint when restricted along the non-fully faithful
functor Cart((C")°P) /px(cryor — Catog/px(cryor- So we've proved that the diagram above also
commutes if we take the dashed left adjoints into account. This is precisely what we need to
prove claim (X3).

Using claim (X3), we’ve now succeeded in proving that F': C' — Right(D) takes values in
T, which proves that Lans F exists. Furthermore, for every ¢ € C’, the value Lans F(2') is
given by a colimit over ¢(C/,/). Since the unit morphism uc P Cjar — ¢(Cjy) is cofinal by
Lemma 6.23(c), we may as well take the colimit over C/,s. This proves that Lany F'(z') is given
by the desired formula and we’re finally donel! O

6.29. Corollary. — In the situation from Definition 6.26, assume that f: C — C' is fully
faithful and that the colimits from Lemma 6.27 exist in D. Then the natural transformation
up: F'= Lany F'o f is an equivalence.

Proof. This follows from the same argument as in Corollary 1.16, plus the fact that equivalences
can be checked pointwise by Theorem 4.5. O

We can now state the main result of this section: the co-categorical analogue of Theorem 1.17!

6.30. Theorem (“PSh(C) arises by freely adding colimits to C.”). — Let C and D be oco-
categories, where D has all colimits. Then restriction along the Yoneda embedding X¢ induces
an equivalence

X&: Fun®™(PSh(C), D) — Fun(C,D).

Here Fun®™(PSh(C), D) C Fun(PSh(C), D) is the full sub-co-category spanned by the colimits-
preserving functors. Furthermore, every colimits-preserving functor PSh(C) — D admits a right
adjoint.

As it turns out, the proof will be exactly the same as for ordinary categories. Let’s start
with the two lemmas whose proofs where omitted in the ordinary case.

6.31. Lemma (“Every presheaf is a colimit of representables.”). — Let C be an oco-category.
For every E € PSh(C), the natural morphism

colim Home(—,y) — E
(y,Home (—,y)—E)eC, g ( )

is an equivalence.

Proof. Since we get the natural transformation for free, we can check pointwise whether it is
an equivalence (Theorem 4.5). So fix € C. Since colimits in PSh(C) are computed pointwise
(Lemma 6.12), what we need to show is
. s Home¢ (z,—)
colim (C/E — —— An) ~ F(x).

By Lemma 6.14, the colimit on the left-hand side is given by |U|, where U is the unstraightening
of Home(z, —) o s. Since precomposition transforms into pullbacks under unstraightening, we
find that U sits inside a pullback

u C/p PSh(C)
J a l o l
C.y ¢ —2¢ . PSK(C)
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Since PSh(C) g — PSh(C) is a right fibration, i — C,, is one too. In particular, it is a cartesian
fibration. Hence Lemma 6.22 shows [U xc,, {ids}| ~ [U xc,, (Ca/)(id,: 2—a)/| = |U]; here we
use (Cy/)(id, : z—z), = Cz/ (“aslice of a slice is a slice”). Now

U xc,, {id.}| ~U xc,, {ids} ~ PSh(C)/5 Xpsn() {£e (@)}
~ HomPSh(C) (c]:c(:c), E)
~ E(z).

In the first step, we use that the fibre U x¢,, {id;} is already an anima, since U — C,, is
a right fibration. The second equivalence follows from the pullback diagram above. In the
third step, we use the definition of Hompgy ), and in the fourth step, we use Yoneda’s lemma
(Theorem 5.19). In total, we find || ~ E(x), which is exactly what we wanted to prove. [J

6.32. Lemma. — For every I': C — D, the left Kan extension Lany, F': PSh(C) — D
(which exists due to Lemma 6.27) admits a right adjoint. The right adjoint sends y € D to
Homp(F(—),y): C°P? — Set.

Proof. Fix y € D. Since adjoints can be constructed pointwise (Lemma 6.2), we only need to
construct an equivalence

Homp (Lany , F(—),y) ~ Hompgyc)(—, Homp(F(-),y))

of functors PSh(C)°® — An. Restricting along &/ P: C° — PSh(C)°P, both sides become
Homp(F(—),y): The left-hand side by Corollary 6.29, the right-hand side by Yoneda’s lemma
(Theorem 5.19; see also 5.30). By the universal property of right Kan extension, we thus obtain
natural transformations

Homp (Landkc F(-), y) = Ran;zp Homyp (F(—), y) <= Hompgy,(c) (—, Homp (F(—), y)) )

We claim that they’re both equivalences. In either case, this can be checked pointwise by
Theorem 4.5. So plug in some E € PSh(C). We obtain a diagram

Homp (Lany, F(E),y) — Ranye Homp (F(E),y) —— Hompgy(c) (E, Homp (F(-),y))

\ " ll W /
- lim Homp (F(z),y) -

(z,&c(2)—E)e(C/p)P

The vertical arrow in the middle is an equivalence by the dual of Lemma 6.27. For the
vertical arrow on the left, we plug in the left Kan extension formula from Lemma 6.27 and
use Corollary 6.16 to see that Homp(—,y) transforms the colimit into a limit. For the
vertical arrow on the right, we plug in Lemma 6.31, use Corollary 6.16 again to see that
Hompgy,(cy(—, Homp(F(—),y)) transforms the colimit into a limit, and then use Yoneda’s
lemma. This proves that we obtain equivalences as desired. O

6.33. Lemma. — Let C and D be categories and let L: C = D : R be an adjunction.

(a) The left adjoint L is fully faithful if and only if the unit transformation u: ide = RL is
an equivalence.
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(b)  Suppose the condition from (a) is true. Furthermore, suppose that R is conservative (that
is, if a: x — y is a morphism in D such that R(«) is an isomorphism, then « is an
isomorphism too). Then L and R are inverse equivalences of categories.

Proof. The proof of Lemma 1.20 can be copied verbatim. O

Proof of Theorem 6.30. By Lemma 6.32 and Lemma 6.11, the adjunction Lan, , = K¢ restricts
to an adjunction .
Lan,  : Fun(C,D) = Fun®'™ (PSh(C), D) : &§.

By Lemma 6.33(b), to prove that Lany, and Kk§ are inverse equivalences, we need to show
that the unit u: idpye,p) = &¢ o Lany, is an equivalence and that X§ is conservative.
That u is an equivalence can be checked object-wise by Theorem 4.5, where it follows from
Corollary 6.29, since the Yoneda embedding ¢ is fully faithful (Corollary 5.27). To see that
¢ is conservative, we must show that a natural transformation n: F' = G between colimits-
preserving functors F,G: PSh(C) — D is an equivalence already if it is an equivalence when
restricted to representable presheaves. But this is clear since every presheaf can be written as a
colimit of representables (Lemma 6.31). O

§6.5. Homology, cohomology, Eilenberg—MacLane animae

Theorem 6.30 is surprisingly powerful even in the special case C ~ *. In this case we have
PSh(#) ~ An and so Theorem 6.30 says that a colimits-preserving functor An — D is uniquely
determined by what it does on * € An.(67) Using this observation, our goal in this subsection
is to give a purely abstract proof of the Eilenberg—MacLane theorem (Theorem 6.44).

The first step is to construct an interesting oo-category D with all colimits: For a ring R
(not necessarily commutative), we’ll give a brief introduction to the derived co-category D(R)
and its variant Dxo(R).

6.34. Crash course in derived oco-categories I: Basic definitions. — Let Ch(R) be the
category of chain complexes

My = (o 2 Mgy 2 My 2 My o)

of left R-modules and let Ch>o(R) C Ch(R) be the full subcategory of those chain complexes
that satisfy M, = 0 for n < 0. We usually write Z, (M) = ker(0: M,, — M,_;) and
B (M) = im(9: Mp4+1 — M,). The quotient H,, (M,) = Z,(M.)/B,(M,) is called the
n** homology of My. A morphism a: M, — N, in Ch(R) is called a quasi-isomorphism, if
H,(c): Hy (M) — H,(N,) is an isomorphism for all n. Then we put

D(R) = Ch(R) [{quasi—isomorphisms}*l]
D=o(R) == Chso(R)[{quasi-isomorphisms} '],
where the localisations are taken in the oo-categorical sense (see Construction 4.10). If you've

seen the ordinary derived categories D(R) and D=o(R) before, then Corollary/Warning 4.12
will convince you that these are simply the homotopy categories ho D(R) and ho D> (R).

O 11f you think about this fact for a bit, it becomes very natural: Theorem 3.26 says that animae are essentially
CW complexes and every CW complex is glued together from topological disks D™. But D" ~ %. So it makes
sense that * should generate all of An under colimits. Another way to see this is via Lemma 6.14: It’s immediately
clear that X ~ colim(const *: X — An) for all X € An.
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This definition of D(R) is easy to state, but just from that it’s nearly impossible to say
anything about colimits in D(R), which is why, we will describe a more explicit construction of
D(R) in crash course 6.36 below. However, already with the abstract definition one can get
quite far. For example, let’s show that D5 (R) is indeed a full sub-oco-category of D(R). To this
end, observe that the inclusion Ch>o(R) C Ch(R) has a right adjoint 7>9: Ch(R) — Chxo(R)
given by smart truncation: For a chain complex M, and an integer ¢ € Z, we let 7>;M, be the
chain complex given by

M, ifn>i
(T2iMy)n = Zi(My) ifn=i,
0 ifn<i

so that Hy, (7>; M) = Hy, (M) if n > i and Hy, (7>, M) = 0 for n < 4. It’s clear that 7-; preserves
quasi-isomorphisms, hence it descends to a functor 7=;: D(R) — Dx¢(R) by Lemma 4.11. We
claim that 7>¢ is a right adjoint to D>o(R) — D(R). By Lemma 6.5, it’s enough to provide a
unit and a counit transformation and to verify the triangle identities. But Lemma 4.11 allows
us to inherit all this data from the adjunction i: Chso(R) = Ch(R) :750.(%% Now to show
that Do(R) — D(R) is fully faithful, it’s enough to check that the unit is an equivalence (see
Lemma 6.33(a)), which is obvious.

Apart from 75;: D(R) — D(R), there are some more useful functors that can be constructed
directly using our definition of D(R) and Lemma 4.11. For example, if M, is a chain complex,
its shift by i is the chain complex M|i], given by M|i], = M, __;; the differentials are those of
My, but multiplied by (—1) (for technical reasons). It’s clear that (—)[i]: Ch(R) — Ch(R)
preserves quasi-isomorphisms and so it defines a functor (—)[i]: D(R) — D(R). For an even
more obvious example, consider H,: Ch(R) — Modgr and H,: Ch>o(R) — Modg. These
functors send quasi-isomorphisms to isomorphisms (by definition), hence they define essentially
unique functors

H,: D(R) — Modr and H,: D>o(R) — Modp.

by Lemma 4.11. It’s probably clear to you, but let us mention that neither Z, : Ch(R) — Modpg
nor B,,: Ch(R) — Modpg preserves quasi-isomorphisms, so they don’t extend to D(R), even
though their quotient H,, = Z,,/B,, does.

For a chain complex M,, we often write M for its image in D(R) to emphasise that this is
no longer a “complex up to isomorphism”, but a “complex up to quasi-isomorphism”, so that
for M € D(R) there is no longer a well-defined notion of “M,, the degree-n part of M”.(6-9)

(6-8)We’ve seen a similar argument in Remark 4.15. The crucial observation to construct natural transformations
via Lemma 4.11 is the following: For every oo-category C and every collection of morphisms W in C, the functor

(€ x AN [(W x {ido} UW x fidi}) ' | = c[w "] x A

(which is itself constructed via Lemma 4.11) is an equivalence of co-categories. Back in Remark 4.15, we appealed
to the explicit simplicial construction, but there’s also a model-independent way to see this fact. By Yoneda’s
lemma, Theorem 4.5, and Lemma 4.11, it’s enough to check for every oo-category D that the morphism of
animae Homcat,, (C[Wﬁl] x Al D) — Homcat., (C X A', D) exhibits the left-hand side as the collection of path
components of functors that send W x {ido} UW x {id;} to equivalences. By Example 6.3(b), we can rewrite the
morphism in question as Homcas., (C[W '], Ar(D)) — Homgcas,, (C, Ar(D)) and then Lemma 4.11 shows that,
indeed, we get the correct inclusion of path components.

(6:90n a related note, the inclusion Chxo(R) C Ch(R) also has a left adjoint, which simply replaces everything
in negative degrees by 0. This is called the stupid truncation. It doesn’t preserve quasi-isomorphisms (hence the
name) and so we couldn’t have used it to show that Dxo(R) — D(R) is fully faithful.
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6.35. Crash course in derived co-categories II: Simplicialities. — The famous Dold-
Kan correspondence (see [L-HA, Theorem 1.2.3.7] or [GJ99, §II1.2] for example) states that
there is an equivalence

Chso(Z) — sAb

between the category of chain complexes in non-negative degrees and the category of simplicial
abelian groups. We’ll need following two facts about the Dold-Kan correspondence:

(a) FEvery simplicial abelian groups is automatically a Kan complex and every degree-wise
surjective morphism in sAb maps to a Kan fibration in sSet.

(b) If A is a simplicial abelian group and M, is the associated chain complez, then there are
isomorphisms (A, a) = H, (M) for alla € A and all n > 0.

Fact (a) not particularly difficult, but not completely obvious either; see [Stacks, Tags 08NZ
and 08P0]. Let us sketch how to prove (b). First, we may assume a = 0, since (—) +a: A — A
is an automorphism of A as a simplicial set and induces an isomorphism 7, (A4,0) = m,(A, a).
Now m,(A4,0) = [(A™,0A"™),(A,0)] by Lemma 3.21, where [—, —] denotes homotopy classes
of maps of pairs. Since (A,0) is a group object, even in the homotopy category of pairs,
[(A™ 0A™), (A,0)] inherits a group structure. Using the Eckmann—Hilton trick (see the proof
of Lemma 3.17(b)), we see that this group structure agrees with the one on m,(A,0).

Using Corollary 1.5, the free-forgetful adjunction Z[—]: Set = Ab :forget induces a similar
adjunction Z[—]: sSet = sAb :forget. Then a map of pairs (A", JA™) — (A,0) is the same as a
morphism Z[A"]/Z[0A"] — A in sAb. We are, however, not interested in maps, but homotopy
classes of maps. Our analysis of the group structure on m,(A,0) shows: Instead of quotienting
out the equivalence relation generated by homotopies, we may as well quotient out the subgroup
generated by the nullhomotopic maps. Using the results from §3, it’s straightforward to
show that, for any pointed Kan complex (X, z), a map of pairs o: (A" 0A") — (X, x) is
nullhomotopic if and only if it can be extended to a map of pairs 7: (A", AZﬂ) — (X, ) in
such a way that d,,(7) = 0. By the same reasoning as above, such a map is the same as a
morphism Z[A"]/Z[A71] — A. In total, this proves:

Tn(A,0) = Homgap, (Z[A"]/Z[0A™], A) / Homgap, (Z[A" 1] /Z[A ], A)

A simple unravelling of the Dold-Kan correspondence shows that Z[A"]/Z[0A™] is sent to
Z|n]«, the chain complex consisting of a single Z in degree n and zeros everywhere else. Hence
Homgan (Z[A"]/Z[OA™], A) = Homcy(z)(Z[n]«, Myx) = Zn(My). A similar analysis shows
that Homgap (Z[A" Y] /Z[AZT1], A) = B, (M,). Hence 7,(A,0) = H,,(M,), as desired.

6.36. Crash course in derived oco-categories III: Projective resolutions. — Recall
the simplicial nerve from Construction 2.21. It’s also possible to construct D(R) and Dxo(R)
in this way; this alternative construction will allow us to study colimits. We'll first explain how
to equip D(R) and Dxo(R) with a Kan enrichment: Let Homp(M,, Ni) be the chain complex
of abelian groups given by

Homp(My, Ny)p = [[ Hompg(M;, Niyn) .
iE€EZ

The differentials send a family of morphisms f = (fi)icz € [liez Homp(M;, Niyn) to the family
Of == (On o fi — (—1)"fi—1 0 On)iez; here Oy and On denote the differentials of M, and Ny,
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respectively. By unravelling the definitions, we see that the n-cycles and n-boundaries of
Homp (M., Ny) are given by

Zn(Homp (M, Ny)) = Homep g (M, N[—n]+)
B, (Homp(M,, Ny)) = {f € Homepg) (M, N[—n]+) ’ f nullhomotopic} .

Here N[—n]. denotes the shift from crash course 6.34. Since H,, = Z,,/B,,, we deduce that
H,,(Homp(My, N,)) is in bijection with the set of homotopy classes of maps M, — N[—n]..

The complexes Homp(—, —) provide an enrichment of Ch(R) over Ch(Ab) (in fact, even an
enrichment of Ch(R) over itself). To make this into a Kan enrichment, we let 750 Hom g (M, Ny )
be the smart truncation from crash course 6.34 and let Fcy(g) (M, N,) denote the simplicial
abelian group corresponding to 79 Homp (M, N,) under the Dold-Kan correspondence. The
simplicial abelian groups Fcyp(g)(—, —) provide an enrichment of Ch(R) in simplicial sets, which
is automatically a Kan enrichment by crash course 6.35(a).

A complex P, of R-modules is called K-projective if Homp(Py,—): Ch(R) — Ch(R)
preserves quasi-isomorphisms. It was shown by Spaltenstein [Spa88] that every chain complex
of R-modules M, admits a quasi-isomorphism P, — M, from a K-projective complex. If P, is
K-projective, then it is degree-wise projective in the sense that every P, is a projective R-module.
Conversely, if P, is degree-wise projective and bounded below in the sense that P, = 0 for
n < 0, then P, is K-projective. These statements can be found in [Hov99, Lemma 2.3.6]; the
second statement also appears (in dual form) in [Stacks, Tag 070J].

Let K-Proj(R) € Ch(R) and Proj,o(R) € Chxo(R) be the full subcategories spanned by
the K-projective complexes. Equip K-Proj(R) and Proj.o(R) with the Kan enrichment above.
Then

D(R) ~ N*(K-Proj(R)) and Dso(R) ~ N*(Projso(R)).

The idea to prove this is, of course, similar to Theorem 4.13: One can construct a simplicial model
structure on Ch(R) (and, by restriction, on Chso(R)) in such a way that K -Proj(R) ~ Ch(R)
are precisely the bifibrant objects, see [Hov99, §2.3]. Then the above equivalences follow from
Remarks 4.14 and 4.15.(6-10)

This alternative construction is useful to compute Hompg). Let M, and N, be complexes
and let P, — M, and @, — N, be quasi-isomorphisms from K-projective complexes. Using
Theorem 2.24, we get Hompr) (M, N) =~ Fcy(r)(Ps, Q«). In particular, since the Dold-Kan
correspondence transforms homotopy groups of simplicial abelian groups into homology groups
of the associated chain complexes by crash course 6.35(b), we find

Tn HOIIlD(R)(M, N) =, FCh(R)(P*7 Qx) = Hn(mR(P*7 Q*))

for all n > 0 and all basepoints. Furthermore, H,,(Hompz(Px, Q+)) = Hy,(Homp(Py, Nx)) by
definition of Py being K-projective, so we only need to resolve M, by a K-projective complex.

(61014’ worth pointing out that the process of choosing a cofibrant replacement in Chxo(R) precisely recovers
the method of projective resolutions that you may be familiar with from homological algebra. Indeed, the
cofibrant objects in Chso(R) are precisely the degree-wise projective complexes in non-negative degrees. Now if
M is a left R-module and we think of M as a complex M|[0]s concentrated in degree 0 (see Construction 6.41,
then a cofibrant replacement of M[0]s, that is, a quasi-isomorphism Py — M[0]s from a degree-wise projective
complex, is precisely a projective resolution of M. This begs the question how injective resolutions fit into the
picture. There is another simplicial model structure on Ch(R) in which the bifibrant objects are the K -injective
complexes, that is, those I for which Hompg(—, I+) preserves quasi-isomorphisms. A K-injective complex is
degree-wise an injective R-module and conversely any degree-wise injective and bounded above complex is
K-injective. One then has similar equivalences D(R) ~ N*(K-Inj(R)) and Do(R) ~ N4 (Inj¢o(R))-
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If you've seen derived categories before, you'll probably have noticed that Homp gy (M, N)
looks suspiciously like the derived Hom functor RHompg(M, N): We'll see in Corollary 7.50
how exactly these two are related. |

To be able to apply Theorem 6.30 to D(R) or D>o(R), we need to show that these oo-
categories have all colimits. In order to to this, we’ll show some general results about colimits
in oo-categories; these results will also be very useful later on.

6.37. Lemma. — An oo-category C has all colimits if and only if C has pushouts and arbitrary
coproducts. A functor F: C — D of co-categories preserves colimits if and only if it preserves
pushouts and arbitrary coproducts. A dual assertion holds for limits.

The crucial point, and the reason why we get away with “ordinary” colimits like pushouts
and coproducts, is that {n} — A™ is cofinal (in fact, right anodyne, so Example 6.20(a) applies).
Hence every functor T': A™ — C admits a colimit. For a general functor T': 7 — C, we write Z
as a colimit of its skeleta to build colim;ez T'(7) “simplex-by-simplex”: This needs pushouts (to
attach n-simplices in the n'" step) and coproducts (to attach arbitrarily many n-simplices at
the same time).

To make this precise, we’ll prove a lemma that will allow us to manipulate colimits: We can
“slice a colimit into pieces” and “assemble colimits from subdiagrams”:

6.38. Lemma. — Let Z and C be co-categories.

(a) Suppose p: U — T is a cocartesian fibration and T:U — C is a functor such that
Tlp-14y: p~Hi} — C admits a colimit for all i € T. Then these colimits assemble into a
functor T: T — C satisfying T (i) ~ colim,e,-1(;3 T'(u). Furthermore,

lim 7'(u) ~ colim T(:
el () et @,

provided that at least one of these colimits exists in C (in which case the other exists as
well). Informally, we can rephrase this as colimyey T'(u) =~ colim;ez colim,cp,—14:y T'(u).

(b) Suppose I ~ colimje s Z; in Catos. Let T: T — C be a functor such that the restrictions
T|z;: Tj — C admit colimits for all j € J. Then these colimits assemble into a functor
T: J — C satisfying T(j) ~ colimez; T(i). Furthermore,

colim T'(7) ~ colim T'(5) .
olisn T\(i) = colim 7()
provided that at least one of these colimits exists in C (in which case the other exists as
well). Informally, we can rephrase this as colim;ez T'(i) ~ colimje 7 colim;ez, T'(7).

In particular, “colimits commute with colimits”: If J is an oco-category and T: T x J — C is
any functor, then

colimcolimT'(é,5) ~ colim 7T'(¢,7) ~ colimcolim T'(7, 7).
i€l jeJ (i) (i) EIXT (i) jeJ €T (i)

Proof. To prove (a), first note that Lan, T exists. Indeed, p~'{i} — U/, is cofinal by the
dual of Lemma 6.22 and Example 6.20(b), so the existence of the colimits over p~!{i} implies
that the condition from Lemma 6.27 is satisfied. So we can put T := Lan, T". Now colim T
corresponds to taking the left Kan extension of T along U — = (see Example 1.12). But we
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may as well first left Kan extend along &/ — Z and then left Kan extend along Z — *. This
proves colim T" ~ colim Lan,, 7" and we’ve finished the proof of (a). In the special case where p
is the projection pry: Z x J — J, we obtain the “in particular”.

For (), let p: U — J be the unstraightening of the functor J — Caty, of which Z is the
colimit. Then 7 is a localisation of U by Lemma 6.14, so there’s a natural functor ¢q: U — 7.
We have p~1{j} ~ Z;, so we can apply (a) to the functor g o T: U« — C. This allows us to
construct T and we obtain colimT =~ colimq o T. But ¢, being a localisation, is cofinal by
Example 6.20(c), and so colimqo T =~ colim T'. This proves (b). O

Proof sketch of Lemma 6.37. In simplicial sets, we can write Z = colim,>q sk, Z, where sk, Z
is obtained from sk,_1Z by attaching copies of A™; that is, we take a pushout along some
coproduct of the form [[OA™ — [T A™. Up to replacing everything by quasi-categories (using
Lemma 3.12), we can thus write Z ~ colim,,>¢ Z,, in Cat, in such a way that Z,, is obtained from
Zn—1 by a pushout along [[ B™ — [[ A", where B" is defined by choosing an inner anodyne map
OA™ — B" into a quasi-category. By an inductive argument (in which Lemma 6.38(b) powers
the inductive step), we find that colim;cz, T'(7) exists in C for all n > 0. Using Lemma 6.38(b)
once again, it remains to show that colim,>¢ colim;e7, T'(7) exists in C. But this colimit can be
easily written as a suitable pushout of the disjoint union [,,~ colim;ez, T'(4). O

To study colimits in derived oco-categories, we introduce the following convenient terminology.

6.39. Definition. — Let C be an co-category with a terminal object = and let ao: * — y be
a morphism in C. The cofibre of « is defined as the pushout

[0}

=

—— cofib(a)

(provided this exists in C). We say that x —— y — z is a cofibre sequence in C if the induced
morphism = — z can be factored through * in such a way that it exhibits z as the cofibre of a.
There are dual notions of the fibre of a fib(a) (given as the pullback against an initial object)
and fibre sequences.

6.40. Lemma. — Let R be any ring (not necessarily commutative). The oo-category D(R)
has all colimits. The full sub-oo-caegory D=o(R) C D(R) is closed under colimits in D(R) and
therefore has all colimits too. Coproducts and pushouts in D(R) can be described as follows:

(a) IfI is any set and M, ;. are chain complexes of left R-modules, then the chain complex
@icr Mix defines a coproduct of the objects M; € D(R).

(b) Let a: My — Ny be a morphism of chain complexes of R-modules for some ring R. Then
the cofibre of a in D(R) can be computed as the mapping conel6-11)

cofib(aw: M — N) ~ cone(a: My, — Ny).

(6-1D)The mapping cone cone(a)y is the chain complex given by cone(a)n = N, @ M,_1, with differentials given
by the matrix

0 —0Oum

here Op and On denote the differentials of My and Ny, respectively. The mapping cone comes equipped
with obvious maps Ny — cone(a)s and cone(a)y — M[1]x. The induced maps H,(Ny) — Hy(cone(a)s) and

(81\] > >: Nn@Mnfl - anl @Mn72;
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More generally, if 3: My — M, is another morphism of complezes, then the pushout of
the span Ny «— M, — M, in D(R) is given by cone((c,—f): My — M) @® N).

Proof sketch. By Lemma 6.37, to show that D(R) has all colimits, it’s enough to check that
coproducts and pushouts in D(R) can be described as in (a) and (b). Furthermore, it’s clear
from these descriptions that D=o(R) C D(R) is closed under formation of coproducts and
pushouts, hence under all colimits.

To prove (a), choose quasi-isomorphisms P; . — M; , from K-projective complexes. Since
quasi-isomorphisms are preserved under direct sums, it’s enough to show that @, ; P; is a
coproduct of the P;. Using Corollary 6.16, we must show that

HOHID(R) <6—> Pi7 T) i> H HOHID(R) (PZ, T)
iel il

is an equivalence of animae for all K € D(R). But if T} is any chain complex represent-
ing T, then Homp(P,c; Mpyx, Tv) = [lje; Homp (P, Ty) holds in Ch(R). Both the func-
tor 759: Ch(R) — Chxo(R) and the Dold-Kan equivalence Ch>o(R) ~ sAb preserve prod-
ucts. Hence we get an isomorphism of Kan complexes (in fact, of simplicial abelian groups)
Fenr) (Bicr Pisr Te) = Tlics Foner) (Pix, Ti). By crash course 6.36, this is (stronger than)
what we need.

The proof of (b) is similar, but needs a little more care. First, the assertion about pushouts
is a formal consequence of the assertion about cofibres; we leave this to you (just verify the
universal property). To show the assertion about cofibres, choose quasi-isomorphisms P, — M,
and Q4 — N, from K-projective complexes and replace o by a morphism o/: Py — Q4. Since
the mapping cone construction preserves quasi-isomorphisms (by the long exact cone sequence
and the five lemma), it suffices to show cofib(a’) ~ cone(a/). To this end, first note that the
composition Py — Q4 — cone(’), is nullhomotopic as a map of complexes. Any choice of
nullhomotopy defines a morphism cofib(a’) — cone(’) in D(R). To see that this morphism is
an equivalence, we can appeal again to Corollary 6.16 and the Yoneda lemma: It’s enough to
show that

Hompg) (cone(a’), T) — Hompg)(Q,T) — Hompg)(P,T)

is a fibre sequence of animae for all T' € D(R). Now we claim:

(X) Let p: Ky — Ly be any morphism of chain complexes and consider the canonical sequence
cone(p)[—1]x — Ky - L,

in Ch(R). Upon applying 7>0: Ch(R) — Chs¢(R) and the Dold-Kan correspondence, this

sequence is sent to a fibre sequence of animae.

Once we know (X), we’re done. Indeed, it’s straightforward to check that the sequence
Hompgy(cone(a)«, Ts) — Homp(Qx, Ti) — Homp(Py, Ty) is of the desired form. Then (X)
ensures that Foy(g)(cone(a’)s, Ts) — Fon(ry(Q«, Tx) — Fonr) (P, Tx) is a fibre sequence; by
crash course 6.36, this is what we need.

H,, (cone(a)s) — Hp—1(My) on homology fit into a long exact sequence

-+ — Hpy1(cone(a) ) 2, H,(My) — Hn(Ny) — Hy (cone(a)x) 2, Hp1(My) — -

called the cone sequence. In fact, this is nothing but the long exact homology sequence associated to the short
exact sequence of complexes 0 — Ny — cone(a)yx — M[1]sx — 0.
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To prove (IX), we can restrict ourselves to the case where ¢: K, — L, is degree-wise surjective.
Indeed, we can always replace K, by K, @ cone(idr, : L« — Lyx)[—1]«; this doesn’t change
anything since cone(idy, )« — 0 is a quasi-isomorphism, 7> preserves quasi-isomorphisms, and
Dold—Kan sends quasi-isomorphisms to homotopy equivalences of Kan complexes (because it
sends H,, to m, by crash course 6.35(b)). If p: K, — L, is surjective, a well-known fact from
homological algebra states that there is a quasi-isomorphism ker(), ~ cone(¢)[—1]+.(51?) So
it’s enough to show that ker(¢). — Ky — Ly is sent to a fibre sequence.

Since 750: Ch(R) — Chxo(R) is a right adjoint, we see that 750 ker(p), is still the kernel of
T>0¢: T>0Kx — T>0L«, but that map might not be surjective anymore in degree 0. So consider
im(7>0¢)« — T>0Lx. Under the Dold-Kan correspondence, this map is sent to the inclusion of
a collection of path components. Indeed, im(7>0p)x — T>0Lx is an isomorphism on H,, for all
n > 1 and injective on Hy, so after Dold—Kan, we obtain an isomorphism on m, for all n > 1
and an injection on 7y. Therefore, it’s enough to show that 7o ker(p). — 750K — im(750¢)
is sent to a fibre sequence. But that’s a short exact sequence in Ch>o(R), and so it’s sent to a
short exact sequence in sAb. As mentioned in crash course 6.35(a), surjections of simplicial
abelian groups are Kan fibrations. By model category fact 6.13, this means that the kernel, that
is, the fibre over 0 taken in simplicial sets, agrees with the homotopy fibre. So we're done. [

With all the preparatory stuff about D(R) out of the way, we can now finally get to the
actual subject of §6.5: Homology, cohomology, and Eilenberg—MacLane animae.

6.41. Construction. — For all integers n and all abelian groups A define a chain complex
Anly =(—-0—-0—-A—-0—-0—---)

with A in degree n and 0 everywhere else. Consider the functor Ab — Chx¢(Z) — Dxo(Z) that
sends A to A[0]. Since D>o(Z) has all colimits, so has Fun(Ab, D>((Z)) by Lemma 6.12. Hence,
by Theorem 6.30, there exists a unique colimits-preserving functor An — Fun(Ab, D> (Z))
that sends * € An to the functor Ab — Chx¢(Z) — D>((Z) discussed above. By “currying”,
we obtain a functor

C(—,—): An x Ab — D> (Z).

For every abelian group A, C(—, A): An — D>((Z) is the unique colimits-preserving functor
that sends * € An to A[0] as above. For an anima X, we call C(X, A) the chains of X with
coefficients in A and we call C(X, A) == fib(C(X, A) — C(, A)) the reduced chains of X with
coefficients in A (using the fibre construction from Definition 6.39). For all n > 0, we let

H,(X,A) = H,(C(X,A)), Hu(X,A)=H,(C(X,A))

denote the n'* homology of X with coefficients in A and the n'* reduced homology of X with
coefficients in A; here H,,: D>o(Z) — Ab is the functor from crash course 6.34. Finally,

H™(X, A) := mo Homp,_(z) (C(X,Z), A[n]), H™(X,A):= mHomp, 7 (C(X,Z), Aln])

(61274 see this, the first step is to construct a morphism ker(p)s — cone(p)[—1]s: This is straightforward
from the construction of cone(p)[—1]«. Alternatively, we can invoke a universal property: It can be shown
that maps Ty — cone(p)[—1]s are in bijection with pairs («,n), where a: Ty — Ky is a morphism and 7 is
a nullhomotopy of the composition ¢ o a: Ty — Ly. Since ker(¢)sx — Ly is zero on the nose, we can just
choose the trivial nullhomotopy. To show that the map ker(¢)s« — cone(p)[—1]x is a quasi-isomorphism, it’s
straightforward to check that this map induces a morphism between the long exact homology sequence associated
to 0 — ker(p)sx — Ky — Ly — 0 and the cone sequence for cone(p)s. Then the five lemma does the rest.
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denote the n' cohomology of X with coefficients in A and the n'* reduced cohomology of X
with coefficients in A. We’ll verify in Lemma 6.42 below that this definition of homology and
cohomology is compatible with the one you are familiar with.

But before we do that, let’s give yet another unfamiliar formulation of a familiar definition!
By Theorem 6.30, C(—,Z): An — D5o(Z) automatically acquires a right adjoint, which we
denote K: D>¢(Z) — An. For M € D-y(Z) we call K(M) the generalised Eilenberg-MacLane
anima of M. In the special case M ~ A[n] we say that K(A,n) := K(A[n]) is the Eilenberg—
MacLane anima of type (A,n). Again, we’ll justify in Theorem 6.44 below that this recovers
the definition you’re familiar with.

6.42. Lemma. — Let A be an arbitrary abelian group.

(a) The functors Hy(—, A) and Hy(—, A) from Construction 6.41 satisfy the Eilenberg-Steenrod
axioms. In particular, they are homotopy invariants; if f: Y — X is a morphism of
animae with cofibre X/Y = cofib(f), then there is a long exact sequence

o Ho (Y, A) — Hy (X, A) — H (XY, A) -5 Hy (Y, A) — -

(so H, (X/Y, A) plays the role of the relative homology Hy(X,Y, A)); and Hy(—, A) sends
disjoint unions to direct sums. Similar assertions hold for ﬁ*(—, A). Furthermore, the
suspension isomorphism is satisfied and pushouts of animae yield long exact Mayer—Vietoris
sequences.

(b) Let X be a Kan complex with geometric realisation |X| € Top. Let C3"8(|X|, A) denote
the singular chain complex of | X| with coefficients in A. Then there is a natural quasi-

somorphism N .
C(X,A) = O™ (|1X|,Z) .

In particular, we get Hy (X, A) = HI"8(|X|, A), as well as similar isomorphisms for reduced
homology and for cohomology (both unreduced and reduced).

Proof sketch. We begin with (a). Homotopy invariance follows from the definition of An. The
other Eilenberg-Steenrod axioms all follow from the fact that C(—, A): An — D=((Z) preserves
colimits. To demonstrate these kinds of arguments, we’ll show the long exact sequence for
H,(—, A); the disjoint union axiom as well as the Eilenberg-Steenrod axioms for Hy(—, A) will
be left to you. We start with the following diagram:

C(Y, A) O(x, A) 0

I .

C(X,A) —— C(X/Y,A) —— C(X/Y, A)

The left square is a pushout since C(—, A) preserves pushouts. To obtain the pushout square on
the right, observe that X/Y is canonically a pointed anima via * ~ Y/Y — X/Y. In general,
for any pointed anima (Z, z) € An,/, the canonical morphism Z — # has a preferred section
given by {z} — Z. Thus C(Z,Z) — C(x,Z) has a section and we obtain

C(2,Z) ~C(Z,2) ®C({z},Z) .

Hence the reduced chains G(Z, Z) from Construction 6.41 can also be written as the cofibre

~

C(Z,Z) ~ cofib(C({z},Z) — C(Z,7Z)), functorially in (Z, z). This explains the right square in
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the diagram above. Hence C(Y, A) — C(X, A) — C(X/Y, A) is a cofibre sequence in Dx((Z)
and thus in D(Z). By Lemma 6.40(b), cofibre sequences in D(Z) can be represented by cone
sequences, so the desired long exact sequence is simply the cone sequence.

The suspension isomorphism and the Mayer—Vietoris sequence are formal consequences of
the Eilenberg—Steenrod axioms. Alternatively, they can be checked by hand. For example, for
Mayer—Vietoris, use that C(—, A) preserves pushouts and then apply the characterisation of
pushouts in D(Z) from Lemma 6.40(b).

For (b), let’s first describe how to get a functor C5"8(| —|, A): An — Dxq(Z). By Theo-
rem 4.13 and Lemma 4.11, it’s enough to check that C5"8(| — |, A): Kan — Chs((Z) sends
homotopy equivalences to quasi-isomorphisms, which is obviously true. So we get our desired
functor. We know from Lemma 6.31 and the Kan extension formula that C(—, A): An — D> (Z)
is the left Kan extension of its restriction to {#} C An. By the universal property of Kan
extensions, the equivalence C(*, A) ~ A[0] ~ C518(|+|, A) extends to a natural transformation

C(—, A) = (| — |, A).

Whether this is an equivalence can be checked pointwise and on homology groups. Now we can
use the well-known fact that any unreduced homology theory h, with ho(x) = A and h, () = 0
for n > 1 must necessarily coincide with singular homology with coefficients in A. See [Hat02,
Theorem 4.59]. Alternatively, we can directly show that C5"8(| — |, A) preserves colimits. Using
Lemma 6.40, this is straightforward (preservation of coproducts is trivial and preservation of
pushouts is, essentially, the Mayer—Vietoris sequence).

The isomorphism H, (X, A) = H3"®(]X|, A) is an immediate consequence, as is its variant
for reduced homology. For cohomology, we can argue as follows: We already know that
C(X,Z) ~ C*"8(| X|,Z). The chain complex C5"8(|X|,Z) is K-projective because it is degree-
wise free over Z and bounded below. Using the computation from crash course 6.36, we
deduce

mo Homp_ () (C*¢ (| X1, Z), A[n]) = Ho Homy (C3*¢(|X|,Z), A[n])
Now Homy (C5"8(|X|,Z), A) = Caing(IX1, A) is the cochain complex that computes singular
cohomology of | X, placed in negative degrees (so that it becomes a chain complex). Taking
the shifts into account, we get H" (X, A) = HY (| X|, A), as claimed. The same argument also

sing
shows the assertion about reduced cohomology. O
6.43. Remark. — Let’s take a moment to appreciate the beauty of Lemma 6.42(a). With our

definition of homology, the Eilenberg—Steenrod axioms and all the usual properties of homology
are completely formal. The only input we need is of algebraic nature: namely, the description of
colimits in D(Z) from Lemma 6.40. Now compare that to the classical construction of singular
homology: To prove the Mayer—Vietoris sequence (or equivalently excision), one has to take
sufficiently fine barycentric subdivisions, apply Lebesgue’s covering theorem, and construct
a bunch of chain homotopies by hand (see [Hat02, Proposition 2.21] for such an argument).
Blargh! I find our approach much more enlightening and much less technical.(%13) In fact, I'd
argue that Construction 6.41 is the better definition of homology (and an even better one is
Corollary 8.2)!

(6-13)The careful traditionalist will—rightfully—object that our theory doesn’t really avoid barycentric subdivision,
it just moves it to the proof of Theorem 3.26, conveniently hidden in a black box. Sure, but that doesn’t
undermine my point. Barycentric subdivision is a technical tool to compare animae to CW complexes—that’s its
natural place in the theory. Beyond that, it can be avoided.
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Although our definition is very abstract, for a given anima X, it’s often easy to write
down an explicit complex that computes C(X, A). For example, assume we’re given a “CW
decomposition” of X; that is, a way to write X as a sequence of pushouts along S™ — = (the
n-disk is contractible, so we may as well use * instead). Then, C(X, A) can be written as a
similar sequence of pushouts in Do(Z). Since we understand C(S™, A) ~ A[0] @ A[n] as well
as C(x, A) ~ A[0] and since we know how to compute pushouts in D>((Z) by Lemma 6.40(b),
we can compute C(X, A). If you think about this, the complex we end up with is precisely
the cellular complex of X, so we’ve just proved that homology agrees with cellular homology.
Combining this with the classical fact that cellular and singular homology agree, we get an
alternative proof of Lemma 6.42(b).

We finish this subsection by proving the classical Eilenberg-MacLane theorem. As we’ll see,
once again, the proof is entirely formal.

6.44. Theorem (“Eilenberg-MacLane animae represent cohomology”). — For every abelian
group A and all n > 0, the Eilenberg-MacLane anima K(A,n) from Construction 6.41 satisfies
T K(A4,n) = A and m; K(A,n) = 0 for i # n. This condition determines K(A,n) uniquely
up to homotopy equivalence. Furthermore, K(A,n) represents cohomology with coefficients
in A (both unreduced and reduced) in the sense that the functors H"(—, A): An — Ab and
ﬁ"(—,A): An,, — Ab are given by

[—,K(A,n)] = T HomAn(—,K(A,n)) and [—,K(A,n)]* = mo Homan,, (—,K(A,n)) ,
respectively.

Proof. For every anima X and every M, € Ch>((Z), the adjunction C(—,Z): An = D>¢(Z) : K
from Construction 6.41 shows

HOl'IlAn (X’ K(M)) = HOHl'D)Q(Z) (C(X7 Z)7 M) .

In the case M, ~ A[n],, we immediately obtain mo Homa, (X, K(A,n)) ~ H*(X, A). This shows
that [—,K(4,n)] = H"(—, A). The assertion about reduced cohomology follows analogously if
we can show that the adjunction C(—,Z): An = D>¢(Z) :K lifts to an adjunction

C(—,Z): An,) = D=o(Z) :K.

In Lemma 6.45 below, we’ll show a general fact about passing adjunctions to slice co-categories.
Let’s explain how this applies in our situation: Since K is a right adjoint, it preserves terminal
objects, whence K(0) >~ . But 0 is also an initial object in D>o(Z). Hence Dxo(Z) ~ Dxo(Z)o,
and so the induced functor K: D>¢(Z) =~ D>0(Z)o; — Ang(o), ~ An,, on slice co-categories is
indeed of the form studied in Lemma 6.45. We’ve seen in the proof of Lemma 6.42(a) that for
every pointed anima (X, z) one has C(X,Z) ~ cofib(C({z},Z) — C(X,Z)), so C(—,Z) agrees
with the left adjoint constructed in Lemma 6.45.

To compute the homotopy groups of K(A,n), let S* € An be the i-sphere.(51%) Plugging in
(8%, %) for any choice of basepoint yields

m K(A4,n) = m HomAn*/ ((Si, *),K(A,n)) ~ ItI"(Si, A).

(6-1)There are many possible constructions for $*. The most conceptual way would be to define S¢ := Yi(x %)
as the i-fold suspension of two points, using the upcoming definition Definition 7.1. But there are also many
possible simplicial models. For example, if 9D*' C D**! is the boundary of the topological (i + 1)-disk, we could
take Sing D! as our model for S*. Alternatively, we could choose anodyne maps from 0 /000" or A*/OA® or
OA™! into Kan complexes. All constructions you could possibly come up with will be homotopy equivalent, so
you can just choose your favourite option.
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By Lemma 6.42, one has ﬁ"(S”,A) = A and I:I”(Si,A) = ( for ¢ # n, and the desired
description of m, K(A4,n) follows. By the usual argument from topology, K(A4,n) is uniquely
determined by this property up to homotopy equivalence. O

The following lemma was used in the proof:

6.45. Lemma. — Let L: C 2 D : R be an adjunction of co-categories and let y € D. If for
every morphism R(y) — x in C the pushout

Yy Urr@) L()

exists in D, then the functor R: D,, — Cpgq,), on slice co-categories still has a left adjoint
Ly: Cryy) — Dyy. On objects, Ly is given by Ly(R(y) — x) ~ (y — yUrr(y) L(7)), constructed
via the pushout square above. Moreover, the pushout square can be made functorial in an obvious
way and this recovers Ly as a functor (not only pointwise).

Proof sketch. You can directly verify Homp, ,(Ly(R(y) — x), —) ~ Home,  (R(y) — =, R(—)).
To do so, plug in Corollary 6.16, Corollary 5.15, and the given adjunction L - R, then perform
a formal manipulation of pullbacks. Since adjoints can be constructed pointwise (Lemma 6.2),
this proves the existence of L,. With a little more care, one can make the pullback manipulation
functorial in R(y) — z as well, and then the claimed description of L, follows. O
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Appendix to §6. Presentable co-categories

Suppose C is an oco-category with all colimits and let F': C — D be a colimits-preserving
functor of oco-categories. Then the only thing preventing F' from having a right adjoint is
set theory. Indeed, the values of a hypothetical right adjoint G: D — C would be given by
G(y) =~ colim(C/, — C) for all y € D (as we’ll see in the proof of Theorem 6.66(a)), except that
this colimit usually doesn’t exist, even though C has all colimits. The problem ist that C,, is
usually not an essentially small co-category in the sense of Definition 6.46(b) below. So far, we
have ignored these smallness issues. Still, §§6.1-6.4 can be made set-theoretically sound. As a
rule of thumb, whenever a limit or colimit is considered, the indexing oco-category should be
assumed small (or at least admit a final/cofinal functor from an essentially small co-category)
and whenever we consider PSh(C), we should assume that C is essentially small. The only time
this gets hairy is in the proof of Lemma 6.27, where we should allow D to be large, but also
consider PSh(D). Nevertheless, this can be fixed too.(6:15)

However, a more thorough analysis is needed to save our adjoint functor argument. In
fact, oo-categories C with all colimits are very seldomly essentially small, and so neither is C,,.
However, often there exists an essentially small sub-oco-category Cy C C that generates C under
colimits, and in this case one can replace C;, by a cofinal essentially small sub-oo-category,
so that the required colimits do exist. The theory of accessible and presentable oco-categories
makes these ideas precise and allows to prove an incredibly powerful adjoint functor theorem.

In §§6.6-6.9, we’ll give the necessary definitions and prove Lurie’s adjoint functor theorem
(Theorem 6.66). After that, we’ll discuss some supplements in §6.10. Naturally, this means
that §§6.6-6.10 will be very technical. If you're mainly interested in spectra and willing to take
the adjoint functor theorem on faith, you can safely skip ahead to §7 at this point. If instead
you're looking for a much more detailed exposition, you should consult [L-HTT, §5].

§6.6. Essentially small and locally small co-categories

First we’ll explain how to put cardinality bounds on oo-categories.

6.46. Definition. — Let « be a regular cardinal and let C be an oo-category.

(a) If kK = Vg, then C is called essentially RXo-small if it is contained in the full sub-oco-category
of Caty, generated under pushouts by @ and A" for all n > 0. If x is uncountable, then
C is called essentially k-small if 7y coreC as well as mo Home (x, y) and m, (Home(x,y), @)
are sets of cardinality < x for all x,y € C, all a: x — y, and all n > 1.

(b) C is called essentially small if it is essentially k-small for some regular cardinal k, and
large otherwise. C is called locally small if Home(z,y) is essentially small for all z,y € C.

(¢) A colimit or a limit over a functor F': Z — C is called x-small if T is essentially x-small.
Instead of Ng-small, we often say that a limit or colimit is finite.

6.47. Remark. — If C is a small co-category and D is locally small, then Fun(C, D) is again
locally small, as can be seen by Corollary 6.25. In particular, PSh(C) and the oco-categories
Ind,(C) from Construction 6.59 below will be locally small.

(615 For example, by using universes, but Fabian proposed a trick to get away with ZFC: Instead of PSh(D),
consider the oco-category of right fibrations 4 — D, for which & admits a cofinal functor from an essentially
small co-category. This co-category contains D/, — D for all y € D, so all Yoneda arguments go through.
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For practical applications, it will, unfortunately, be necessary to translate our nice model
independent Definition 6.46(a) into the language of simplicial sets.

6.48. Lemma. — Let K be an uncountable reqular cardinal and let C be an co-category. Then
the following are equivalent:

(a) C is essentially k-small.
(b) C is equivalent to a quasi-category with < k simplices across all dimensions.

(¢) There exists a simplicial set K with < k simplices across all dimensions and a Joyal
equivalence K — C (that is, a weak equivalence in the Joyal model structure from Exam-
ple 3.29).

Furthermore, if K is a finite simplicial set (that is, a simplicial set with only finitely many
non-degenerate simplices) and K — C is a Joyal equivalence, then C is Ng-small.

Proof sketch. The implications (b) = (a) and (b) = (c) are trivial. For (¢) = (b) let K — C’
be the inner anodyne map into a quasi-category provided by the proof of Lemma 3.12. Then
C’ has again < k simplices across all dimensions, because we're attaching < x new simplices
countably many times. For the additional assertion, use induction on the dimension and
write K as a sequence of pushouts against [[OA™ — [ A™, where the disjoint union is finite.
Replacing everything by quasi-categories and using model category fact 6.13, we conclude that
C is contained in the full sub-oco-category of Cato, generated under pushouts by () and A™ for
all n > 0, as desired.

It remains to show (a) = (b). We build a sub-simplicial set C' C C as follows: Start with
C' = (). Choose < k representatives for every equivalence class in 7y core(C) and add them
to C'. For all z,y € C’ and every equivalence class in mo Home(z,y), we add a representative
a: x — y. Furthermore, for every n > 1 and every class in m,(Home(x,y), @), we choose a
representative A" /OA™ — Home(z,y) and add the simplices in the image of the corresponding
map A"/OA" x Al — C to C'. Then C’ still has < » simplices. Mimicking the proof of
Lemma 3.12, we can add < k further simplices to C’ to ensure that C’ is a quasi-category.
By construction, ' — C is essentially surjective and the map Home (z,y) — Home(z,y) is a
surjection on all m, for all z,y € C’. To make it injective, for every class in the kernel, choose
a homotopy A"/0A"™ x A' — Home(z,y) to const a. This homotopy corresponds to a map
(A"/OA™ x Al) x A' — C and we add its image to C’. Then we add < x simplices to make
C’ into a quasi-category again. Clearly, C' — C is still essentially surjective; furthermore, all
elements in the previous kernel of 7, (Home: (x,y),«) — 7, (Home(z,y), o) have been killed
now. But there could be new ones. So we simply repeat this process countably many times.
Then C’ — C is fully faithful too and thus an equivalence by Theorem 4.6. O

6.49. Remark. — If k is an uncountable regular cardinal, then pushouts or pullbacks
of essentially x-small oco-categories are essentially k-small again. Indeed, this follows from
Lemma 6.48(b) together with model category facts 5.12 and 6.13 and a cardinality bound on
Lemma 3.12: A functor between quasi-categories with < x simplices across all dimensions can
be factored into a cofibration followed by a trivial fibration or into a Joyal equivalence followed
by an isofibration in such a way that the new quasi-category in the middle has again < k
simplices across all dimensions. Combining this observation with Lemma 6.50 below, we see
that the full sub-co-category CatS of essentially k-small co-categories is closed under k-small
limits and colimits.
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In the case k = N it’s obvious that Ng-small co-categories are closed under pushouts and
thus under finite colimits by Lemma 6.50 below. The same can be shown for finite products,
but I don’t know if it works for pullbacks too.

6.50. Lemma. — Let k be a regular cardinal. An oco-category C has all k-small colimits
if and only if C has pushouts and k-small coproducts. A functor F: C — D of co-categories
preserves colimits if and only if it preserves pushouts and k-small coproducts. A dual assertion
holds for limits.

Proof sketch. Repeat the proof of Lemma 6.37 and use Lemma 6.48 together with model
category fact 6.13 to see that pushouts of k-small co-categories are still k-small. O

§6.7. Filtered colimits

In this subsection, we’ll study filtered colimits in co-categories and prove a version of the
well-known fact that filtered colimits commute with finite limits (Theorem 6.54).

6.51. Construction. — Let Z be an co-category. We define the cone Z9 over Z and the
cocone I% under T as the following pushouts in Catee:

I x{0} —— I xA! ITx{l} — ITxA!
* A * i

It’s tempting to use the procedure from model category fact 6.13 to compute these pushouts
explicitly, but this is a little tricky. Steps (a), (b), and (c) are easy though: Z x {0} — T x Al
and Z x {1} — T x Al are already cofibrations, so we can simply take the pushout on the
nose. The tricky step, however, is (d), in which one has to replace the pushout in sSet by a
quasi-category. One can show that the joins {0} xZ and Z % {1}, which we didn’t introduce, are
such replacements; see [L-HTT, Proposition 4.1.2.1] or [Lan21, Proposition 2.5.19]. We won’t
need this explicit description and work with the abstract construction exclusively.

Note that * — Z< is an initial object and * — Z"” is a terminal object. This is obvious in
the simplicial models, but there’s also a model-independent argument: We must show that
x — Z9 is left adjoint to the unique functor Z9 — *. This can be done via Lemma 6.5 by
constructing the unit and counit by hand. The unit is clear, as there are not that many
functors from = to itself (in fact, there’s only one). For the counit, we must construct a natural
transformation ¢: 79 x Al — Z9 from const * to idz«. Using that — x Al: Cat,, — Catso
commutes with pushouts (since Fun(A!, —) is a right adjoint by Example 6.3(b)), this boils
down to constructing a natural transformation A' x A — Al from const 0 to ida1, which is
easy. In the same way, verifying the triangle identities reduces to a question about A'. In
particular, we deduce |Z9| ~ = and |Z”| ~ %, as oo-categories with an initial or terminal object
are always weakly constractible.

As in ordinary category theory, cones and cocones are closely related to limits and colimits,
respectively. Concretely, if F: Z — C is a functor and y € C is an object, then an easy
calculation using Corollary 6.17 shows

{F} XHomeu. (2.0) HoMCato, (Z7,C) XHomey, _ (+,0) 19} =~ Hompyy(z,c) (F consty) .
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Informally, an extension of F' to a functor F*: Z" — C that sends the tip * € C* to y is the same
as a natural transformation F' = consty. If F' admits a colimit, such a natural transformation
is the same as a morphsm colim;c7 F'(i) — y, and the right-hand side above is equivalent to
Home (colim;ez F(i),y).

6.52. Definition. — Let « be a regular cardinal and let 7, C be oco-categories.

(a) J is called k-filtered if every functor Z — J from an essentially x-small oco-category
extends to a functor Z% — 7 from the cocone under C, or in other words, if the restriction
Fun(Z", J) — Fun(Z, J) is essentially surjective. In the case k = Ny, we usually just say

J is filtered.

(b) A colimit over a functor F': J — C is called s-filtered if J is r-filtered, and filtered if J is
filtered.

(¢c) An object x € C is called k-compact or compact if Home(z, —): C — An commutes with
r-filtered or filtered colimits, respectively.

6.53. Remark. — We'll explain why Lurie’s definition of x-filteredness in [L-HTT, Defini-
tion 5.3.1.7] is equivalent to ours. Let J be a r-filtered quasi-category as in Definition 6.52(a).
Furthermore, let Z be an essentially x-small quasi-category and choose the simplicial model
7T % {1} for Z" (as Lurie does). Then any functor Z — J can not only be extended to Z" — J
up to equivalence, but even on the nose. The reason is that Z — Z" is a cofibration and
thus core F(Z”,J) — coreF(Z,J) has lifting against {0} — A! by claim (X) in the proof
of Theorem 4.6. Then Lemma 6.48 easily implies that Lurie’s definition of x-filteredness is
equivalent to ours in the case where k is uncountable.

If kK = Ny, then Lemma 6.48 shows that any filtered oco-category J in the sense of Defini-
tion 6.52(a) is also filtered in Lurie’s sense. The converse is true as well, but not as obvious
(at least to me), since I don’t know if the converse of the additional assertion in Lemma 6.48
is true (I’d guess it’s not). So here’s a different argument: If 7 is filtered in Lurie’s sense,
then colim: Fun(J, An) — An preserves finite limits (by [L-HTT, Proposition 5.3.3.3] or by
observing that the proof of Theorem 6.54 still goes through). Hence Theorem 6.54, which we’ll
prove next, implies that J is filtered in our sense.

6.54. Theorem. — Let k be a reqular cardinal. Then an co-category is k-filtered if and only
if the functor colim: Fun(J,An) — An preserves k-small limits.

Before we can prove Theorem 6.54, we need to send four more lemmas in advance.

6.55. Lemma. — Let k be a reqular cardinal and let J be a k-filtered oo-category. Then
|J| ~ *. Furthermore, for every j € J the slice J;) is k-filtered again and J;; — J is cofinal.

Proof sketch. To see |J| ~ *, unfortunately, we need to use simplicial methods. It’s enough to
show that every map o: 0A™ — | 7| is nullhomotopic, because then the same argument as in the
proof of Lemma 3.24 shows that |J| — = is a trivial fibration. We’ll show that for every o there
is a functor a: Z — J from Ng-small co-category Z such that o factors through |af: |Z] — |T].
This will be enough since then o also factors through * ~ |Z%| — | J| by filteredness of 7. To
construct a, recall that J — |J| can be constructed as an anodyne map into a Kan complex
via Lemma 3.12. Accordingly, as simplicial sets, |J| = colim;>q J;, where Jp = J and J;41 is
obtained from J; by attaching solutions to horn filling problems. All the finitely many simplices
in the image of o: JA™ — |J| must already be contained in J or occur in J; as a solution
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to some horn filling problem. If the latter is the case, all the finitely many simplices involved
in that horn filling problem must already occur in J or in some J; for k < i. Continuing in
this way, we can trace back ¢ to a finite number of simplices in J. Completing these finitely
many simplices to a sub-quasi-category Z C J as in the proof of Lemma 6.48 yields the desired
functor a: Z — J.

For the other assertions, let Z — J;, be a map from an essentially x-small co-category. By
unravelling the respective universal properties, such a map is equivalent to a map Z9 — J
sending the tip of the cone to j. Since Z9 is still essentially k-small, we get an extension
(Z9)> — J. Since (Z%)> ~ (Z”)% this defines a map I* — J;,, proving that J;, is s-
filtered. An analogous argument shows that J;, x 7 Jj/ is r-filtered for every j' € J. Hence
|Tj/ X7 Jjrj| =~ * by the first part. Thus J;, — J is cofinal by Theorem 6.18(c). O

6.56. Lemma. — Let D be an oco-category and y € D an object.

(a) D, — D preserves and detects arbitrary limits. That is, a diagram o: I — Dy, has a
limit in D, if and only if the underlying diagram @: T — Dy, — D has a limit in D, in
which case these limits coincide in D.

(b) Dy, — D preserves and detects T-shaped colimits if |Z| ~ . In particular, this applies to
pushouts (since |A3| ~ ) and filtered colimits (by Lemma 6.55).

(c) In general, let a: T — D, be a diagram in Dy, and let &: T — Dy, — D be the underlying
diagram in D. If the colimits colim;ez @(i) and colim;ezy as well as the pushout

colimy —— colim @(7)
€T i€Z

o

Yy———~¢

exist in D, then (y — c) € Dy, is the colimit of a: T — D,,.

Proof sketch. For (a), first consider the case where D has all limits. The functor a: Z — D,
defines a natural transformation consty = @, hence a morphism y — lim;ez @(i). We claim
that (y — lim;ez @(4)) is the limit of . Indeed, using Corollary 5.15 and the fact that limits
commute with limits by the dual of Lemma 6.38, we immediately verify the condition from
Corollary 6.16. This concludes the case where D has all limits. The general case can be reduced
to this special case by considering a fully faithful limits-preserving functor i: D — D’ into an
oo-category with all limits; for example, Xp: D — Fun(D°P, An) does it by Corollary 6.17.
Assertion (c) follows from Lemma 6.45, using Fun(Z, D) ~ Fun(Z, D) const y/- To prove (b),
first assume that D has all colimits. Then the assumptions from (c) are satisfied and colim;e7 a (%)
exists. If |Z| ~ «, then Lemma 6.57 below implies that the canonical morphism colim;cry — y
is an equivalence. Hence the pushout from (¢) becomes an equivalence colim;ecz @(i) ~ c. This
proves (b) in the case where D has all colimits. For the general case, choose a fully faithful
colimits-preserving functor i: D — D’ into an oo-category D with all colimits; for example, the
mutilated Yoneda embedding (&pop)°P: (D°P)°P — Fun(D, An)°P does it by Corollary 6.17. [

6.57. Lemma. — Let D be an oco-category, y € D an object, and I be an oco-category
satisfying |Z| ~ %. Then colim;ery ~ y; in particular, this colimit always exists.

Proof. Clearly, consty: Z — D factors through Z — |Z|. This functor is cofinal by Exam-
ple 6.20(c), and since |Z| ~ =, it follows that the colimit is indeed given by y. O
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The following lemma is the crucial step in the proof of Theorem 6.54:

6.58. Lemma. — The functor my: An — Set commutes with products and all colimits. The
functors m1: Any, — Grp, and m,: An,, — Ab for all n > 2 commute with products and
filtered colimits.

Proof sketch. Since mg: An — Set is left adjoint to the inclusion Set C An, Lemma 6.11 shows
that mg preserves colimits. By a simple inspection 7 also preserves products. This immediately
implies that 7, preserves products for all n > 1, since m, (X, z) = 7o Homan, ,((S", %), (X, z))
and HomAn*/((S”, %), —): An,, — An preserves limits by Corollary 6.17.

The assertion about 7, needs simplicial methods (and two black boxes), unfortunately. Let
J be a filtered oco-category. For every ordinary category C, we have Fun(7,C) ~ Fun(ho(J),C)
by Lemma 2.14, and so J-shaped colimits in C agree with ho(J)-shaped colimits. It’s straight-
forward to see that ho(7) is filtered in the usual sense. So for filtered colimits in an ordinary
category we can replace the indexing diagram by an ordinary filtered category. But a stronger
assertion is true, which we’ll need later:

(M) For every filtered co-category there exists a directed partially ordered set J and a cofinal
functor J — J.

For a proof of (M) see [L-HTT, Proposition 5.3.1.18] or [L-Ker, Tag 02QA] (the Kerodon
proof is relatively short and only uses methods that we have already available).

Next, observe that 7 : Kan,, — Grp and 7, : Kan,, — Ab for n > 2 commute with filtered
colimits in the ordinary category Kan,,. This follows essentially from the fact that [J" and
O™ are finite simplicial sets, using an argument as near the end of the proof of Lemma 3.12.
It follows that for every filtered oo-category J, the functor colim: Fun(J7,Kan) — Kan sends
pointwise homotopy equivalences to homotopy equivalences. Indeed, let X(_) = X(’_) be a
natural transformation in Fun(J7,Kan) such that X; — X ]’ is a homotopy equivalence for all
Jj € J. We can check on homotopy groups whether colim;e 7 X; — colim;c 7 X; is a homotopy
equivalence. By the argument above, we get a bijection on my. Now let € mg(colimje 7 X;)
be a point. Since my commutes with colimits, we must have z € my(Xj,) for some jo € J.
By Lemma 6.55, we may replace J by Jj,/, so we may assume jo is initial in J. Then
{r} — Xj, — Xj for all j € J turns X(_) into a functor (X_),z): J — Kan,,. The same
works for X é_). Since X(_y = X E_) is a pointwise homotopy equivalence and 7, commutes with
filtered colimits in Kan,, we conclude that 7, (colim;es Xj,x) = m,(colimje s X}, ). This
finishes the proof that colim: Fun(J,Kan) — Kan sends pointwise homotopy equivalences to
homotopy equivalences. At this point, we need the second black box:

(W) If J is a directed partially ordered set, then there is an equivalence of oo-categories
Fun(J, Kan)|{pointwise homotopy equivalences}_l] > Fun(J, An).

The proof of (M) is similar to that of Theorem 4.13: First, one defines a simplicial model
structure on Fun(.J,sSet) in such a way that N2 ((Fun(.J,sSet)?)f) ~ Fun(J, An). In the proof
of [L-HTT, Proposition 5.3.3.3], Lurie explains how to do this. Then one uses Remarks 4.14
and 4.15 to identify the simplicial nerve N2 (Fun(J,sSet)%) with the localisation above.

Now let p: Kan — An and py: Fun(J,Kan) — Fun(J,An) denote the canonical func-
tors. By Theorem 4.13 and (My), both p and p; are localisations. As we’ve seen above,
colim: Fun(J, Kan) — Kan sends pointwise homotopy equivalences to homotopy equivalences.
Hence pocolim: Fun(J, Kan) — An factors uniquely through the localisation p; by Lemma 4.11.

106


http://people.math.harvard.edu/~lurie/papers/HTT.pdf#theorem.5.3.1.18
https://kerodon.net/tag/02QA
http://people.math.harvard.edu/~lurie/papers/HTT.pdf#theorem.5.3.3.3

§6.7. FILTERED COLIMITS

Let ¢: Fun(J, An) — An be the induced functor; we claim that c is simply the colimit functor.
To this end, consider const: Kan — Fun(J,Kan); since it sends homotopy equivalences to
pointwise homotopy equivalences, the same argument as above shows that pj o const factors
uniquely through the localisation p. That factorisation is necessarily const: An — Fun(J, An).
It’s straightforward to verify that the adjunction colim: Fun(J, Kan) = Kan : const descends
to an adjunction ¢: Fun(J, An) = An : const on the localisations. Indeed, one can show using
Lemma 4.11 that the unit and counit transformations as well as the triangle identities get
inherited, so we may appeal to Lemma 6.5. This shows that c¢ is left adjoint to const, hence it
must be the colimit functor, as claimed.

Finally, we can finish the proof. Let (X_),z(_)): J — An,, be a functor from a filtered
oo-category into pointed animae. By (M), we may assume that J ~ J is a directed partially
ordered set. By Lemma 6.55, we may assume that .J contains an initial object jy. Then for every
(Xj,;), the point {z;} — X agrees with {z;,} — X, — X;. Since An,, — An preserves
filtered colimits by Lemma 6.56, it follows that the pointed anima colim;c;(Xj;,x;) is given
by the unpointed colimit colim;e s X; together with the point z;, — X;; — colim;c; X;. By
(M), Fun(J, Kan) — Fun(J, An) is essentially surjective. So we may assume that X(_y comes
from a functor X(_y: J — Kan. As argued above, we may then as well take the colimit in Kan
instead of An. So the fact that m,: An,, — Set preserves filtered colimits reduces to the same
assertion about my,: Kan,, — Set, which we already know. ]

Proof of Theorem 6.54. First assume J is x-filtered. By Lemma 6.50, it’s enough to show that
colim: Fun(J,An) — An preserves pullbacks and x-small products. Using Lemma 3.19 and
the five lemma (plus Remark 3.20), we can further reduce pullbacks to fibre sequences (in the
sense of Definition 6.39).

Let’s do x-small products first. We have to show that for every set I of cardinality < &,
every k-filtered oo-category J, and every functor X(_ _y: I x J — An, the natural map

colim Xz j H colim Xz Y
JjeT - ’ = jed ’
el el

is an equivalence. This can be checked on homotopy groups. We get a bijection on g,
since my: An — Set preserves products and colimits and in Set, k-filtered colimits commute
with k-small products. For higher homotopy groups, fix some = € mg (colimje T Lier Xi,j).
Since mp commutes with colimits, we must have € mo([I;c; Xij,) for some jo € J. By
Lemma 6.55, we may replace J by Jj,, to assume that jo is initial in J. In this case, the
composition {x} — [[;c; Xij, — Xij, — Xi; for all (4,7) € I x J turns X(_ _) into a functor
X _y: I xJ — An,,. Then m,(colimjes [T;e; Xij,z) = mp([Ties colimjey Xi j, x) follows
from Lemma 6.58 and the fact that k-filtered colimits in Grp or Ab commute with k-small
products.

The case of fibre sequences is similar. Let F(_y = Xy = Y(_) be a fibre sequence in
Fun(J,An); by Lemma 6.12, this is equivalent to F; — X; — Y being a fibre sequences for
every j € J. We must show that

colim F; — fib (colim X — colim YJ>
JjeT JjeT jeT

is an equivalence. This follows from a comparison of long exact sequences, using Lemma 3.19
and the five lemma together with the fact that filtered colimits preserve exact sequences. This
finishes the proof that colim: Fun(J, An) — An preserves k-small limits.
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Conversely, assume this is the case; we must show that J is k-filtered. Let a: Z — J be a
functor from a essentially x-small co-category. Consider the composition

a°P

70 9%, 700 21, (7, An) .

Since Fun(J, An) has all limits by Lemma 6.12, we can put E := lim(Z°® — Fun(J7, An)) and
extend the functor above to a limit cone (a°P)?: (Z°?)Y — Fun(J, An). Suppose there is an
object j € J°P together with a natural transformation n: Homs(j, —) = E in Fun(J, An).
We may view (a°P)? as a natural transformation const £ = X yop 0 a°?. Composing with
constn: const Hom 7(j, —) = const E yields another natural transformation, which we may
again view as a functor (°P)?: (Z°P)Y — Fun(J, An). Then (5°P)“ lands in the essential image
of X 7op. Since the Yoneda embedding is fully faithful by Corollary 5.27, we obtain a functor
6”1 — J, as desired.

So assume on the contrary that there exists no n: Hom7(j, —) = E as above. By Yoneda’s
lemma, Theorem 5.19, this implies E(j) ~ @ for all j € J. Since initial objects are pre-
served under arbitrary colimits, colimje s E(j) ~ (). On the other hand, Lemma 6.14 implies
colim;je 7 Hom 7 (jo, j) =~ |Jj,/| = * for every jo € J. Since colim: Fun(J,An) — An preserves
r-small limits by assumption, it follows that colimje s F(j) ~ lim;czop * ~ *, as terminal objects
are preserved under arbitrary limits. Since () % *, we get a contradiction. O

§6.8. Accessible and presentable co-categories
We can now introduce a class of large co-categories that are generated by a small sub-oco-category.

6.59. Construction. — Let k be a regular cardinal and let C be an essentially small oco-
category. We let Ind,(C) C PSh(C) be the full sub-oo-category spanned by those presheaves
E: C°? — An for which the unstraightening Un"8") (E) is s-filtered. In the case k = Xy, we
often write Ind(C) := Indy, (C).

Note that the Yoneda embedding J¢: C — PSh(C) factors through Ind.(C). Indeed, for
every x € C, the unstraightening of Hom¢(—,z): C° — C is the right fibration C,, — C by
the dual of Example 5.5(b). Now C/, has a terminal object id,: # — =, hence it is -filtered
for any . Indeed, composing any functor Z — C,, with id¢ /. = constidy yields an extension
% — C/,, as desired. Alternatively, we could have used Theorem 6.54: Since C/,, has a terminal
object, every colimit over C/, is just given by evaluating at that object. Therefore, it follows
from Lemma 6.12 that colim: Fun(C/,, An) — An preserves arbitrary limits. We’ll denote the
factorisation of k¢ by

X5: C — Ind,(C).

If no confusion can occur, we’ll usually drop the superscript and just write .

More generally, we have Un("#") (E) ~ C sk forall E € PSh(C), so E is contained in Ind, (C) if
and only if C/ is filtered. Indeed, the right fibration PSh(C),z — PSh(C) is the unstraightening
of Hompgyc)(—, F): PSh(C)°® — An. By Yoneda’s lemma (combined with 5.30), we have an
equivalence F' ~ Hompgyc)(&e(—), £) of presheaves. Hence the unstraightening of E is the
pullback of PSh(C),g — PSh(C) along &¢: C — PSh(C), which is C,p.

6.60. Definition. — Let x be a regular cardinal. A (not necessarily essentially small)
oo-category C is k-accessible if C ~ Ind,(Cy) for some small oo-category Cy. We call C accessible
if it is k-accessible for some regular cardinal k. We call C presentable if it is accessible and has
all colimits.
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6.61. Lemma. — Let k be a regular cardinal and let C be a small co-category.

(a) A presheaf E € PSh(C) belongs to Ind,(C) if and only if E can be written as a k-filtered
colimit of representable presheaves. Furthermore, Ind,(C) C PSh(C) is closed under
k-filtered colimits.

(b) If C has k-small colimits, then a presheaf E € PSh(C) belongs to Ind.(C) if and only if
E: C°? — An preserves k-small limits.

(¢) If D is an co-category which has all k-filtered colimits, then restriction along the Yoneda
embedding induces an equivalence

XE: Fun®filt (Indx(C),D) — Fun(C,D).

Here Fun®*(Ind, (C), D) C Fun(Ind.(C), D) is spanned by those functors that preserve
k-filtered colimits.

Proof. We begin with (a). By Lemma 6.31, every presheaf E can be written as a colimit
of representables, with C,p as indexing oo-category. If £ € Ind,(C), then C,p is s-filtered
by Construction 6.59, hence F is a x-filtered colimit of representables. Conversely, assume
E can be written as such a s-filtered colimit, say, F ~ colim;c7 Hom¢(—, ;). Since the
unstraightening Un(*ght) . PSh(C) — Right(C) is an equivalence of co-categories, it preserves
colimits. Recall from Lemma 6.23(b) that the inclusion Right(C) C Cat /¢ has a left adjoint
c: Caty, /¢ — Right(C). Furthermore, by the dual of Lemma 6.56, Cat, /o — Cato, preserves
colimits. Hence a colimit in Right(C) is computed by taking the colimit in Cats, and then
applying c. Therefore

UnC#) (B) ~ ¢(colim ), )

nTER(E) = c{ colimCys,

Now a s-filtered colimit of k-filtered co-categories is k-filtered again, which follows by combining
Lemma 6.38(b) with the characterisation of x-filteredness from Theorem 6.54. So colimjey Cs,
is k-filtered. By Theorem 6.54 again it’s clear that being s-filtered is preserved under cofinal
functors. Since colimje s C/,; — c(colimjes C/,;) is cofinal by Lemma 6.23(b), we've shown

that Un8") (E) is k-filtered, as desired. The same argument shows that Ind,(C) € PSh(C) is
closed under x-filtered colimits.

For (b), let’s temporarily denote PSh"(C) C PSh(C) the full sub-oco-category of presheaves
E: C°° — An that preserve x-small limits. Every representable presheaf preserves all limits
by Corollary 6.17, in particular, xk-small ones. By Theorem 6.54, PSh*(C) C PSh(C) is stable
under k-filtered colimits. By (a), every E € Ind,(C) is a k-filtered colimit of representables,
hence £ € PSh"(C). Conversely, assume FE € PSh"(C). To show that C,p is s-filtered, we
claim:

(X) The restricted Yoneda embedding X¢: C — PSh"(C) preserves r-small colimits.(6-16)

If a: 7 — C/g is any functor from an essentially k-small oo-category, and a: Z — C/p — C
denotes the composition of o with the projection to C, then z := colim(@: Z — C) exists by
assumption on C. Now « corresponds to a natural transformation 7: &¢ o @ = const FE in
Fun(Z,PSh(C)). If (X) holds, then we can use the universal property of colimits to show that

(6-1)Note that this is completely false for the unrestricted Yoneda embedding: k¢: C — PSh(C) preserves
limits (by Corollary 6.17), but not colimits. That is why, whenever we want to choose a fully faithful colimits-
preserving functor i: C — C’ into an co-category with all colimits, we have to take the awkward construction
(Feop )P (C°P)°P — PSh(C°P)°P.
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71 factors uniquely through ¢ o @ = const k¢ (z). Since ¢ is fully faithful, this yields an
extension o”: 7 — C,p, as desired.

To prove (X), let z(_y: Z — C be a functor from an essentially x-small co-category C and
let £ € PSh"(C). Then Hompgy(c)(&kc(colimiez x), E) ~ E(colim;ez x;) by Yoneda’s lemma.
Since FE preserves k-small limits (and limits in C°P correspond to colimits in C), we can use
Yoneda’s lemma again to see

(c?élzm $Z> ~ lzle%l E(x;) ~ hrn Hompgyc) (ke (i), E) .
Using Corollary 6.16, this proves (X).

To prove (c), we can more or less copy the proof of Theorem 6.30: Let F': C — D be
any functor. Since D has filtered colimits and C, is filtered for every E € Ind, (C), the Kan
extension Lan x5 F: Ind,(C) — D exists by Lemma 6.27. We must show that the Kan extension
Lan x5 F preserves k-filtered colimits. Let’s first assume that D has all colimits. Consider the
Kan extension Lany , F': PSh(C) — D. For formal reasons, Lany , I is the left Kan extension
of Lan xr F along Ind,(C) € PSh(C). Since the latter is fully faithful, Corollary 6.29 shows
Lany, F' ~ (Lany , F)|inq,c)- Now Lany , F': PSh(C) — D preserves colimits by Lemma 6.32
and Ind,(C) € PSh(C) preserves r-filtered colimits by (a), so Lan i F' preserves r-filtered
colimits, as desired. This concludes the case where D has all colimits. The general case can
be reduced to this as follows: As in the proof of Lemma 6.56, we can choose a fully faithful
colimits-preserving functor i: D — D’ into an oco-category with all colimits. The formula
from Lemma 6.27 combined with Theorem 4.5 show that the canonical natural transformation
Lan okn(z o F) = ioLan,. F is an equivalence, and so it suffices that Lan ;N(z o F') preserves
k-filtered colimits, which we did above.

So the Kan extension functor Lan s Fun(C,D) — Fun(Ind.(C), D) lands in the full sub-
oo-category Fun”(Ind,(C), D). Therefore, we obtain an adjunction

Lan,,: Fun(C,D) = Fun™ file (Ind,(C), D) : &

By the same arguments as in the proof of Theorem 6.30, the unit u: idpyu(c,p) = &¢ o Lany,
is an equivalence and X} is conservative, hence the adjunction above is a pair of inverse
equivalences by Lemma 6.33. 0

It’s surprisingly common for an co-category to be accessible.
6.62. Lemma. — Let k be a regular cardinal and let D be a locally small co-category. Then
the following are equivalent:
(a) D is of the form D ~ Ind,(C) for some essentially small co-category C.

(b) D admits k-filtered colimits and there exists a set S of k-compact objects such that every
object from D can be written as a k-filtered colimit of objects from S.

In this case automatically D ~ Ind,(D"), where D® C D is the full sub-oo-category spanned by
the k-compact objects. Furthermore, if D has k-small colimits, then there is another equivalent
condition:

(¢) D admits k-filtered colimits and has a set of k-compact generators; that is, a set S C D
of k-compact objects such that Homp(s,—): D — An, s € S, are jointly conservative.

In the case where D has k-small colimits and (c¢) holds, D is automatically presentable.
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Proof. Assume (a) is true. Then D has r-filtered colimits by Lemma 6.61(a). We claim that
S = {Xe(x) | x € C} generates D under r-filtered colimits and forms a set of compact generators
in the sense of (¢). The first assertion is Lemma 6.61(a). For the second assertion, Yoneda’s
lemma says Hompgyc)(Lc(2), E) ~ E(x) for every E € Ind,(C). Hence Hompgy ey (&c(z), —)
for z € C are jointly conservative by Theorem 4.5. Furthermore, X¢(x) is k-compact since
colimits in presheaf co-categories are computed pointwise by Lemma 6.12 and Ind,;(C) € PSh(C)
preserves k-filtered colimits by Lemma 6.61(a). This proves (a) = (b) and (a) = (c¢) (even
without the assumption that D has k-small colimits).

Now assume (b). Let’s first sketch why D" is essentially small. We’ll show that every
x € D" is a retract of some s € S and then leave it to you to verify that S can’t have “too
many” retracts in the locally small co-category D. Write 2 ~ colimjc s s; for some s; € S
and some k-filtered oo-category J. Since x is k-compact and my commutes with colimits by
Lemma 6.58, we get colimjes mo Home (2, sj) = 7o Homp(x,x). Choosing a preimage of id,
yields a morphism x — s; for some j € J, which exhibits = as a retract of s;, as desired.

By Lemma 6.61(c), the inclusion D* C D extends uniquely to a functor L*: Ind,(D") — D
that preserves x-filtered colimits. Let’s first construct a right adjoint R*. To this end, choose a
fully faithful colimits-preserving functor : D — D’ into an co-category D’ with all colimits; this
can be done as in the proof of Lemma 6.61(c). Furthermore, :0 L* extends uniquely to a colimits-
preserving functor L: PSh(D") — D', which has a right adjoint R by Theorem 6.30. We claim
that Roi: D — PSh(D) lands in Ind,(D"). Indeed, let y € D and write y ~ colimjcy x;
where J is r-filtered and x; € D"; we could even choose x; € S. By the formula from
Lemma 6.32, R(i(y)) is the presheaf Homp(—, colimje s x;): (D) — An. By definition of
D", this presheaf agrees with colim;c s Homp(—,z;). Hence R(i(y)) is a r-filtered colimit of
representable presheaves and thus contained in Ind,(D") by Lemma 6.61(a). Thus, putting
R* := Roi, we obtain the desired adjunction L": Ind,(D") = D : R*". Moreover, our argument
shows that R commutes with x-filtered colimits of objects from D*. By inspection, the counit
c: L o R® = idp is an equivalence for objects from D®. Since both sides commute with
r-filtered colimits of objects from D and every object of D can be written as such a colimit,
we see that ¢ is an equivalence. An analogous argument shows that u: idp,q, (pr) = R" o L" is
an equivalence. This proves (b) = (a).

It remains to show (¢) = (a). First observe that if D has k-small and k-filtered colimits,
then D has all colimits. Indeed, according to Lemma 6.37, we only need to check that D has
arbitrary coproducts. This follows from the following claim:

(X) Let T be a discrete set and let P*(T) C P(T') be the partially ordered set of all subsets
S C T of cardinality |S| < k. Then P*(T) is k-filtered and for every collection (z()ier of
objects of D we have

colim Ty —> Ty .
SEPH(T) SIEL B tg

Using Lemma 2.14, r-filteredness of P%(T") reduces to a question about ordinary categories,

which is easy. Now consider the tautological functor U: P®(T) — Set sending S +— S and let

U be its unstraightening, which is an ordinary category and easy to describe.(%17) Namely, U

is the category of pairs (.5, s), where S C T is a subset and s € S is an element. Morphisms

can be described as follows: Fix (5,s) and (5,¢'). If S C S" and s = &', there exists a

(61 Here we use that for functors into Set or Grpd‘®, Lurie’s unstraightening recovers the Grothendieck
construction from classical category theory. We've seen something similar in 5.7; in particular, compare the
description of the unstraightening of U: P"(T') — Set to the unstraightening of [S/G]: (Sch,s)°? — Grpd®?.
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unique morphism (S,s) — (5',s') in U; otherwise Homy((S,s),(S’,s')) = 0. There is a
tautological natural transformation U = const T, which induces a functor U — P*(T) x T
on unstraightenings. Note that U4 — P*(T) x T' — T is cofinal. Indeed, for every t € T,
the slice U x1 Ty, can be identified with the sub-partially ordered set P/ (1) € P*(T) of
those S such that t € S. Then Pf(T') has an initial object, namely {t}, and so |Pf(T)| ~ =,
whence Theorem 6.18(c) is satisfied. Thus, if 7" — D corresponds to the collection (x¢)ier,
then colim(7" — D) ~ colim(Ud — T' — D). Using Lemma 6.38(a), the right-hand side can be
identified with colimgepn (1) [1ses s This finishes the proof of (IX)

Now let S C D be a set of k-compact generators and let C C D be the full sub-oco-category
generated by S under x-small colimits. Since D is locally small, one can verify that C is
essentially small (there are “not too many” k-small diagrams); we leave this to you. Since
D has all colimits, we can apply Theorem 6.30 to see that C C D extends uniquely to a
colimits-preserving functor L: PSh(C) — D, which has a right adjoint R. Observe that R
factors through Ind,(C). Indeed, according to Lemma 6.32, for every y € D, the presheaf R(y)
is given by Homp(—,y): C°® — An. This functor preserves arbitrary limits by Corollary 6.17,
in particular, k-small ones, and so Lemma 6.61(b) implies R(y) € Ind.(C). Restricting L, we
thus obtain an adjunction L: Ind,(C) = D : R. Observe that R preserves s-filtered colimits.
Indeed, let y_y: J — D be a functor from a s-filtered oo-category. By Theorem 4.5 and
Lemma 6.12, it suffices to show that colim;c 7 Homp(z,y;) — Homp(z,colim;cyy;) is an
equivalence for all € C. But Theorem 6.54 easily implies that k-compact objects are closed
under k-small colimits and so x must be k-compact, whence we get an equivalence as desired.
Now we can apply the same argument as in the proof of (b) = (a) to show that the unit
w: idpq, () = Ro L is an equivalence. Furthermore, R is conservative. Indeed, if a: y — 2 in
D induces an equivalence o, : Homp(—,y) = Homp(—, z) of presheaves, then, in particular,
as: Homp(s,y) — Homp(s, z) must be an equivalence for all s € S. But Homp(s,—): D — An
for s € S are jointly conservative by assumption. Now Lemma 6.33(b) finishes the proof of the
implication (¢) = (a). O

This finishes our discussion of accessibility. Next, we’ll characterise presentable co-categories.

6.63. Lemma. — For a locally small co-category D, the following are equivalent:
(a) D is presentable.

(b) D is k-accessible and has k-small colimits for some regular cardinal k.

(

c) There exists an essentially small co-category C and an adjunction L: PSh(C) 2@ D :R
such that R is fully faithful and preserves k-filtered colimits for some regular cardinal k.

(d) D is of the form D ~ Ind,(C) for some essentially small co-category C which has k-small
colimits.

In this case, D* automatically has all k-small colimits (so that we may choose C ~ D" in (d)
by Lemma 6.62).

Proof. The implication (a) = (b) is trivial and (a) = (c) follows from the proof of Lemma 6.62.
For (b) = (d), we use Lemma 6.62 to see that D ~ Ind,(D"). It follows easily from Theorem 6.54
and Corollary 6.17 that x-compact objects are closed under k-small colimits. Therefore, if D
has all k-small colimits, then so has D*. This proves (b) = (d).

For (¢) = (a), first note that D has all colimits. Indeed, given a diagram «: Z — D, we can
form the colimit ¢ ~ colim;ez R(a(7)) in PSh(C). Since L preserves colimits by Lemma 6.11
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and L o R ~ idp by the dual of Lemma 6.33(a), we see that L(c) ~ colim;cz a(7), as desired.
Now consider the objects L(k¢(z)), where x runs through a set of representatives for every
equivalence class in C. Then Homp(L(&k¢(x)), —) =~ Hompgyc)(&e(x), R(—)). By Yoneda’s
lemma, Hompgycy(&c(r), —): PSh(C) — An are jointly conservative, and they preserve all
colimits by Lemma 6.12. Since R is fully faithful and preserves x-filtered colimits, it follows
that Homp(L(X¢(x)),—): D — An are jointly conservative and preserve k-filtered colimits.
So the set {L(&¢(x))} satisfies the conditions from Lemma 6.62(c) and it follows that D is
presentable. This proves (¢) = (a)

It remains to show (d) = (a). We need to show that Ind,(C) has all colimits. We know
from Lemma 6.61(a) that Ind,(C) has k-filtered colimits, so by claim (X) in the proof of
Lemma 6.62, it’s enough to show that Ind,(C) has k-small colimits. By Lemma 6.50, it’s enough
to construct pushouts and k-small coproducts. Also, we’ve seen in the proof of Lemma 6.61
that X¢: C — Ind,(C) preserves k-small colimits. Since C itself has all k-small colimits by
assumption, we see that Ind,(C) has k-small colimits of representable presheaves.

Let’s first construct the coproduct J[,cgys for a discrete set S of cardinality |S| < s and
ys € Ind,(C). Write ys ~ colimje, x; s for some filtered oco-category Js and representable
presheaves x; ;. Observe that arbitrary products of s-filtered oo-categories is s-filtered again.
Furthermore, if 7 is any s-filtered oo-category, then colim;c7ys ~ ys by Lemma 6.57 and
Lemma 6.55. Hence colim; jyezx 7, Zj,s =~ ys by Lemma 6.38. So we may replace Js by Z X Js
for any s-filtered Z. In particular, we may replace J; by J = [[,cg Js and thus we may assume
that the diagrams Js coincide for all s € S. Then Lemma 6.38 shows

colim Tig =~ colimz, 4 ~ Us
ot T~ Tl otimess ~ [T,
seS seS seS

provided any of these colimits exists. But [[,cq 2 s exists for all j € J because Ind,(C) has
k-small coproducts of representable presheaves, and then colimje s [[,c5 ;s exists because
Ind,(C) has all s-filtered colimits. This shows that Ind,(C) has xk-small coproducts.

It remains to construct pushouts. Fix a span y « x — z. Let’s first construct the pushout
in the case where x is representable. Write y ~ colim;c s y; and 2z ~ colimex 2, where J
and K are r-filtered and y;, 21 are representable presheaves. Since x is representable and thus
Kk-compact, Lemma 6.58 implies mo Hompy,q, (¢)(2,y) = colimje s mo Homyyg, ¢y (2,y;). Hence
x — y factors through x — yj;, for some jo € J. By Lemma 6.55, we can replace J by J;,
and thus assume that J contains an initial element jo such that x — y is induced by a map
T — Yj,- The same argument applies to x — z. Furthermore, as above, we can replace J and
K by J x K and thus assume J = K. Finally, we have colimjc 7 ~ x by Lemma 6.57 and
Lemma 6.55. Hence, using Lemma 6.38, we can construct the desired pushout as

c;pelgn(yj Uy 2j) =~ cg)el%n Yj Ueolimje 7 & C;)eli}n zj ~yly 2.
Here y; L, 2; exists since Ind,(C) has pushouts of representable presheaves, as we’ve noted above,
and then colimje 7(y; Uy 2;) exists because Ind,(C) has x-filtered colimits. This finishes the
case where x is representable. In the general case, write x ~ colimc s x;, where J is x-filtered
and x; are representable presheaves. By an argument we've seen several times, y ~ colim;c 7 y
and z ~ colimj¢ 7 z. Then

colim(y Uy, z) ~ colim vy Ucolim. ccolimz ~y L, 2.
jeT (y Tj ) e Y Ucolimje 7 z; e Y Uz
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Here the pushouts y L, z exist by the representable case and then colimje 7 (y Uy, 2) exists
because Ind, (C) has s-filtered colimits. This finishes the proof that Ind,(C) has pushouts. [

6.64. Corollary. — The oco-categories An and Cats are presentable.

Proof sketch. It’s clear that An and Cat., are locally small and they have all colimits by
Lemma 6.14. So it suffices to check that both are accessible. In fact, we’ll show that both
are No-accessible, by verifying the condition from Lemma 6.62(c). For An, it’s clear that =
is a compact generator as Homa, (%, X) ~ X for all X € An. For Cat, we claim that the
oo-categories # and Al are compact generators.

Let’s first argue that Homcas. (%, —) and Homca, (A, —) are jointly conservative. To this
end, recall from Theorem 2.24 that Homcyy, (*,C) ~ core(C) and Homeyy, (AY,C) ~ core Ar(C)
for every oo-category C. Now if F': C — D is a functor such that core(F): core(C) — core(D)
is an equivalence, then F is essentially surjective. If furthermore core Ar(C) — core Ar(D) is
an equivalence, then F is fully faithful. Indeed, for all z,y € C we can write Hom¢(z,y) as a
pullback of core Ar(C) — core(C) x core(C) by 2.11 plus the fact that core: Cats, — An preserves
pullbacks, since it is a right adjoint by Example 6.3(a).('®) This proves that Homcyy, (%, —)
and Homcyg (A, —) are jointly conservative.

We'll only sketch the argument why * and A! are compact in Cats,. The crucial observation
is that equivalences of quasi-categories are preserved under filtered colimits in the ordinary
category QCat. Indeed, QCat C sSet is closed under filtered colimits, because A} and A"
are finite simplicial sets and so every horn filling problem in a filtered colimit can be solved
at some finite stage. So filtered colimits in QCat can be computed in sSet instead. Then
it’s straightforward to check that a filtered colimit of fully faithful and essentially surjective
maps of quasi-categories is again fully faithful and essentially surjective. Now we can use
the same arguments as in the proof of Lemma 6.58 (including the black box (M) and an
analogue of (M3)) to see that filtered colimits in Caty, can be computed as ordinary filtered
colimits in QCat. So it remains to show that colimjc s core F(%,C;) = coreF(x, colimjc s C;)
and colim;je s F(A!,C;) = core F(A!, colimje s C;) holds for every filtered category J and every
diagram C(_y: J — QCat. This is straightforward. O

6.65. Corollary. — If D is a presentable oco-category, then for every y € D the slice
oo-categories Dy, and D, are presentable again. Furthermore, if C is an essentially small co-
category, then Fun(C, D) is presentable. In particular, PSh(C) and Fun(C, Cats) are presentable.

The same results are true for accessible co-categories, but this requires significantly more
effort. In practice, the results about presentable co-categories are usually sufficient and so we
refer to [L-HTT, §5.4] for the accessible case.

Proof of Corollary 6.65. It follows from Lemma 6.56 and its dual that if D has all colimits,
then D, and D, have all colimits again. Lemma 6.12 shows the same for Fun(C, D). So it’s
enough to check accessibility in each case.

By Lemma 6.62(c), we can choose a set S of k-compact generators for D. Since D has
coproducts, one easily verifies via Lemma 6.2 that D, — D has a left adjoint, sending
z € Dto(y »yUz) € Dy. Then Homp (y — yUs,y — z) ~ Homp(s,z) and so
Homp,, (y —yuUs,—): Dy, — An for s € S are jointly conservative. Using the adjunction

(6-18)We're also implicitly using that the pullback diagram from 2.11, which lived in simplicial sets, is also a
pullback of co-categories. See model category fact 6.13.
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property plus the fact that D,, — D preserves r-filtered colimits by Lemma 6.56(b), we see
that every (y — y U s) is k-compact again. So D, satisfies the condition from Lemma 6.62(c)
and is therefore accessible.

For Fun(C, D), consider the functors F s := Lan,y_c(const s): C — D, where s € S and
x runs through a set of representatives of the equivalence classes of objects in C. These
Kan extensions exist by Lemma 6.27 since D has all colimits. The universal property of
Kan extensions shows Hompyy ¢ p)(Fr,s, G) ~ Hompyy((a),c)(const s, G|5y) ~ Homp(s, G(z))
for every functor G € Fun(C,D). Since colimits in functor categories are computed point-
wise by Lemma 6.12 and s is xk-compact by assumption, it follows that F, ; is k-compact.
Since equivalences of functors can be detected pointwise by Theorem 4.5, it follows that
Hompyy(c,p)(Fr,s, —): Fun(C,D) — An for s € S and z running through all equivalence classes
in C are jointly conservative. So Fun(C, D) satisfies the condition from Lemma 6.62(c) and is
therefore accessible.

For D, we will instead verify the condition from Lemma 6.62(b). First observe that D7 is
essentially small. Indeed, D7y ~ D" xp D, — Dy, is fully faithful, hence D”y is locally small,
because D/, is locally small by the assumption on D and Corollary 5.15. So its enough to
show that mg core(D7y) is a set. This follows from D" being essentially small (as we’ve seen
in the proof of Lemma 6.62) and D being locally small, so that there can’t be “too many”
equivalence classes of morphisms z — y where z € D". Since D/, — D preserves arbitrary
colimits by the dual of Lemma 6.56(a) and x-filtered colimits are preserved under pullbacks
by Theorem 6.54, we can use Corollary 5.15 to show that the objects in D7y are k-compact
in D/,. It remains to show that they generate D/, under s-filtered colimits. Pick some
(z — y) € D), and write z ~ colimje 7 2; for some s-filtered co-category J and some diagram
z(—y: J — D". Composing the colimit transformation w: z(_y = const z with const z = const y
yields a transformation z(_y = consty, which in turn defines a functor (z(_) —vy): J —D Jy-
Then (2 — y) ~ colimje 7(2; — y) in Dy, as desired. O

§6.9. The adjoint functor theorem

Finally, we can state and prove the adjoint functor theorem. The original version is of course
Lurie’s [L-HT'T, Corollary 5.5.2.9]. Our version is slightly more general and is taken from
Markus Land’s book [Lan21, Theorems 5.2.2 and 5.2.14], who in turn took them from [NRS20].

6.66. Theorem (Adjoint functor theorem). %ﬁﬁé Let F': C — D be a functor between locally
small co-categories.

(a) Assume that C and D have all colimits and C is generated under colimits by an essentially
small sub-oo-category Co € C. Then F admits a right adjoint G: D — C if and only if I
preserves colimits.

(b) Assume that C and D have all limits, that C is accessible, and that for every object y € D
there exists a regular cardinal k, such that y is ky-compact. If there ewists a regular
cardinal k such that F' preserves limits as well as k-filtered colimits, then F' admits a left
adjoint G: D — C. The converse is true as well provided that D is accessible too.

Furthermore, in both (a) and (b), the conditions on C and D are automatically satisfied if C
and D are presentable.

Before we embark on the proof of Theorem 6.66, we’ll draw a somewhat surprising corollary
and discuss a useful supplement.
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6.67. Corollary. — Let C be a locally small co-category.

(a) IfC has all colimits and is generated under colimits by an essentially small sub-co-category
Co C C, then C has all limits too. In particular, presentable co-categories have all limits.

(b) If C is accessible and has all limits, then C has all colimits too. In particular, C is
presentable.

Proof. Let T be an essentially small co-category. Then Fun(Z, C) is locally small by Remark 6.47.
It follows from Lemma 6.12 that const: C — Fun(Z,C) preserves all limits and colimits. In
the situation of (a), we may apply Theorem 6.66(a) to see that const has a right adjoint
limz: Fun(Z,C) — C, as desired.

In the situation of (b), we only need to check that every element of Fun(Z,C) is 7-
compact for some sufficiently large regular cardinal 7, for then const will have a left adjoint
colimz: Fun(Z,C) — C by Theorem 6.66(b). Say C is k-compact. Then every x € C can be
written as a colimit of k-compact objects by Lemma 6.62(b). If k, is larger than x and the
cardinality of the indexing diagram, then z will be x,-compact, because k,-compact objects
are closed under k,-small colimits (we’'ve seen this argument several times in the proofs of
Lemmas 6.62 and 6.63). Now let a: Z — C be a functor. Let 7, be a regular cardinal such
that TwAr(C) is 74-small and 7, > Ka(i) for every ¢ € Z. Using that 7,-small limits commute
with 7,-filtered colimits by Theorem 6.54 and that colimits in functor categories are computed
pointwise by Lemma 6.12, the formula from Corollary 6.25 shows that a is 7,-compact. O

A useful supplement to the adjoint functor theorem is the refiection theorem:

6.68. Theorem (Reflection theorem). — Let D be a presentable co-category and let C C D be
a full sub-oco-category such that C is closed under limits in D and there exists a reqular cardinal
k such that C is closed under rk-filtered colimits in D. Then the inclusion C C D has a left
adjoint and C is presentable too. |

We won’t prove the reflection theorem. A proof for ordinary categories can be found in
Adamek and Rosicky’s book [AR94, Reflection Theorem 2.48]; the oo-categorical version was
only recently proven in [RS22].(619) The only thing one has to show is that in the given situation
C is automatically accessible. Indeed, if that’s true, then C is presentable by Corollary 6.67(b).

(6'19)Interestingly, the proof for ordinary categories can not entirely be carried over. The step that fails is related

to the following two important caveats:

(a) Let C be an co-category and suppose there are morphisms a: x — y and 8: y — x satisfying 8 o o ~ idg,
so that z is a retract of y. If C is an ordinary category, then x can be expressed as the equaliser (and also
as the coequaliser) of id, and « o 8. However, this doesn’t work in general oo-categories—it already fails in
An, and even more spectacularly in the co-category of spectra. We can still express = in terms of y, for
example, as

. aof3 aof3 aof3 . aof3 aof aof
z~colimly —y—y— ) xlim(- —y—y—y

(to see this, just observe that these diagrams can be (co)finally replaced by constant z-valued diagrams).
But a finite limit or colimit will never suffice.

(b) There is a notion of monomorphism in co-categories (see [L-H‘TT, §5.5.6]) and these allow for manipulation
of equalisers as in ordinary categories. But the inclusion of a retract is usually not a monomorphism! Again,
this already fails in An—monomorphisms are inclusions of path components, but there are many more
retracts—and even more spectacularly in Sp, where there are no monomorphisms at all.

If you’d like to read up on the proof of the co-categorical reflection theorem, I’d suggest you first read the proof
for ordinary categories and identify where the above issues occur. Then check that all other arguments can be
carried over. Finally, check out [RSQ2] to see how the issues can be circumvented.
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Furthermore, Corollary 6.67(a) shows that Theorem 6.66(b) is applicable, producing the desired
left adjoint. But proving that C is automatically accessible is surprisingly hard (and rather
surprising altogether).

We start off the proof of Theorem 6.66 with two preparatory lemmas.

6.69. Lemma. — Let F': C — D be a functor between oco-categories and let y € D be an
object. Then y admits a right adjoint object x € C under F if and only if the slice co-category
Csy ~C xp Dy, has a terminal object.

Proof sketch. Let x € C be an object and c¢: F(z) — y a morphism in C. Then z is a right
adjoint object to y under F', with counit ¢, if and only if the composition

Home (—, ) == Homp (F(=), F(z)) == Homp (F(-),y)

is an equivalence of functors. By Theorem 4.5, this can be checked on objects. So choose x’ € C.
To check that Home(x,2') — Homp(F(2'),y), it’s enough by Theorem 3.18 to check that the
fibres over every o € Homp(F(2'),y) are contractible. So fix some a: F(z') — y. Using the fact
that Hom animae in pullbacks of oco-categories are the pullbacks of the respective Hom animae
(which we’ll prove in more generality in Lemma 6.76(a)), one easily computes that the fibre
Home (2", ) XHomp (F(a')y) {0} I8 equivalent to Home, ((2',a: F(2') — y), (z,c: F(x) — y)).
So the fibres are all contractible if and only if (z,c: F/(x) — y) is a terminal object of C,. [

6.70. Lemma. — Let C be any (possibly large) oco-category. Then C has a terminal object if
and only if id¢: C — C has a colimit, in which case the terminal object is that colimit.

Proof sketch. If y € C is terminal, then {y} — C is a right adjoint, hence cofinal by Exam-
ple 6.20(b). Hence colim(id¢: C — C) ~ y; in particular, the colimit exists.

Conversely, assume the colimit exists, and let w: id¢ = const y be the natural transformation
exhibiting y has the colimit. We wish to prove that C = {y} is an adjunction. To this end, by
Lemma 6.5, it suffices to construct the unit and the counit as well as to verify the triangle
identities. We take u to be our unit. The counit as well as the first triangle identity come for free
since Fun(C, {y}) ~ = and Fun({y}, {y}) ~ *. By a quick unravelling, the second triangle identity
comes down to proving that u,: y — y is the identity on y. To this end, consider u as a functor
u: Al x C — C and consider the composition o == uo (ida1 xC): Al x (Al xC) — Al xC — C.
By “currying”, o corresponds to a functor A! x Al — Fun(C,C), or in other words, to a
commutative square in Fun(C,C). By a somewhat confusing unravelling, that commutative
square is

. U

ldc ——— const Y

uﬂ 1/ Hconst Uy
idconst Y

const y =——— consty

Thus, in the equivalence Home(y,y) ~ Home(colimeide,y) ~ Hompyyc e (ide,y), both id,
and uy are mapped to u € Hompyy, ¢ c)(ide,y). This proves idy ~ uy, as desired. O

Proof sketch of Theorem 6.66(a). If F' admits a right adjoint, then F preserves colimits by
Lemma 6.11. Conversely, assume F' preserves colimits. Adjoints can be constructed pointwise
by Lemma 6.2, and thus by Lemma 6.69, it’s enough to show that the slice oo-category
C;y ~C xXp D/, has a terminal object for every y € D. A straightforward generalisation of the
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arguments in the proof of Corollary 6.65 shows that C,, has again all (small) colimits and is
generated under colimits by its full sub-co-category (Co),, =~ Co X¢ Cjy; this is the only time we
use that F' preserves colimits. So we can replace C by C/, and are thus reduced to showing that
C has a terminal object.

By Lemma 6.70, we must show that id¢: C — C admits a colimit. Since C has all small
colimits, it will be enough to show that C admits a cofinal functor from a small co-category.
Note that this step requires some set-theoretic care, since it’s not so clear why Theorem 6.18
would be applicable to colimits with potentially large indexing oo-categories. This problem can
be solved by considering universes, and with some more effort even in ZFC; we’ll ignore it in
the following.

Since C has all small colimits, the colimit ¢ := colim(Cy — C) exists. For every x € C there
exists a morphism z — t. Indeed, since we assume C to be generated under colimits by Co,
we can write z as a colimit z ~ colim(Z — Cy — C) and then we can consider the morphism
x ~ colim(Z — Cyp — C) — colim(Cy — C) ~ t using functoriality of colimits, see Lemma 6.28.
Now let 7 C C be the full sub-oo-category spanned by ¢ (note that 7 is not just {t}, since
we include all non-identity endomorphisms of ¢ as well). Since C is locally small, 7 must be
essentially small. We claim that 7 — C is cofinal. To this end, we’ll show that T x¢ C,, is
filtered; then Lemma 6.55 will show that the condition from Theorem 6.18(c) is satisfied. Let
a: T — T x¢Cyy be a functor from any small co-category. If @: Z — T x¢ C,y — C denotes
the underlying functor, then « is equivalently given by a natural transformation constz = @
such that @ takes values in the full sub-oco-category 7 C C. Since C has small colimits,
x ~ colim;e7 @(7) exists in C. As observed above, there exists a morphism = — ¢t. Composing
the colimit transformation @ = constx with constz = ¢ yields a natural transformation
@ = const t, or equivalently, a functor @”: 7% — C. By construction, @ takes values in the full
sub-oo-category 7 C C. Composing with const z = @ provides a functor a”: Z% — T x¢ C,/,
as desired. This finishes the proof that T x¢ C,, is filtered. O

Our proof of Theorem 6.66(b) will again be preceded by two preparatory lemmas.

6.71. Lemma (“Right adjoints preserve sufficiently filtered colimits”). — Let G: D — C
be a functor between accessible co-categories. If G admits a left adjoint F', then G preserves
T-filtered colimits for sufficiently large reqular cardinals T.

Proof. Choose regular cardinals x and X such that C is k-accessible and D is A-accessible. By
Lemma 6.62, we may identify C and D with Ind,(C*) and Indy (D), respectively. First note
that for every y € D there exists a regular cardinal )\, such that y is A\,-compact. Indeed,
we may write y has a colimit of A\-compact objects, and then it suffices to choose A\, > A
sufficiently large so that the indexing diagram of the colimit is A,-small. Since C* is essentially
small, as we’ve seen in the proof of Lemma 6.62, we may choose a regular cardinal 7 > &
such that F(z) is 7-compact for all z € C®. We claim that G preserves 7-filtered colimits.
Since C ~ Ind,(C"®) C PSh(C"), the functors Hom¢(x,—): C — An for x € C" are jointly
conservative and preserve s-filtered and thus also 7-filtered colimits. So it’s enough to show
that Home (2, G(—)) preserves 7-filtered colimits. But Home(z, G(—)) ~ Homp(F(z), —) and
F(x) is T-compact by construction. O

6.72. Lemma. — Let C be a k-accessible co-category. Then C is also T-accessible for every
sufficiently large reqular cardinal T.
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6.73. Remark. — It’s usually not true that a r-accessible oco-category C is T-accessible
for all 7 > k. However, this works if C is presentable. Indeed, it’s immediately clear from
Lemma 6.62(c) that any set of k-compact generators is also a set of T-compact generators

Proof sketch of Lemma 6.72. By Lemma 6.62(b) will be enough to show that C is generated
under 7-filtered colimits by C™, where 7 is a sufficiently large regular cardinal that will be
chosen at the end of the proof. Every x € C can be written as x ~ colimje 7 z;, where J is
rk-filtered and x; € C®. We'll rewrite this as a 7-filtered colimit of 7-compact objects. First, by
(M) in the proof of Lemma 6.58, we find a cofinal functor J — J from a directed partially
ordered set J. Note that J is automatically a k-filtered co-category by the criterion from
Theorem 6.54. We’ll show that J can be written as a colimit J ~ colim;c; J; in Caty,, where
I is a 7-filtered directed partially ordered set and J; C J are essentially 7-small r-filtered
partially ordered subsets. If we can do this, we’re done. Indeed, by Lemma 6.38(b), we may
then write 2 ~ colim;¢s colimje j, xj. Each colimje j, x; exists, as C admits x-filtered colimits by
Lemma 6.61(a). Furthermore, colimjcj, «; is T-compact because each x; is k-compact, hence
T-compact, and T-compact objects are stable under 7-small colimits by an easy application of
Theorem 6.54.

To write J as such a colimit, let P7(J) be the partially ordered set of subsets S C J of
cardinality |S| < 7. Note that P7(J) is 7-filtered as an oo-category. Indeed, using Lemma 2.14,
it’s enough to show that P7(J) is -filtered as an ordinary category, which is true since we can
just take unions of < 7 subsets of cardinality < 7. Each S € P7(J) can be identified with the
full subcategory J[S] C J spanned by S and we have J ~ colimgepr(s) J[S] in Cate. One way
to prove this would be to use that filtered colimits in Cat., can be computed on the level of
simplicial sets (see the proof of Corollary 6.64); then the desired equivalence is straightforward.
For an alternative, model-independent argument, let ¢/ be the unstraightening of the functor
PT7(J) — Catoo sending S +— J[S]. Then U is an ordinary category and can be easily described
explicitly. The same argument as in the proof of claim (X) in the proof of Lemma 6.62
shows that « — J is cofinal. By Lemma 6.14, colimgepr( sy J[S] is a localisation of U. Since
localisations are cofinal by Example 6.20(c), we conclude that colimgepr(s) J[S] — J is cofinal
too. This is not quite what we wanted, but it’s enough for our purposes. Now we claim:

(X) There exists a partially ordered subset I C P7(J) such that J[S] is k-filtered for every
S € I and such that the inclusion I — P7(J) has a left adjoint L: P7(J) — I.

Since right adjoints are cofinal by Example 6.20(b), we also get J ~ colimges J[S]. Further-
more, this cofinality implies that [ is 7-filtered again, because it satisfies the criterion from
Theorem 6.54. So once we know (X), we’re done.

For every equivalence class of functors a: Z — J from an essentially xk-small oco-category Z,
choose an extension o : 7 — J. Let Sy € P7(J). Let S; C J be obtained from Sy by adjoining
the “tip of the cone” for every o”: Z% — J such that a: Z — J factors through J[Sp] — J.
If 7 is larger than the set of equivalence classes of essentially k-small co-categories, then Sy
will have cardinality |S1| < 7 again. By transfinite induction, we can repeat this construction
x many times. The result is a subset S, C J such that |S.| < 7 and J[Sk] is s-filtered. If
we put L(Sp) := Sk, then L: P7(J) — P7(J) is a functor satisfying L o L = L (we really get
an equality, not just an equivalence). Thus, if I C P7(J) is the image of L, then an easy
argument shows that L: P7(J) — I is indeed left adjoint to the inclusion (bear in mind that
we’re working with ordinary categories here, so constructing functors and adjunctions can be
done by hand). Therefore, the conditions from (X)) are satisfied. O
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Proof sketch of Theorem 6.66(b). By the dual of Lemma 6.69, it’s enough to show that the slice
oo-category C,, ~ C Xp D, has an initial object for all y € D. By the dual of Lemma 6.70, this
is equivalent to showing that ide,, : C,; — C,, admits a limit. A straightforward generalisation
of Lemma 6.56(a) shows that C,, has all (small) limits; this argument crucially uses that F
preserves limits. So it will be enough to construct a final functor from an essentially small
oo-category into Cy .

By assumption and Lemma 6.72 we may choose a sufficiently large regular cardinal s such
that C is k-accessible, I preserves r-filtered colimits, and y is k-compact. Let 7 C C, / be the
full sub-oo-category spanned by those (z,a:y — F(x)) where x is k-compact. By an easy
argument, the likes of which we’ve seen several times by now, 7 is essentially small. We claim
that for every z € C,, there is an element ¢ € 7 and a morphism ¢ — 2 in C,,. If we can show
this, then a similar argument as in the proof of (a) shows that 7 — C,, is final. Indeed, we’ll
show that T xc,, (Cy/) s is cofiltered for every w € C,/, which will imply finality by the dual
of Theorem 6.18(c) and the dual of Lemma 6.55. So let a: Z — T x¢,, (Cy/)/ be a functor
from a small co-category Z. Since C,, admits small limits, the underlying functor @: 7 — C,,
admits a limit z ~ lim;c7 @(7). Choosing a morphism ¢t — z for some t € T, we get natural
transformations constt = const z = @. The composition constt = @ induces an extension
't I% =T x¢,, (Cyy) jw of v, as desired.

It remains to show our claim that for every z € C,, there exists a moprhism ¢ — z for some
t € T. Write z as a pair (x,5: y — F(z)) for some x € C. Since C is k-accessible, we can write
x as a k-filtered colimit x ~ colim;ec 7 x; for some x; € C*. Since F' preserves s-filtered colimits,
F(x) ~ colimjc s F(z;). Since y is k-compact by assumption and 7y commutes with colimits
by Lemma 6.58, the canonical map

cjg)el%n 7o Homp (y, F(;)) =, 7o Homp (y, F(x))
is a bijection. Hence §: y — F(z) factors over a map f;: y — F(x;) for some j € J. Then
r; — colimje 7 ¥; ~ x induces a morphism (z;,8;: y — F(z;)) — (2,8:y — F(x)) in C,).
Since z; is k-compact, we see that (z;,5;: y — F'(z;)) € T. This proves that there exists a
morphism ¢ — z for some ¢t € 7 and thus we’ve proved that F': C — D has a left adjoint.

To prove the converse in the case where C and D are both accessible, just observe that if F
admits a left adjoint, then F' preserves all limits by Lemma 6.11 and also all sufficiently filtered
colimits by Lemma 6.71. Finally, to show that the conditions in (a) and (b) are satisfied in
the case where C and D are presentable, the only non-obvious assertion is that for every y € D
there exists a regular cardinal , such that y is x,-compact. But we’ve seen this in the proof of
Lemma 6.71 already. O

§6.10. Lurie’s magic co-category Pr"

To finish this appendix to §6, we’ll introduce Lurie’s oco-category Prl. At first, it’ll probably
not be obvious to you why this construction is so useful, but hopefully you’ll come to appreciate
it more and more. Without further ado, here’s the “definition”.

6.74. “Definition”. — The oco-category of presentable co-categories and left adjoint functors
Pr is the non-full sub-oo-category of Catss spanned by the presentable co-categories and the
left adjoint, or equivalently (by Theorem 6.66(a)), colimits-preserving functors.

As stated, “Definition” 6.74 doesn’t make sense: Cato, only contains small co-categories,
but presentable co-categories usually aren’t small. So to make “Definition” 6.74 work, we would
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need to assume two nested universes (of “small” and “large” sets) and define Pr! as a non-full
sub-oo-category of the co-category Cat, of all large oo-categories (which is neither small nor
large). But there’s an alternative construction of Pr" that stays within ZFC; see 6.79 below.
For the moment, let’s work with universes and assume 6\atoo exists. Also note that Pr” is not
even locally small: We have Homp 1 (C, D) ~ core Fun®™(C, D); this is usually not an essential
small anima.(6-20)

Let’s begin by studying limits and colimits in Pr". To this end, we also consider the
co-category Pri* of all presentable co-categories and right adjoint functors.

6.75. Lemma. — The oo-categories PrL/(_z\nd Pr® have all small limits and colimits. The
forgetful functors Pr — Cats, and Pri — Cato, preserve all small limits.

The proof needs a technical lemma that has already been referenced several times before.

6.76. Lemma. — Let C_y: T — Cato (or C(_y: T — @coo) be a diagram of co-categories.

(a) For every pair of objects x,y € lim;ez C; and their images z;,y; € C; under the projections
pr;: lim;ez C; — C; there is a canonical equivalence

Homlimiez C; (l’, y) i’ 15161111 HOIl’lCi ($i7 yl) .
(b) Let F: J — limier C; be a functor. Assume that all compositions pr; o F': J — C; admit
a colimit and that these colimits are preserved under C; — C; for all morphisms i — j in
Z. Then F admits a colimit and that colimit is preserved under pr;: lim;er C; — C; for
alli € . A similar assertion is true for limits.

Proof. Let C be an oco-category and z,y € C. Using Homc,t (—,C) >~ core Fun(—,C), we get a
pullback diagram

Home¢(z,y) —— Homgat, (AI,C)

looe

{z} x {y} —— Homca, (* *,C)

in An. Now for every oo-category D, the functor Homcyt (D, —): Cato, — An preserves
arbitrary limits by Corollary 6.17. Applying this for D ~ A and D ~ % % and using that
pullbacks commute with limits by the dual of Lemma 6.38, we deduce (a).

For (b), we only have to show that the colimit cocones J* — C; for all i € 7 assemble
into a functor F”: J* — lim;c7 C;. If we can do this, then (a) combined with Corollary 6.16
and the fact that limits commute with limits (by the dual of Lemma 6.38) will show that F*
is a colimit cocone. To construct F”, we’ll show a slightly stronger assertion: Consider the
slice-oo-category (Cateo)s/ and let (Catoo)f}’}im be the non-full sub-co-category spanned by
those objects (J — C) that admit a colimit and those morphisms that preserve this colimit.
We wish to show that (Catoo)f})}im has all limits and that (Catoo)f;’}im — (Catwo) 7/ preserves
all limits. By Lemma 6.37, it’s enough to check this for products and pullbacks. So we can

(620 However, Fun®(C, D) is at least locally small. To see this, write C ~ Ind,(C") for some regular cardinal .
Using a similar argument as in Lemma 6.80(a), Fun®™(C, D) can be identified with the full sub-co-category of
Fun(C", D) spanned by those functors that preserve x-small colimits. This is clearly a locally small co-category.
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reduce the construction of F*: J* — lim;c7 C; to the case where lim;c7 C; is a product or a
pullback. (6-21)

In the product case it’s clear how to construct F*: J% — [[;c;Ci. So let’s consider a
pullback Cy x¢, C1 of ag: Cy — C2 and oy : C; — Ca. Choose colimit cocones Fj: J> — Cp and
Fr: J% — C1. Choose a composition F5 := ag o Fj and a composition a; o F}. Then F§ and
aq o FT are both colimit cocones of the given functor pry o F': J — Ca. Since colimit cocones
are unique up to equivalence, there must be a natural equivalence n: F5 = o0 FY. Thus, we
obtain a commutative diagram

J" J" J"
FODJ " FQDJ /" JFf
Co —2 Cy Ly

in Cats, (7 is precisely what makes the right square commute). This diagram constitutes
a natural transformation const J” = C_) in Fun(A3,C), which induces the desired functor
J" — Cy X¢, Ca. As argued above, this is automatically a colimit cone. O

Proof sketch of Lemma 6.75. The equivalence from Corollary 6.8(b) (applied to Catoo rather
than Cate) restricts to an equivalence Prl ~ (PrR)Op. In particular, colimits in Pr™ are just
limits in Pr® and vice versa. So it suffices to study limits in either case. By Lemma 6.37 we
can reduce to products and pullbacks.

We start with products. Let (C;)icr be an collection of oo-categories and let C := [[;c; C;.
We wish to show that if all C; are presentable, then so is C, and then C satisfies the universal
property of the product in both Pr and Pr® (compare this to footnote (6.21) below). If we can
show that C is accessible, then all the other desired properties follow easily from Lemma 6.76(b).
So let’s show that products of accessible co-categories are accessible again. By Lemma 6.72, we
can choose a sufficiently large regular cardinal x such that x > |I| and all C; are k-accessible.
If x = (z;)ier is an object of C such that each z; € C; is k-compact, then z is k-compact
too: Indeed, this follows from Lemma 6.76(a) and the fact that s-filtered colimits commute
with I-indexed products in An by Theorem 6.54. Now let y = (y;)ic; be another object of
C. For all i € I, we can write y; ~ colimje 7, z;(j) as a r-filtered colimit of k-compact objects.
By the same trick as in the proof of Lemma 6.63, we can replace each J; by J = [[;¢; Ji,
put z(j) := (xi(j))icr € C and then y ~ colimjec s x(j) is expressible as a r-filtered colimit of
k-compact objects by Lemma 6.76(b).

It remains to do pullbacks. Proving that pullbacks of accessible co-categories along functors
that preserve sufficiently filtered colimits stay accessible is not quite easy and we’ll refer
to [L-HTT, Proposition 5.4.6.6]. If Cy — Ca « C; are functors in Pr" or PrR, then they
preserve sufficiently filtered colimits (for Pr® this needs Lemma 6.71) and so the pullback
D := Cy X¢, C1 is accessible. In the case of Prl, Lemma 6.76(b) shows that C has all colimits, so

(6:21) After constructing F”: J” — lim;cz C; there’s still something to show before we can conclude that lim;cz C;
(taken in Catoo or (Cateo) s/, this doesn’t matter by the dual of Lemma 6.56(a)) is also the limit in (Catoo)f;’}im.
The problem is that (Catoo)}o}im is only a non-full sub-co-category of (Catoo) /. But this is easily fixed. Using
Lemma 4.9 and the universal property of lim;cz C; in (Catw) s/, verifying the corresponding universal property
in (Catm)?}im reduces to a matching of path components. For example, in the case of a product, we have
to show that the projections pr,: Hiel C; — C; preserve the colimit over J; and furthermore, that a functor
D — [],c;Ci in (Cateo) s/ preserves the colimit over 7 if and only if the same is true for each D — C;. A similar
assertion would be to show for pullbacks. But these are all straightforward.
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it is presentable, and that the projections pr;: C — C; preserve all colimits, so they are functors
in Pr. The required universal property in Pr" is then straightforward to verify. In the case of
Pr®, Lemma 6.76(b) shows that C has all limits, hence it is presentable by Corollary 6.67(b),
and that the projections pr;: C — C; preserve all limits and sufficiently filtered colimits, so they
are functors in Pr® by Theorem 6.66(b). Again, the required universal property in Pr? is then
straightforward to verify. O

Let us now explain how to construct Pr" in ZFC. To this end, we need to introduce a variant
of Pr”. As we’ll see in Theorem 6.82, this variant has a truly mindblowing property, which
makes it quite interesting on its own.

6.77. Definition. — Let s be a regular cardinal.

(a) A presentable co-category is called k-compactly generated if it is k-accessible, that is, of the
form C ~ Ind,(C"), where C* C C is the full sub-co-category spanned by the k-compact
objects.

(b) We let Prk be the non-full sub-oo-category of Pr spanned by the s-compactly generated
oo-categories and those left adjoint functors that also preserve k-compact objects.

6.78. Lemma. — A left adjoint functor F': C — D between presentable co-categories preserves
k-compact objects if the right adjoint G: D — C preserves k-filtered colimits. The converse is
true as well, provided C is k-compactly generated.

Proof. Let x € C be k-compact and let y_y: Z — D be a r-filtered diagram. If G preserves
r-filtered colimits, then

Homp (F(a:), C?élzm yl> ~ Homg¢ (:L“, C?élzm G(?Jz))
~ Czoélzm Hom¢ (CC, G’(yl))

~ colim Ho F ;

iEIIIn mD( (55)7 yl) i
proving that F'(z) is k-compact. Conversely, if F' preserves k-compact objects, then the same
calculation run backwards shows that the canonical morphism colim;c7 G(y;) — G(colim;er ;)
becomes an equivalence after applying the functors Home(x, —): C — An for every x-compact
object x € C*. These functors are jointly conservative if C is k-compactly generated. O

6.79. Constructing Pr" in ZFC. — By Remark 6.73, we have an inclusion PrI,; - Pr{(
of non-full sub-oo-categories of Pr™ for all regular cardinals A > k. By Lemma 6.72, every
presentable co-category is k-compactly generated for all sufficiently large regular cardinals «.
Furthermore, by Lemma 6.78 and Lemma 6.71, every left adjoint functor F': C — D between
presentable co-categories preserves k-compact objects for sufficiently large «. Therefore we can

write
Prt ~ U Pl
K

where the union is taken over all cardinals which are small with respect to our two nested
universes. The union can be made precise as a colimit in Cato,, the co-category of all large
oo-categories, but it can also be viewed as simply a union of simplices in every degree. In any
case, we see that every functor T': T — Pr" from a small oo-category Z factors through Prl for
all sufficiently large cardinals k.
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So it suffices to explain how PrZ can be constructed in ZFC. In Lemma 6.80(c) below, we
see that, for uncountable «, Prg can be identified with a non-full sub-oco-category of Cats, in a
non-trivial way. This can be viewed as an alternative construction of PrI,;, thus providing a
construction within the confines of ZFC.

6.80. Lemma. — Let & be an uncountable regular cardinal and let Cat™;*°"™ C Cato, be the
non-full sub-co-category spanned by those small co-categories that have all k-small colimits
and those functors that preserve all k-small colimits. Let (—)* be the functor that sends a
k-compactly generated presentable co-category D to its full sub-oco-category D" spanned by the
k-compact objects.(622)

(a) 1If C is a small co-category with all k-small colimits and D is a presentable oco-category,
then restriction along X¢: C — Ind,(C) induces an equivalence of co-categories

%¥: Funy (Ind.(C), D) — Fun® ™ (C, D").

Here FunI,; C Fun is the full sub-oo-category spanned by left adjoint functors that preserve
Kk-compact objects and Fun® "™ C Fun is spanned by r-small colimits-preserving functors.

(b) If C is a small co-category with all k-small colimits, then C ~ Ind.(C)".

(¢) The functor (—)" induces an equivalence of co-categories
(—)": Pry = Catieo™.

Proof. We begin with (b). It’s clear that the objects {&¢(x) | € C} form a set of k-compact
generators of Ind,(C). As we’ve seen in the proof of Lemma 6.62, this means that every
k-compact object of Ind,(C) is a retract of an object in {&k¢(x) | z € C}. As we’ve seen in
footnote (6.19) on page 116, retracts can be written as countable colimits. Furthermore, we’ve
seen in the proof of Lemma 6.61 that &¢: C — Ind,(C) preserves r-small colimits; in particular,
& preserves countable colimits, as k is assumed uncountable. Since we assume that C has all
r-small colimits, it follows that {&¢(x) | = € C} is closed under retracts and thus comprises all
rk-compact objects. The claim follows.

To prove (a), our starting point is the equivalence Fun®f*(Ind,(C), D) ~ Fun(C, D) from
Lemma 6.61(c). So we only have to match full sub-oo-categories on either side. Suppose a
functor F': Ind,(C) — D preserves k-compact objects. Then the associated functor C — D
factors through a functor G: C — D*. Furthermore, D C D is closed under k-small colimits
and so is C ~ Ind.(C)” C Ind,(C) by (b). Thus, if F' preserves all colimits, then G preserves
r-small colimits. Conversely, suppose we’re given a functor G: C — D" that preserves k-small
colimits. Let F': Ind,(C) — D be the associated functor. By construction, F' preserves k-
compact objects and k-filtered colimits. Furthermore, we’ve seen in the proof of Lemma 6.63
that arbitrary colimits in Ind,(C) can be built from x-filtered colimits as well as x-small colimits

(6-22We should explain how to construct this functor. In general, given a functor F: C — Cate,, it’s easy to
construct subfunctors of F. Indeed, suppose for every x € C we’re given a full sub-co-category Fo(z) C F(x) such
that for every morphism a: x — y in F, the functor F(a): F(z) — F(y) restricts to a functor Fo(z) — Fo(y).
In this case, we automatically get a functor Fy: C — Cats together with a natural transformation Fy = F.
Indeed, let p: U — C be the unstraightening of F' and let Uy C U be the full sub-co-category spanned fibrewise
by Fo(z) C F(x) for all z € C. Then po: Uy — C given as the restriction of p is still a cocartesian fibration, since
our conditions on Fy precisely ensure that Uy is closed under p-cocartesian lifts in ¢. Thus, we can;d\eﬁne Fy as
the straightening of po. In the case at hand, the identity on PrY can be viewed as a functor Pr — Cate, and we
can construct (—)" as a subfunctor of it.
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of objects in the image of J&¢: C — Ind,(C). Thus F preserves all colimits. This finishes the
proof of (a).

Finally, (c) is a formal consequence: (b) shows that (—)" is essentially surjective, and (a),
together with Lemma 6.63(d), shows that (—)" is fully faithful. O

6.81. Corollary. — Let A\ > K be reqular cardinals.
(a) The inclusion Prk C PrY admits a right adjoint. On objects, it sends D € Pr¥ to Ind, (D).

(b) The oo-category Prg has all small limits and colimits. The forgetful functor PTIE ., Pl
preserves all small colimits.(6-23)

Proof. We start with (a). Let D € PrY. By Lemma 6.61(c), the identity functor idpx : D — D*
induces a k-filtered colimits-preserving functor cp: Indy (D)‘) — D. Let’s first argue why cp is a
functor in PrY. Since D* has all x-small colimits and idp» preserves them, the same argument
as in the proof of Lemma 6.80(a) shows that ¢p preserves all colimits. Furthermore, the
A-compact objects of Ind,(D?) are precisely those generated under A-small colimits by objects
in the image of £px: D* — Ind,.(D?). Indeed, if D denotes the full sub-oo-category spanned
by these objects, then the proof of Lemma 6.62(c) yields an equivalence Indy (D) ~ Ind,(D?);
now apply Lemma 6.80(b). Since c¢p preserves all colimits and D C D is closed under A-small
colimits, it follows that all A-compact objects of Ind,(D*) land in D*. This proves that cp is
indeed a functor in Pr¥.

To construct the desired right adjoint, it’s now enough by Lemma 6.2 to show that the
functor (cp)s: Funk(C,Ind, (D)) — Fun}(C,D) for all C € Prk, given by postcomposition
with ¢p, is an equivalence of oco-categories. This functor fits into the following diagram:

Funl (C, Ind, (D)) 2%, Funly(C, D)

e

Fun(C", IndK(DA)“) —=, Fun(C", DY)

The vertical arrows are given by restriction along C* C C. By Lemma 6.80, the left vertical
arrow is fully faithful and the bottom arrow is an equivalence. The right vertical arrow is fully
faithful by Lemma 6.61(c), using C ~ Ind,(C"). It follows that (c¢p). must be fully faithful
too. Furthermore, by Lemma 6.80, the essential image of Fun®(C, Ind,(D?*)) — Fun(C*, D*)
is spanned by those functors that preserve k-small colimits. Since C* C C and D C D are
closed under s-small colimits, the essential image of Funk(C, D) — Fun(C*, D) must also be
contained in the x-small colimits-preserving functors. This shows that (cp)s is essentially
surjective and we’ve finished the proof of (a).

The existence of limits in PrZ follows from Theorem 6.82 below combined with Corol-
lary 6.67(a). For colimits, let Pr? be the co-category of all k-compactly generated presentable
oo-categories and right adjoint functors that preserve r-filtered colimits. Then Corollary 6.8(b)
and Lemma 6.78 show PrZ ~ (Prf)°P. Thus it’s enough to check that PrY is closed under

(6-29)1¢°s true that any product of k-compactly generated oo-categories in Pr¥ is k-compactly generated again;
we’ll see this in the proof of Corollary 6.81(b). But, confusingly, the product in Prl is usually not the product in
Prl. The reason is that preservation of limits or colimits can be detected factor-wise, but not preservation of
Kk-compact objects.
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limits Pri.(629) Ag usual, it’s enough to do products and pullbacks. In either case, we know

from Lemma 6.75 that the limit in Cateo is also the limit in Pr®, so by Lemma 6.62(c) we
only need to construct a set of k-compact generators. For a product [[;c;C;, choose a set S; of
k-compact generators of C; for all i € I. Furthermore, choose an initial object (); € C;. For all
s; € S let e;(si) € [T;e; Ci be the object given by e;(s;); = s; and e;(s;); = 0; for j # i. Then
{ei(si) | s; € S;} are k-compact and jointly detect equivalences in the i*" component. Hence
the union U;c;{ei(s;) | s; € Si} is a set of k-compact generators of [[;c;C;.

The argument for pullbacks is similar. Let C := Cy x¢, C1 be a pullback in PrR, where
the underlying diagram is already contained in Prg. By definition of Pr®, the pullback
projections pry: C — Cp and pry: C — C; admit left adjoints Lo: Cp — C and Ly: C; — C. By
Lemma 6.76(b), the projections pry and pr; preserve r-filtered colimits, hence Lemma 6.78
shows that Ly and L1 preserve k-compact objects. Now choose sets Sy and S7 of k-compact
generators of Cy and C;. Then {Lo(so) | so € So} are k-compact objects of C and jointly detect
equivalences in the first factor. Similarly, {L1(s1) | s1 € S1} jointly detect equivalences in the
second factor. Hence the union {Lo(so) | so € So} U {Li(s1) | s1 € S1} is a set of k-compact
generators of C. This finishes the proof of (b). O

To finish this rather lengthy subsection, we’ll show the aforementioned mindblowing property
of Prl. If you’re in a situation where you can fix an uncountable regular cardinal x and only
work with k-compactly generated oo-categories (for most practical applications, £ = Nj is
enough), Theorem 6.82 allows you to bypass all set-theoretic problems.

6.82. Theorem (“Russel’s paradox? Skill issue!”). — Let k be an uncountable regular
cardinal. Then Prl,; is an object of Pr,I_;.

Proof sketch. We already know from Corollary 6.81(b) that Prl has all colimits. Thus, by
Lemma 6.62(c) it’s enough to find a set of k-compact generators. We’ll show that {An, PSh(A!)}
does it. Let’s first show that the functors Homp 1 (An, —) and Homp 1. (PSh(A'), —) are jointly
conservative. To this end, we claim more generakﬂy: "

(X)) If C is a small co-category and D is a k-compactly generated presentable co-category, then
restriction along &¢: C — PSh(C) induces an equivalence of co-categories

X&: Funy (PSh(C), D) — Fun(C, D).

Believing (), we find Homp, (An, D) ~ core D" and HomPrE(PSh(AI),D) ~ core Ar(D").
Now (—)": Prl — Caty, is conservative by Lemma 6.80(c). Furthermore, core(—): Cato, — An
and core Ar(—): Cats — An are jointly conservative, as we’ve seen in the proof of Corollary 6.64.
It follows that An and PSh(A') are generators of Prl, as desired.

To prove (X;), recall Fun®(PSh(C), D) ~ Fun(C, D) from Theorem 6.30, so we only have
to find out to which full sub-oo-category Fung C Fun" corresponds in Fun(C,D). Since
{&e(z) | * € C} is a set of generators for PSh(C), the same argument as in the proof of
Lemma 6.80(a) shows that the k-compact objects in PSh(C) are precisely those generated
under k-small colimits from representable presheaves. Thus, a colimits-preserving functor
PSh(C) — D also preserves k-compact objects if and only if it restricts to a functor C — D*.
This proves (K).

(6:24) A5 in the proof of Lemma 6.75, a straightforward extra-argument is needed since Pr¥ is not a full sub-co-
category of Pr®. As preservation of limits and «-filtered colimits can be checked factor-wise, we don’t run into
the same issue as in footnote (6.23)

126



§6.10. LURIE’S MAGIC 00-CATEGORY Prl

It remains to show that An and PSh(A') are x-compact in Prl. As explained above, (K)
shows Homp . (An, —) ~ core((—)") and Homp, 1. (PSh(A!), —) ~ core Ar((—)*). We know from

Lemma 6.80(c) that (—)*: Prl — Cat® '™ is an equivalence of co-categories, so it preserves all
rk-filtered colimits, and we’ve sketched in the proof of Corollary 6.64 that core(—): Catoo — An
and core Ar(—): Cato, — An preserve filtered colimits. Therefore, to finish the proof it’s enough
to show the following claim about s-filtered colimits in Cat’s <™,

(Ko) The forgetful functor Cat’;.jwhm — Cateo preserves k-filtered colimits.

To prove (), let C(_y: J — Catfo°im he a g-filtered diagram. We have to show that the

colimit colim;e 7 Cj in Cato, also has all k-small colimits and constitutes a colimit in Cat/ ™,
So let 7 be a k-small oco-category and let T: 7 — colimjc 7 C; be an Z-shaped diagram in
colimje 7 Cj. It’s not hard to check that for uncountable regular cardinals x the x-compact
objects in Cats, are precisely the k-small co-categories.(¢2°) Hence Z is k-compact and so T
factors through a functor Tp: Z — Cj, for some jo € J. By assumption, Cj, has all xk-small
colimits and so Tj extends to a colimit cone T : 7% — Cj,. Furthermore, for every morphism
Jjo — j in J the functor Cj, — C; preserves x-small colimits, hence 7 — C;, — C; is still a
colimit cone. We claim that then also Z® — C;, — colimjc 7 C; is a colimit cone. To show this,
we need an analogue of Lemma 6.76(a) for filtered colimits; this can be obtained in the exact
same way, using that Homcas (A', —) and Homcgg (¢ *, —) also preserve filtered colimits and
that pullbacks in An commute with filtered colimits by Theorem 6.54. Then Corollary 6.16
shows that 7% — C;, — colimjc s C; is indeed a colimit cone, as claimed. This proves that
colimje 7 C; again has all k-small colimits.

To finish the proof, it remains to argue why colim;c 7 C; is also a colimit in the non-full
sub-oo-category Cat™ ™ C Cato,. Unravelling the definitions (and using Lemma 4.9), we
must check that for every natural transformation n: C(_) = const D in Cat® ™ the induced
functor colimjc7C; — D in Caty preserves s-small colimits. But we've seen above that
every k-small colimit in colimjec 7 C; is inherited from Cj, for some jo € J and the functor
Mjo : Cj, — D preserves k-small colimits by assumption on 7. O

(6-25)Gince Catoo is generated by the compact objects * and A, hence the x-compact objects are precisely those
oo-categories generated under r-small colimits by # and A'. Everyone of them is x-small by Remark 6.49.
Conversely, for all n > 0, the co-category A™ can be written as a finite colimit in * and A' (namely, as the
iterated pushout A gy - Ug, 1y A7) Using Lemma 6.48(c), every other s-small oo-category is
contained in the full sub-co-category of Cate generated under s-small colimits by {A™ | n > 0}.
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§7. Towards spectra

The goal of this section is to introduce the stable co-category Sp of spectra. Along the way
we’ll be able to deduce many classical topological results.

§7.1. Suspensions and loop animae

7.1. Definition. — Let X € An be an anima or (X,z) € An,, be a pointed anima. We
define X X, the suspension of X, and 2,.X, the loop anima of X with basepoint x, via
RN
« —— X (z} X

respectively, where the pushout and the pullback are taken in An. If the basepoint is clear
from the context, we often simply write 2.X. Note that >X is canonically a pointed anima
via * — ¥ X and (2, X is canonically a pointed anima since the pullback can be taken in An,,
instead by Lemma 6.56(a).

7.2. Remark. — By model category fact 6.13, to compute XX, we have to replace one
X — = by a cofibration, then take the usual pushout of simplicial sets, and finally replace
the result by a Kan complex. Such a replacement by a cofibration could be X — X* — CX,
where X — C'X is an anodyne map from the cone X” from Construction 6.51 into a Kan
complex (which exists thanks to Lemma 3.12); then C'X is contractible because CX ~ | X”| ~ .
From this description, we see that X is compatible with the topological suspension functor
»Top: Top — Top (reduced or unreduced doesn’t matter) in the sense that

ho(An) —=— ho(An)

NI 2 [N

ho(Top) DN ho(Top)

commutes; here |-|: ho(An) — ho(Top) denotes the geometric realisation functor. So the
suspension functor X: An — An deserves its name.

Next, we’ll show that the loop functor Q: An,, — An,, deserves its name as well.

7.3. Lemma. — Suspension and loop form an adjunction ¥: Any,, = An,, :Q. In particular,
for every pointed anima (X, x), the following hold:

(a) 7 (Q:X,x) = 11 (X, 2) for alln > 0.
(b) QX ~ HomAn*/((Slv *)) (Xa .I')) = Homx(l‘,$).

Proof sketch. The adjunction ¥ - Q follows immediately from Corollary 6.16 and the fact
that the pushout and pullback diagrams in Definition 7.1 can be taken in An,, as well by
Lemma 6.56.

Part (a) follows immediately from the suspension-loop adjunction and S"*! ~ %S". The
latter is clear if we define S™ := X(* #) as the n-fold suspension of two points; for any other
construction, it is a straightforward check.
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The first equivalence in (b) follows from €2, X ~ Homay (*, 2, X) ~ Homay,, (+ *, (X, 2))
and X(* #) ~ S1. For the second equivalence, note Ar(X) ~ X. Indeed, Ar(X) ~ Fun(A!, X)
is already an anima and so Fun(A!, X) ~ core Fun(A!, X) ~ Homca, (Al, X). Note that
|Al] ~ %, since A! has an initial object, and so Example 6.3(a) implies the desired equivalence
Homcyt (A, X) ~ Homay(, X) ~ X. Therefore, (s,t): Ar(X) — X x X is homotopic to
the diagonal A: X — X x X and so Homx (z,z) ~ ({z} x {z}) xxxx,a X. Now consider the
following diagram:

o} — {zp x X —— {z}

| o]

X XxXx 2 x

The right square is a pullback by inspection and the outer rectangle is a pullback because the
bottom row pr; oA: X — X is the identity on X. It follows formally that the left square must
be a pullback as well. Finally, consider the following diagram:

| oo ] 9

{} — {a}x X — X x X

The right square is a pullback as argued above and the left square is a pullback by Definition 7.1.

Now the outer square is a pullback again, which proves Q,X ~ Homx (z,x), as desired. ]
7.4. Example. — For every n > 0, the following is a pullback diagram in Dsy(Z):
Aln] 0
| o |
0 Aln +1]

(this may seem weird at first, but will become more clear once we discuss stable co-categories
in §7.4; the proof is similar to Lemma 6.40(b)). Since the Eilenberg-MacLane anima functor
K: D>¢(Z) — An from Construction 6.41 is a right adjoint, it preserves pullbacks by Lemma 6.11,
which shows K(A,n) ~ QK(A,n + 1). This fits prefectly with the fact that the loop functor
shifts homotopy groups down by Lemma 7.3(a).

§7.2. E;-monoids and E;-groups

7.5. Associahedra. — What’s an associative monoid in the co-category An? Clearly, part
of the data should be an anima M together with a multiplication p: M x M — M. We’ll often
write we put a - b := pu(a,b) for convenience.

Intuitively, associativity means that for every n > 3 and all a4, ...,a, € M, every way of
bracketing the product a; - - - a, should be equivalent. What does this mean concretely? In the
case n = 3, another part of the data should be a homotopy n3: pu(—, u(—, —)) = plu(—,—),—)
in Homa, (M3, M), witnessing a - (b- ¢) ~ (a-b) - ¢ for all a,b,c € M. If M were a monoid in
Set (or in any ordinary category), then the case n = 3 would already guarantee associativity for
arbitrary n. However, in an oco-category, this no longer works. For example, in the case n = 4,
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we need additional data—a homotopy 74 in Homa,(M*, M) that witnesses commutativity of
the diagram

a-(b-(c-d)
a'ﬂy w(od)
a-((b-c)-d) (a-b)-(c-d)
= Z/774 ~
Ta,(b-c),d M(a-b),c,d
(a-(b-c))-d === ((a-b)-c)-d

Then 74 needs to satisfy another compatibility in Homa,(M?, M) and so on. In general,
Stasheff [Sta63] introduced (d — 2)-dimensional polytopes K, called associahedra, such that
associativity up to n = d — 1 induces a map 0Ky — Homa,(M? M) and associativity up to
n = d amounts to extending this to a map Ky — Homa, (M9, M).

A similar story exists for unitality. This leads to a notion of A,-monoids, and in the limit
case, A,.-monoids. Fortunately, co-category theory provides a way to package all this unwieldy
data into a much cleaner definition.

7.6. Definition. — Let C be an oo-category with finite products (so in particular, the empty
product exists, so C has a terminal object ).

(a) An A,-monoid or E1-monoid in C is a functor M : A°P — C satisfying My ~ * as well as
the Segal condition: The Segal maps e;: [1] — [n] that send [1] bijectively to {i,i + 1}
induce an equivalence

We call M the underlying object of M; we’ll often don’t distinguish between M and M;.
Let Mon(C) C Fun(A°P,C) denote the full sub-oco-category spanned by the E;-monoids.

d*
(b) For an E;-monoid M in C, we get a multiplication map pu: My x My ~ My — M using
the Segal condition. Then M is called an E;-group in C if the shearing map

(pry, p): My x My —» My x M

is an equivalence. We let Grp(C) € Mon(C) denote the full sub-co-category spanned by
E;-groups.

7.7. Associahedra revisited. — Let’s unravel what happens in Definition 7.6. Let
M: A°? — C be an E;-monoid in an oo-category C. We've already seen that df: My — M;
encodes the multiplication on M. In general, if we identify M, ~ M and M, ~ Mf_l
via Definition 7.6(a), then the face map d}: M,, — M,_; for 0 < i < n can be interpreted
as the map that sends (a1,...,a,) to (a1,...,a;—1,a; - Git1,Git2,...,a0,). More precisely, if

el(i-)Jrl: [2] — [n] is the map that sends [2] bijectively to {i — 1,4,7 + 1}, then the diagram

2
(61,.‘.,€i,1)><€l(-7i)+1 ><(ei+2,...,en)

: i id x e1,e xid s i
M, - ML My x Mpi-t eIy rint e et
d¥ /l/ Jid xd¥ xid 1/

(e1,-s€i—1)X€; X (€it1,e,€n—1)

~

My Mf_l X My x M{l_i_l id xpuxid
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commutes. Indeed, the square on the left can be reduced to certain commutative squares in
the ordinary category A°P; we leave the details to you. The triangle on the right commutes by
definition of p. In a similar way, one can show that the “outer” face maps dj and d;; simply
forget a1 and a,, respectively.

So the face maps in A encode the multiplication, including its associativity, of the E;-monoid
M: A°P — C. Likewise, the degeneracy maps encode unitality. The image of * ~ My under
so: My — M is a point 1 € My which plays the role of the identity element of M in the sense
that the left and right multiplication maps

M~ {1} x My 25 My and My ~ My x {1} 5 My

are both homotopic to the identity ids, : M1 — M;. Indeed, this follows from the identities
spody = id[l] = sy 0dp in A via the commutative diagrams

* * * *
8 d 87 dy

My My - My My Mo My
ZJ Wi (81762)J /W and =J Y (61,32)l /W
{1}XM1*>M1XM1 M1X{1}4>M1XM1

=

In general, s;'-‘: M,_1 — M, can be interpreted as the map that sends an (n — 1)-tuple
(a1,...,a,) € M7t ~ M,_; to the n-tuple (ay, ... saj—1,1,a5,...,a,) € M.

These considerations lead to a nice conceptual description of Stasheff’s associahedra Ky
from 7.5. We’ve seen that the “inner” face maps d;: [n] — [n — 1] for 0 < i < n encode the
multiplication on M. The (non-full) sub-category of A spanned by d;: [n] — [n—1]for0 <i <n
and 1 < n < d is equivalent to (1971 :== (A1)9~1. Since (0% 1)°P ~ 91 we get a (faithful but
not fully faithful) functor (0%~! — A°P. The restriction M|ga—1: 0% ! — C of M then encodes
the multiplication p on M plus the fact that u is associative for up to d factors. But what
does this have to do with Stasheff’s associahedra? In the case C ~ An = Na(Kana ), a functor
91 — N2(Kan®) is equivalently given by a simplicially enriched functor ¢[[04~1] — Kan®
by Construction 2.21. Thus, an anima M; together with a multiplication that’s associative for
up to d factors is encoded by a simplicially enriched functor M%: €[04 '] — Kan® such that
M* sends (0,...,0) to M{ and (1,...,1) to M. In particular, we get a morphism

Fefma-1((0,...,0),(1,...,1)) — Homa, (M{, M) .

This is precisely the kind of structure we’'ve seen in 7.5: a map from a polytope, modelled here
as a simplicial set, into Homa,(M? M)! And indeed, Feme-17((0,...,0),(1,...,1)) turns out
to be a model for Stasheff’s associahedron K. In a similar way, K, arises as a Hom-simplicial
set in €[00091]. For a greatly expanded version of this explanation see [L-HA, §4.1.6].

7.8. Lemma (“Equivalences of Ej-monoids can be checked on underlying objects”). — Let
C be an oo-category with finite products. Then a morphism f: M — N in Mon(C) is an
equivalence if and only if f1: M1 — Ny is an equivalence.

Proof. This follows immediately from Theorem 4.5 and the Segal condition. O

7.9. Lemma. — For an Ei-monoid M in animae, the following conditions are equivalent:

(a) M is an Eq-group.
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(b) For every a € My, the “left multiplication map” a - (=): My ~ {a} x My > M is an
equivalence.

(¢) For every a € My, the “right multiplication map” (=) - a: My ~ My x {a} - M, is an
equivalence.

(d) The ordinary monoid mo(M) € Mon(Set) is a group.

Proof. We prove (a) < (b) first. Using Theorem 3.18, Lemma 3.19, and the five lemma (plus
Remark 3.20), we see that the shearing map (pry, u): My x My — M; x M; is an equivalence
if and only if it induces equivalences on all fibres of pr;: My x M} — M;. The induced map on
fibres over a € M is precisely a - (—). This already proves (a) < (b).

The implication (b) = (d) is clear, since the condition from (b) implies that for every
equivalence class [a] € mo(M), left multiplication with [a] is a bijection. The same argument
shows (¢) = (d). For (d) = (b), note that associativity of the multiplication of M implies

(b- (=)o (e (=) = ((b-c)- (=)

for all b,c € My. Since mo(M) is assumed to be a group, there exists an element b € M; such
that a-b ~ 1 ~ b-a, where 1 € M is the identity element, that is, the image of % ~ M,
under so: My — M;. Since 1-(—): M; — M; is homotopic to idys, as we've seen in 7.7,
the equivalence above shows that b - (—) is both a left inverse and a right inverse to a - (—).
So a-(—): My — M; is an equivalence. This finishes the proof of (d) = (b). An analogous
argument shows (d) = (c). O

The main theorem of this subsection is Stasheff’s recognition principle for loop spaces:

7.10. Theorem (“E;-groups are the same as loop animae”). — Let ((Cateo)y/)>1 € (Cateo )y
be the full sub-oo-category of all (small) pointed oco-categories (C,x) for which mycore(C) =
and let (An,/)>1 C ((Catoo)s/)>1 be the full sub-oo-category spanned those pointed animae
(X, z) where mo(X) = =.

(a) There is an equivalence of co-categories
Mon(An) — ((Catoo)*/)>1.

(b) There is an adjunction B: Mon(An) 2 An,, :Q which induces a pair of inverse equiva-
lences

B: Grp(An) % (An*/)>1 Q.

7.11. Remark. — The intuition behind Theorem 7.10 is easy to explain: If (C,z) is a
pointed oo-category, such that 7y core(C) = *, then Home (z, x) is an E;-monoid via composition.
Coversely, if M is an E;-monoid, then we can build an co-category B™ M with only one object
# and Homp+7(%, %) ~ M; the composition is dictated by the multiplication on M. Hence
Theorem 7.10(a). Furthermore, C is an anima if and only if every morphism in Home(z, x)
is invertible, which is equivalent to Hom¢(z,z) being an E;-group by Lemma 7.9. Hence
Theorem 7.10(b). Unfortunately, making this intuition formal requires a lot more work.

The proof of Theorem 7.10 will be rather lengthy. We’ll first show Theorem 7.10(a), up
to a pretty serious black box (Theorem 7.13). Theorem 7.10(b) could then be obtained as a
simple consequence, but instead, we’ll give a proof that avoids the aforementioned black box.
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Our first goal on our way towards Theorem 7.10(a) is to construct an Eq-monoid structure
on the anima End¢(z) := Home(z, ) of endomorphisms of xz. This requires a construction
which is quite interesting in its own right.

7.12. Construction. — Consider the functor U: A — Caty, that sends [n] — A" (or, if
you want, [n] — [n], since we suppress writing nerves). To construct U formally, observe
that it already exists as a functor A — QCat of ordinary categories and use Theorem 4.13.
Alternatively, one can write down the unstraightening explicitly; it will be an ordinary category
over A. Using Theorem 6.30, U induces an adjunction

asscat: Fun(A°P, An) = Caty, : NRe%&

Here asscat stands for associated category™), NR¢?X is the Rezk nerve. According to Lemma 6.32,

the Rezk nerve is given by NR°2K(C),, ~ Homcy; (A", C) for every oo-category C and all n > 0.

To prove Theorem 7.10(a), we’ll need the following black box. Fortunately, a relatively short
proof in model-independent language has recently been found by Fabian and Jan Steinebrunner
[FS23]. The original proof due to Joyal and Tierney is in [JT07]; Lurie has given another proof
in [Lur09].

7.13. Theorem. — The Rezk nerve NR°?<: Cat,, — Fun(A°P, An) is fully faithful and its
image is given by the complete Segal animae. Here, a simplicial anima X : A°® — An is called
Segal if the Segal maps e;: [1] — [n] induce equivalences

Xn — X1 Xxy - Xxo X1 -
o ~- >
n factors

Furthermore, X is called complete, if s§: Xo — X1 is an equivalence onto the collection of
path components X7 C X; given by those oo € X1 for which there exist o,7 € Xo such that
di(o) ~ a ~ d5 (1) and both di (o), di(7) lie in the image of s§: Xo — X;. [ |

Let us now construct the desired E;-monoid structure on Ende(x).

7.14. Construction. — If M € Fun(A°P, An) is an E;-monoid, then M ~ %. Via Yoneda’s
lemma, this induces a canonical morphism & ([0]) >~ const * — M of E;-monoids. Accordingly,
we get a canonical morphism asscat(const *) — M. Since asscat(const ) ~ asscat(&a([0])) ~
U([0]) ~ *, the morphism above canonically turns asscat(M) into a pointed oo-category and so
asscat upgrades to a functor BT: Mon(An) — (Catoo)*/.(7'2) For a pointed oco-category (C, x),
let, temporarily, End¢(z) € Fun(A°P, An) be redefined as the pullback

Ende(z) =—————= NF(()

T

const{z} == Rang|g)}—ac» NReZk(C)]{[O]}

in Fun(A°P, An). The right vertical arrow u is the unit transformation from a functor to the
right Kan extension of its restriction. For the bottom horizontal arrow, note that since (C, x)

(7). and it has nothing to do with asinine felines (or worse). Why would you think that?!

(72)Note that B is non-standard notation; there doesn’t seem to be any standard notation.
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is a pointed oo-category, there is a canonical morphism {z} — core(C) ~ NR?(C)y: then
the desired natural transformation const{z} = Ranjo3—acr NRezk (O)lf[opy is induced by the
universal property of right Kan extension. It’s straightforward to check that the right vertical
and bottom horizontal arrows are functorial. Since taking pullbacks is functorial too, we get a
functor End: (Categ),; — Fun(A°P, An), as desired.

7.15. Lemma. — The simplicial anima Ende(x) from Construction 7.14 is an Ei-monoid and
its underlying anima Ende(z)1 is the anima Home(x, x) of endomorphisms of x. Furthermore,
the functors from Construction 7.14 fit into an adjunction

B*: Mon(An) = (Cat),, : End .

Proof. Let’s check first that End takes values in Mon(An) C Fun(A°P, An) and that the
underlying anima of End¢(x) is indeed Home(x,z). To this end, fix n > 0; we’ll compute
Endc(z),. Recall that NRe2K(C),, ~ Homca;. (A", C). To compute the right-Kan extension, we
use the formula from Lemma 6.27: The slice oo-category {[0]} [, has n + 1 objects, namely the
morphisms [0] — {j} — [n] for 0 < j < n, and there are no non-identity morphisms in {[0]}f,-
So the Kan extension formula is just a limit over a discrete diagram with n 4+ 1 objects, which
leads to (Rang[g}—acp NReZk(C)|{[O]})n ~ core(C)"*!. Furthermore, a quick unravelling shows
that the morphism v from Construction 7.14 can be identified with

Homcat (A”,C) — Homcat,, ({0} U---u {n},C) ~ core(C)" 1.

Now observe that A" can be written as A" ~ A{0:1} U1y AL2} Ugoy +++ U1y Aln=1n} iy
Catoo. () Identifying Homcatoo(A{i_l’i}, C) ~ core Ar(C) via Theorem 2.24, we obtain

HomCatoo (An, C) = core AI‘(C) Xt,core(C),s " Xt,core(C),s COTE AI‘(C)
n f;;c(tors

from Corollary 6.16. Recall from Lemma 6.12 that pullbacks in Fun(A°P, An) are computed
degree-wise. So End¢(x), is the pullback {z} X ore(c)ntt Homea,, (A", C). Plugging in the
formula above, we see

Ende(z), ~ Home(z, z)"

by a simple manipulation of pullbacks. So we’ve achieved two things at once: We’ve shown
that End¢(x) satisfies the conditions from Definition 7.6, so that it is an E;-monoid, and that
the underlying anima of that E;-monoid is indeed Home(z, z).

It remains to show that End is right adjoint to BT. So let M € Mon(An). The universal
property of right Kan extensions combined with My ~ * shows

Hompyn(aor, An) <M, Rangg)y— ace NReZk(C)’{[O]}> ~ Homp, (Mo, core(C)) ~ core(C)
This allows us to compute

HomFun(AOP,An) (M7 Endc(Q?)) = HomFun(AOP,An) (Mv NReZk (C)) X core(C) {.I'}
=~ HomCatoo (asscat(M), C) X Homcag oo (#,C) {.Z'}
~ Hom(catoo)*/ (BJFJW7 (C, 1‘)) .

(73)One way would to see this is to observe that the pushout in sSet would just be I" from the proof of
Theorem 4.6 and that I™ C A" is inner anodyne, so that A™ is the pushout in Cat. by model category fact 6.13.
Another way would be to use Lemma 6.14 and think hard about the localisation.

134



§7.2. E{-MONOIDS AND [E{-GROUPS

In the first step we use that Hompy,(aor An) (M, —) commutes with pullbacks by Corollary 6.17

together with the above simplification. In the second step, we use the adjunction asscat - NRe#k

as well as core(C) ~ Homeyt_ (*,C). In the third step we use Corollary 5.15. It’s easy to make
all steps functorial in M and (C,z) and so the proof is finished. O

Proof sketch of Theorem 7.10(a). Observe that a morphism (C,z) — (D,y) in ((Cateo)s/)>1
is automatically essentially surjective. Hence any such morphism is an equivalence if and
only if Home(x,2) — Homp(y,y) is an equivalence. This immediately shows that the right
adjoint End: ((Cateo)s/)>1 — Mon(An) is conservative. It follows from Theorem 7.13, or more
precisely, from [FS23, Corollary 3.15], that Homp+ j/(*, %) ~ M holds for all M € Mon(An).
Using Lemma 7.8, it follows that the unit uy: M — Endg+),(*) is an equivalence. Hence
B*t: Mon(An) — ((Catog)s/)>1 is fully faithful by Lemma 6.33(a). Then Lemma 6.33(b) shows
that BT and End are inverse equivalences. ]

Let us now turn to Theorem 7.10(b). The proof will consist of two parts: a formal part, in
which we effortlessly deduce the adjunction B: Mon(An) = An, /1§, and a hard part, in which
we compute (QBG for every Eq-group G to establish the equivalence Grp(An) ~ (An,/)>1.

Proof sketch of Theorem 7.10(b), formal part. Let Q := End [y, ,: An,, — Mon(An) denote
the restriction of End from Construction 7.14 to An,,; C (Cate)s,. It follows from Lemma 7.3(b)
that the underlying anima of QX € Mon(An) is indeed the eponymous QX from Definition 7.1.
Now we claim:

(X1) The functor Q: An,, — Mon(An) factors through Grp(An) C Mon(An). Furthermore, )
admits a left adjoint B: Mon(An) — An,, which factors through (An,,)>1 C An,.

To see that QX is an Ey-group, one can use Lemma 7.9(d) for example: mo(QX) = 71(X, z) is
a group by Lemma 7.3(a).

Next, let’s construct B. Using Corollary 5.15 and |#| ~ =, it’s straightforward to check that
|-|: Catoo — An induces a functor |- [: (Cateo ), — An,, which is left adjoint to the inclusion
An,, C (Catoo),/. We then let B := [B*(—)|: Mon(An) — An,, denote the delooping functor.
From the diagram

Mon(An) — (Cateo )y,
s
Q An,

it’s immediate that B and 2 are adjoints. To show that B lands in (An,/)>1, we need an
alternative description of B. By construction, the composition of B: Mon(An) — An, , with
An,, — An agrees with |asscat(—)|: Fun(A°P, An) — An. Note that this functor preserves all
colimits, because so do asscat: Fun(A°P, An) — Cats and |- |: Cate, — An. By Theorem 6.30,
|asscat(—)| must be the unique colimit-preserving extension of the functor A — An sending
[n] — |A™| ~ %; that is, |asscat(—)| is the unique colimit-preserving extension of the constant
functor const #: A — An. On the other hand, colimpepr: Fun(A°P, An) — An also preserves
colimits, since it is a left adjoint by definition. Moreover, colimaor &a([12]) > |A /)| ~ * by
Lemma 6.14 and the fact that A ) has a final object. So colimaoe: Fun(A°, An) — An is
also the unique colimit-preserving extension of const *. It follows that if M € Mon(An), then
the underlying unpointed anima of BM is colimp,jcaor My, and the point * — BM comes
via * ~ My — colim[n]erp M,,. We’ve seen in Lemma 6.58 that my: An — Set commutes
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with arbitrary colimits. So we get a bijection of sets mo(BM) = colim,jcpor mo(My,). Using
mo(Mp) = *, it’s straightforward to check that the colimit must be # as well.("*) This finishes
the proof of (X).

In particular, we obtain a restricted adjunction B: Grp(An) 2 (Any,)>1 :Q. To show that
this is a pair of inverse equivalences, it’s enough to show that B is fully faithful and that Q is
conservative; see Lemma 6.33(b). The latter is easy. If evj;): Mon(An) — An is the functor
that sends an E;-monoid to its underlying anima is conservative, then already

An, LR Mon(An) LN
is conservative. Indeed, this composition is the loop functor Q: An,, — An. Since any
morphism (X, z) — (Y,y) in (An,/)>1 is automatically a bijection on 7, Theorem 3.18 and
Lemma 7.3(a) show that such a morphism is an equivalence if and only if Q, X — Q,Y is an
equivalence. This proves that 2 is indeed conservative. To prove that B is fully faithful, we
will need another claim:

(Kg) For every Eq1-group G € Grp(An), the unit transformation ug: G — QBG is an equivalence
on underlying animae.

If we can show (X3), then ug will also be an equivalence of E;-groups by Lemma 7.8. So B
is fully faithful by Lemma 6.33(a) and we would be done. The proof of (K3) requires some
further tools, and we postpone it for now. O

The main difficulty in the proof of (X) is the fact that BG is defined as a colimit, whereas
Q is a pullback. So we need to commute pullbacks and (non-filtered) colimits. Fortunately,
there’s a relatively simple criterion due to Charles Rezk [Rez14, Proposition 2.4] that allows us
to do this in certain situations.

7.16. Lemma. — Let J be an oco-category. A natural transformation q: B = D in
Fun(J, An) is called equifibred if for every morphism a: i — j in J, the induced diagram

B 2. B,

qzi S e

p; 2. p,

is a pullback square in An. Then the colimit functor colimy: Fun(J,An) — An preserves
pullback squares in which one leg is equifibred. That is, if we’re given a pullback square

A=—— B
N
C=——D

in Fun(J, An) such that q: B = D is equifibred, then colimy: Fun(J,An) — An sends this
diagram to a pullback square in An.

("D1In fact, if S: A°® — C is any functor into an ordinary category, then the colimit of S is given by the
coequaliser

a*
colim S, = coeq(Sl _>—0> So> .
[n]eaocr a¥

(assuming either colimit exists). This formula is wildly false in general co-categories, as already evidenced by
BM =~ colim[pjeaor My in An.
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The idea to prove Lemma 7.16 is to interpret ¢;: B; — D; as the unstraightenings of certain
functors G;: D; — An and then to use Lemma 6.14 backwards. To this end, we need to study
the straightening equivalence from Theorem 5.4 a little more.

7.17. The universal unstraightening. — Let x be a regular cardinal and let An<* C An
be the full sub-co-category of essentially x-small animae as in Definition 6.46. Then An<" is
essentially small itself (albeit not necessarily essentially x-small) and so we can consider the
unstraightening p=% - USE — An<* of An<* — An and we can regard An<" as an object in
Cateo. If p: U — C is any left fibration with essentially x-small fibres over an oco-category C
and F ~ Stleft) (p): C — An is the associated functor, then F' factors through An<". Since
precompositions are sent to pullbacks by Theorem 5.4(a), it follows that there must be a
pullback diagram

<K
Uu uuniv

pl R I
X L Ap<s

in animae. So p5t acts as a universal unstraightening, whence the notation. Of course,

what we would really like to do here is to consider the unstraightening puniv: Uuniv — An of
idan: An — An and regard An as an object in Cats,. The only way to do this without any set
theorist suffering a stroke would be to consider universes, which amounts to choosing a strongly
inaccessible cardinal bound. It turns out that any cardinal bound x does it, so we can get away
without using universes.

7.18. Lemma. — Consider the slice oo-category An y,<x ~ An Xcat,, (Catoo) an<s and
let Ar5"(An) C Ar(An) be the (non-full) sub-co-category, in the sense of 2.16, spanned by
those objects (a: X — Y') € Ar(An) for which the fibres of a are essentially k-small and those
morphisms (a: X = Y) — (o/: X' — Y") that represent pullback squares in An. Then there is
an equivalence of co-categories

(psl )™ Anjp,<n = Ar5"(An)

that sends an object (F: X — An=") € An < to the pullback (X X pn<n Uy

un’;v - X)’ or
equivalently (by 7.17) to the unstraightening of F.

Proof sketch. It’s easy to construct (p5fs )* formally and we’ll only sketch the necessary steps.
First, one constructs a functor Anj,,<x — Fun(A3, Caty,) that sends (X — An<") to the
span (X — An<" « Y1 ). To do so, let X := Fun(A3, Caty,) X Fun(A 12} Cat o) {psli.} be the

univ
<K

oo-category of those spans whose second leg is pg.,. There’s a functor

X — FUH(A{O’2}7 Catoo) XFun({Q},Catoo) {An<'€} = (Catoo)/An<K

sending a span whose second leg is p=f  to its first leg. This functor is clearly essentially

surjective, and one easily checks that it is fully faithful too, using the formulas from Corollary 5.15
and Lemma 6.76(a). Hence we get an equivalence by Theorem 4.6. Choosing an inverse of this
equivalence yields the desired functor An ;< — Fun(A3, Cate,).

Next, one constructs a functor Fun(A3, Cat.,) — Ar(Cats,) that sends a span (C — D « D')
to the pullback C xp D' — C. To do so, let I C Fun((?, Cat,), where (% ~ Al x Al be the
full sub-oo-category spanned by the pullback squares. Then ) — Fun(A2, Cat,) is essentially
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surjective, since Cato, has pullbacks, and fully faithful by an easy application of Corollary 6.25
and Corollary 6.16. Hence it is an equivalence by Theorem 4.6. Choosing an inverse and
composing it with the projection Fun((J?, Cats,) — Fun(A! x {0}, Cats,) ~ Ar(Caty,) yields
the desired functor Fun(A%, Cato,) — Ar(Caty).

Putting everything together yields a functor An s, <~ — Ar(Caty), which, on objects, sends
(X — An~") to (X x,<e USE — X). By inspection, our functor factors through the non-full
sub-oo-category Ar5"(An) — Ar(Cato,) and we obtain a functor (pg,)*, as desired.

To show that (p5f,)* is an equivalence, we’ll once again verify that it is essentially surjective
and fully faithful. Essential surjectivity reduces to the assertion that every morphism a: X — Y
is equivalent to a left fibration in Ar(An). Using the dual of Lemma 6.23(b), this reduces to
checking that every final morphism X — X’ of animae is an equivalence. For cofinal morphisms,
this follows from X =~ |X| ~ colimgex # ~ colimyexs * ~ | X’| ~ X’ using Lemma 6.14. For
final morphisms, we can use the same argument to show that X°P — (X’)°P is an equivalence
and then X — X’ must be an equivalence too.

To show that p3l  is fully faithful, let (F: X — An<") and (G: Y — An<") be elements in
An /An<x and let p: Y — X and q: V — Y be the unstraightenings of F' and G, respectively.
For brevity, let us put

Hom(F, G) := Hompn , ... ((F: X — An<"),(G: Y — An*"))
Hom(p, q) = HomArEN(An)((p: U—X),(g:V—Y))

By Corollary 5.15, Hom(F,G) is the pullback Homcat (X,Y) Xuome,, _(x,an<s) {F}. By
Lemma 5.13 and Lemma 4.9, Hom(p, ¢) is a collection of path components of the pullback
Homcat, (U, V) XHomey, . ,y) HoMcat, (X,Y). By Theorem 3.18, Lemma 3.19, and the five
lemma (plus Remark 3.20), it’s enough to check that Hom(F,G) — Hom(p, ¢) induces an
equivalence on fibres over Homcyt (X,Y). So fix f: X — Y. If F # G o f, then both fibres
are empty by Theorem 5.4. If F' ~ G o f, then the fibre {f} Xnom,,__(x,v) Hom(F, G) is given
by {f} XHomea,, (x.v) (Homcat (X, Y) Xtome,, _ (x,an<r) {£'}), Which can be simplified to

{G o f} ><HomcatOo (X,An<F) {F} = HomcoreFun(X,An) (G o f, F)

using Theorem 2.24 and Lemma 7.3(b). Likewise, Hom(p, ¢) XHomc,,__(x,v) {f} is a collection of
path components in (Homcat., (U, V) XHomey,. ¢,y) HoMcate, (X, Y)) XHome,, (x,v) {f}- This
pullback can be simplified to

HomCatoo (ua V) ><Homcatoo u,y) {p © f} = HomCatoo/y (ua V) = HomLeft(X) (ua X Xy V) .

In the first step we use Corollary 5.15 and in the second step we use the dual of Lemma 6.23(c)
combined with the fact that Left(X) C Cat.,/x is a full sub-oo-category. Thus, the fibre
Hom(p, ¢) XHome,, (x,v) {f} is a collection of path components of Hompgx)(U, X xy V).
A quick unravelling shows that the relevant path components are precisely those morphisms
U — X Xy V that are equivalences. Since Left(X) ~ Fun(X, An) by Theorem 5.4(b), this agrees
with the collection of path components of Hompyy(x,an) (G © f, F)) spanned by the equivalences.
By Lemma 4.9, this is precisely Hom e pun(x,an) (G © f, ). This finishes the proof that (psh )*
is fully faithful. O

Proof sketch of Lemma 7.16. Choose a cardinal « in such a way that all A;, B;, Cj, D;, and
the colimits are essentially x-small in the sense of Definition 6.46. The natural transformation
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¢: B = D in Fun(J, An) can be viewed as a functor ¢: J — Ar(An). The assumption that
q is equifibred and our choice of k guarantee that ¢ factors through Arj’“‘(An). Applying the
equivalence of oo-categories ArS*(An) ~ An /An<+ from Lemma 7.18, we see that ¢ corresponds
to a functor F: J — Anja,<x. On objects, F' sends j € J to (Fj: Dj — An™") in An <«
such that (¢;: B; — Dj) is the unstraightening of Fj. By definition of the slice-co-category
Anjp,<~ we can view F' as a natural transformation n: D = const An<" in Fun(J, Cats),
hence it induces a functor F.: colim;er D; — An<". We claim:

(X) The unstraightening of Fuo is colimjc s B; — colimjec s Dj. In particular, we obtain the
following pullback square:

: . <K
colim B; —— Uy,
JjeJ

l _ prn'iv

colim D; foo , Ap<r

JjeJ
If we know (X), then we’re done. Indeed, our construction of F' above exhibits ¢: B = D as
a pullback of constpf : constUSf = const An<". Then p: A = C must be a pullback of
const p - as well, hence p is equifibred again. The same reasoning as above then shows that
colimje 7 Aj; — colim;e 7 C; must too be a pullback of p5fi : Usk, — An<". Hence the square
formed by the colimits must be a pullback as well.

To prove (X), note that B; ~ |B;| ~ colim(F}: D; — An<") follows from Lemma 6.14. So

Lemma 6.38(b) shows

C]Qéi}n B; ~ Cj()elgrl(colim(l*—'j-: Dj — An*")) ~ colim (FOO: c]c')el%n D; — An<“>
But the colimit on the right-hand side is the unstraightening of F., again by Lemma 6.14.
However, there’s a subtlety: To make this argument work, we have to show that the functor
B: J — An<" agrees with the functor (j — colim F;): J — An~" constructed in the proof of
Lemma 6.38(b); let’s temporarily denote this functor by B’. So far, we’ve only verified that the
values of B and B’ coincide!

To fix this, let B — J and D — J be the unstraightenings of the functors B: J — An<"
and D: J — An<". Let’s first recall the construction of B’: By the proof of Lemma 6.38(b),
we have a diagram

. Foo
D—%, |D|~ colgnDj —>5 An<*
JE L

that exhibits B’ as the left Kan extension of Fo o d: D — An<" along D — J. We know
from the dual of Lemma 6.23(c) how left Kan extensions for functors into An interact with
unstraightening. Namely, the unstraightening B’ — J of B’: J — An<" is given by factoring
the unstraightening of F, od: D — An<" into a final functor followed by a left fibration. In
particular, if we can show that B — D is the unstraightening of Fi,, od: D — An<", then we're
done, because B — 7 is already a left fibration and so we would be able to deduce B ~ B’.
To show that B — D is the desired unstraightening, recall that F': J — Anj y < is
equivalently given by a natural transformation 7: D = const An<" in Fun(J,An). So we
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obtain a morphism D — J x An<" of cocartesian fibrations over 7. Now consider the diagram

Bg)jxu<ﬁ u<n

univ univ

l ‘| l a lp;:;v

D— JxAn<F —— An<¥

The right square is a pullback for obvious reasons. To see that the left square is a pullback too,
observe that the natural transformation ¢: B = D is the pullback of n: D = const An<" along
const piti ¢ const UL = const An<"; this follows by construction of 7, unravelling the proof
of Lemma 7.18 and using that pullbacks in functor categories can be computed pointwise by
Lemma 6.12. Since unstraightening is an equivalence of co-categories, it preserves pullbacks, and
so the left square must be a pullback too.(7?) Tt follows that the outer rectangle in the diagram
above must be a pullback too. But then B — D is a pullback of the universal unstraightening
and thus B is the unstraightening of the bottom composition D — J x An<" — An<" by 7.17.
So it remains to identify that composition with Fy, o d: D — An<". This follows from a closer

investigation of the proof of Lemma 6.14. O

With Rezk’s equifibrancy condition from Lemma 7.16, we have obtained one of the two
ingredients in the proof of (X2). The other one is a general construction for simplicial objects.

7.19. Construction. — Let X: A°? — C be a simplicial object in an arbitrary oco-category
C. We picture X as

d*
dg 2
X ~ <X0§X1§X2 )

(for typographical reasons, we couldn’t label the degeneracy maps nor the inner face maps).
The décalage of X is another simplicial object déc(X): A°? — C given by “shifting” X, thus
“forgetting” Xy as well as all the face maps dfj and all the degeneracy maps sj. In pictures:

a0
déC(X) ~ <X1 E X2 E X3 ) .
d¥ o

More precisely, there’s a functor o: A — A given by o([n]) := [n + 1] on objects. A morphism
a: [m] — [n] is sent to o(a): [m+1] — [n+1] given by o(a)(0) := 0 and o(a) (i) == a(i—1)+1
for all 1 <i < n+ 1. Then déc(X) is simply the composition X o g°P: A°? — C. The décalage

sits inside a diagram
dg
const Xg ——= déc(X) —— X

last
conm H’ as

const Xg

The transformation const X = déc(X) is induced by the unique transformation o = const [0]
in Fun(A, A). This transformation has a left inverse dj,s: const [0] = o given object-wise by

(7-5)We’ve used similar arguments in the proofs of Lemmas 5.24 and 5.25, except back then we couldn’t talk
about pullbacks in co-categories yet

140



§7.2. E{-MONOIDS AND [E{-GROUPS

the maps [0] — o([n]) = [n + 1] that send 0 — 0. These maps can be written as compositions
dpi10dpo---ody: [0] = [1] = -+ — [n] — [n + 1], whence the notation dj,s. The natural
transformation dj,s induces a transformation dj : déc(X) = const Xy. Finally, the maps
do: [n] = [n+1] = o([n]) induce a natural transformation do: ida = o, which in turn induces

a transformation dj: déc(X) = X.

7.20. Lemma. — IfC is any co-category and X : A°P? — C is a simplicial object in C, then
the diagram from Construction 7.19 induces equivalences

colim déc(X), — colim Xy~ Xj.
[n]eAcp [n]eAop

In particular, these colimits always exist in C.

Proof sketch. The equivalence colim,jcaor Xo ~ Xo follows from Lemma 6.57 and the fact
that |A°P| ~ %, since A has a terminal object, namely [0]. To show colim,jcaer déc(X)n ~ Xo,
note that o: A — A can be identified with the inclusion A>; — A of the (non-full) subcategory
spanned by [n+1] for all n > 0 and all morphisms a: [m+1] — [n+1] satisfying a={0} = {0}.
Furthermore, let Ag — A be the (non-full) subcategory spanned by all objects but only those
morphisms that send 0 — 0.

Via this reinterpretation, colimp,jeaor déc(X), ~ colimy,c A% Xp. On the other hand, it’s
straightforward to check that [0] € Ag is an initial object; therefore, colimy,jepor Xn = Xo. So
it would be enough to show that A%} — AgP is cofinal, or equivalently, that Ay — Ay is final.
By the dual of Theorem 6.18(c), we must show that |[A>1 xa, Ag/pn)| = 0 for all n > 0. The
case n = 0 is clear: It’s straightforward to see that [0] € Ay is also a terminal object, so that
Agjo] > Ao and thus [Asy xay Agjjoy| = [As1] > #, since [1] € Az is terminal. Now let n > 1
and consider the full subcategory X C A>1 xa, Ag/[n] spanned by those a: [m + 1] — [n]
such that o maps a~'{1,...,n} bijectively to {1,...,n}. It’s straightforward to check that this
inclusion has a left adjoint A>1 xa,Ag/pp) — & {76) Since adjunctions induce equivalences after
|-, it’s enough to show |X| ~ %. But now it’s straightforward to check that (idp,: [n] — [n])
is an inital object of X. O

Now we can finally finish the proof of Theorem 7.10(b).

Proof sketch of Theorem 7.10(b), claim (Xy). Let G € Grp(An) be an E;-group. Using the
Segal condition from Definition 7.6(a), one verifies that the following is a the pullback square
in Fun(A°P, An):
const G —= déc(G)
ﬂ - ﬂdg‘
const ¥ —— @
Note that G being an E;-group as opposed to merely an E;-monoid implies that djj: déc(G) = G

from Construction 7.19 is equifibred in the sense of Lemma 7.16. Indeed, being an E;-group
means that (prj,p): G1 x Gi — G x G is an equivalence, so that all occurences of the

("6)The left adjoint can be constructed as follows: Let (a: [m + 1] — [n]) € As1 Xa, Ag/fn]. Then there exists
some 0 < k < m such that o= *{0} = {0,1,...,k+ 1}. Let @: [k +n + 1] — [n] be defined by @(i) = 0 for
1=0,1,...,k+1land @(i) =¢— (k+1) for i > k + 2. Then @ € X. Furthermore, there’s a canonical morphism
Ua: 0 — @ in Azy Xag Agjn, given by the identity on {0,1,...,k + 1} and ua (i) = a(i) + k+ 1 for i > k + 2.
Then o — @ is the desired left adjoint and u. is the unit of the adjunction.
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multiplication map p in 7.7 can be replaced by simple projections, and then equifibrancy is
straightforward to check. Lemma 7.16 now implies that the central square of the diagram

G1 —— colim G; —— colim déc(G), —— Gy

h [n]eAor [n]eAop
Vi l 2 l I/ J
# ——— colim ¥ ——— colim G, = BG
[n]eAor [n]eAor

is a pullback. The equivalences on the left follows from Lemma 6.57. The top right equivalence
is due to Lemma 7.20. The bottom right equivalence is the definition of BG. Since Gy ~ *,
this diagram shows G1 ~ QBG, which is precisely what we claimed in (Xs). O

Here are some immediate consequences of Theorem 7.10(b):

7.21. Corollary (“OB is group completion”). — The inclusion Grp(An) C Mon(An) of
E;-groups into Ej-monoids has a left adjoint, given by QB: Mon(An) — Grp(An). O

7.22. Corollary (“Q¥X is the free Ej-group on X7”). — The functor ev[;;: Grp(An) — An
sending an Ei-group to its underlying anima has a left adjoint, sending an anima X to QX X,
where Xy = X U=, regarded as a pointed anima.

Proof. Tt’s straightforward to check (for example, using Corollary 6.17 and Corollary 5.15) that
(=)+ = (=) U=: An — An,/ is a left adjoint to the forgetful functor An,, — An. Combining
this observation with Lemma 7.3 and Theorem 7.10(b) yields a diagram of adjunctions

=)+

2
An —— An,, %’ (Any/)>1
Qn(=)y M BHQ

e Grp(An)

which shows that Q¥(—): An 2 Grp(An) : ev[;) must be an adjunction too. O
Another immediate consequence of Theorem 7.10(b) is the Seifert—van Kampen theorem.

7.23. Theorem (Seifert-van Kampen). — The functor m1: (An,/)>1 — Grp preserves
pushouts. That is, the fundamental group of a pushout of pointed connected animae is given by
the pushout of fundamental groups, taken in the category Grp of groups.

Proof. Let (X,z) be a pointed anima. By Lemma 7.3, we have 7 (X,z) = mo(QX). By
Theorem 7.10(b), the functor Q: (An,/)>1 — Grp(An) is an equivalence of co-categories, so it
preserves pushouts. The functor mg: An — Set is left adjoint to the inclusion i: Set — An given
by regarding sets as discrete animae. By Corollary 6.6, this implies that there is an adjunction
(m0)%: Fun(A°P, An) = Fun(A°P, Set) :i,. Note that w9 and ¢ both preserve products. Hence
(7o)« and iy preserve the conditions from Definition 7.6 and so the adjunction above restricts
to an adjunction my: Grp(An) = Grp(Set) :4. In particular, mg: Grp(An) — Grp(Set) ~ Grp
is a left adjoint and so it preserves pushouts. It follows that m; = my o {2 preserves pushouts
too, as claimed. O
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§7.3. E,-monoids and E,-groups

Our next goal is to study the analogue of commutative monoids and commutative groups in
animae. The definition is quite similar to Definition 7.6, except that we have to replace A°P by
a category that encodes commutativity as well.

7.24. Definition. — Let Fin be the ordinary category of finite sets (n) = {1,...,n} for
n > 0 and partially defined (!) maps. Let C be an oco-category with finite products.

(a) An Es-monoid in C is a functor M : Fin — C satisfying My ~ = as well as the Segal
condition: The Segal maps e;: (n) — (1), where e; is everywhere undefined except at i,
induce an equivalence
We call M the underlying object of M; we’ll often don’t distinguish between M and M;.
Let CMon(C) C Fun(Fin,C) denote the full sub-oo-category spanned by the E,.-monoids.

(b) An Eo-monoid M in C is called an E-group if its underlying E;-monoid in the sense
of Construction 7.26 below is an E;-group. We let CGrp(C) € CMon(C) denote the full
sub-oco-category spanned by E..-groups.

7.25. Construction. — Let’s unravel how Definition 7.24(a) encodes a commutative multi-
plication on M;. The unique everywhere defined map fa2: (2) — (1) induces a morphism

M:M1XM1:M2—>M1.

This is our multiplication. Now let’s see why it is commutative: Let flip: (2) — (2) be the
everywhere defined map that sends 1 — 2 and 2 +— 1. Then f5 o flip = f2 and so the following

diagram commutes in C:
\[,Ll

flip "/ M,
My x My /'U“‘

Here flip: My x My — My — M is the morphism that flips the two factors; under the Segal
isomorphism M; x My ~ Mbs, this really corresponds to flip: My — Ms, so the notational
overload checks out.

M1XM1

7.26. Construction. — Let us construct an underlying E;-monoid to every E,,-monoid
M. To this end, we’ll construct a functor Cut: A°® — Fin. On objects, Cut is given by
Cut([n]) == (n). A map a: [m] — [n] in A, which corresponds to a morphism [n] — [m] in
AP is sent to Cut(a): (n) — (m) given by the formula

Cut(a)() = {j if a(j—1) <i<a(j)

undefined else
A more conceptual way of saying this is that Cut sends [n] to its set of Dedekind cuts, that is,
to the set of all partitions of [n] into two non-empty intervals (of which there are exactly n, so
Cut([n]) = (n)). The map Cut(a): Cut([n]) — Cut([m]) sends such a partition of [n] to its
preimage under «, which is again a partition of [m] into intervals. However, it may happen
that one of the intervals is empty; if this is the case, we define the value of Cut(a) as undefined.

143



§7. TOWARDS SPECTRA

Now Cut induces a precomposition functor Cut*: Fun(Fin,C) — Fun(A°P,C). It’s straight-
forward to check that Cut(e;) = e;, that is, Cut sends the Segal maps in A°P to the Segal maps
in Fin. Hence Cut* preserves the Segal condition from and therefore restricts to a functor

Cut*: CMon(C) — Mon(C).

For an E-monoid M, we call Cut®(M) the underlying Eq-monoid of M. As with the underlying
object, we often abuse notation and identify M with its underlying [;-monoid.

Our eventual goal in this subsection is to prove an analogue of Theorem 7.10(b) for Eo-
monoids/groups. This needs some preparations.

7.27. Definition. — Let C be an oco-category with finite coproducts and finite products (in
particular, it has both an initial and a terminal object).

(a) C is called semi-additive if the initial object, which we denote 0 € C, is also terminal, and
for all x,y € C the natural map

idz 0 crly — x X
0 id,) *Y Y

is an equivalence. Here 0: © — 0 — y denotes the unique (up to contractible choice)
morphism in Home(z,y) factoring through 0. If C is semi-additive, we usually write
zUy~z@y>~xXxy.

(b) C is called additive if it is semi-additive and additionally for all x € C the shearing
morphism is an equivalence:

id, idg ) ~
<0 idm>.x6—)x—>x€—)x.

7.28. Lemma (“Every object in an additive oo-category is canonically an Es-group”). — If
C is a semi-additive co-category, then CMon(C) ~ Mon(C) ~ C. If C is an additive co-category,
then also CGrp(C) ~ Grp(C) ~C.

Proof sketch. Let Fing; ~ {(0) _ ~ (1)} denotes the full subcategory of Fin spanned by (0) and
(1) and let Fin2; C Fing; denote the non-full subcategory given by {(0) < (1)}. The proof
rests upon the following two crucial observations:

(Xy1) A functor F': Fin — C with F({0)) ~ 0 satisfies the Segal condition from Definition 7.24(a)
if and only if F' is the left Kan extension of its own restriction along i: Fing; — Fin.

(X) If Fun, C Fun denotes the full sub-co-category spanned by those functors that send (0) — 0,
then restriction along j: Fing; — Fing and evaluation at (1) induces equivalences

Fun, (Fingy, C) — Fun, (Fin2,,C) — C.

We begin with (X2). Since 0 € C is terminal, it’s clear that ev): Fun, (Fing,,C) — C is
essentially surjective. By an easy application of Corollary 6.25, using that FinZ is an ordinary
category and so we understand its twisted arrow category TwAr(Fing), ev(yy is also fully
faithful. Alternatively one could also use Lemma 5.13 (which amounts to the same). Hence
ev(y) is an equivalence by Theorem 4.6.
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To show that j*: Fun,(Fing,C) — Fun, (Fin%l, C) is an equivalence, we consider left Kan
extension along j. To this end, let F': Fin2; — C be a functor satisfying F'((0)) ~ 0. We unravel
the Kan extension formula from Lemma 6.27: We have Fing; Xpin_, (Fing1),y ~ (Fingy) (o),
and so the colimit describing Lan; F'((0)) exists and is given by evaluating at the terminal object
(id¢oy: (0) — (0)) € (Fingq) /(). Hence Lan; F((0)) ~ F({0)) ~ 0. In a similar way, we can
analyse FinZ; Xpin_, (Fingi),(1y- This category is a disjoint union 7o L 71 of two components:
71 is simply {id(;y: (1) — (1)}. On the other hand, 7y is a category with two objects, namely
the nowhere defined maps ((1) — (1)) and ((0) — (1)), as well as precisely one non-identity
morphism ((1) — (1)) — ((0) — (1)). In particular, ((0) — (1)) is terminal in 7y. Hence the
colimit describing Lan; F'((1)) exists and is given by F((1)) ® F((0)) ~ F((1)) ®0 ~ F((1)).

In summary, Lemma 6.27 shows that Lan; F' exists and satisfies Lan; F'((0)) ~ 0 and so we
get an adjunction

Lan;: Fun,(Fin,,C) = Fun,(Fing,C) :5*.
It follows from our calculations above that for all functors G € Fun,(Fing;,C) the counit
cg: Lanj(G o j) = G is a pointwise equivalence and thus an equivalence by Theorem 4.5. By
Lemma 6.33(a), this implies that Lan; is fully faithful, even though j itself is not. Furthermore,
since j is essentially surjective, it’s clear that j* must be conservative. Hence Lan; and j* are
inverse equivalences by Lemma 6.33(b) and we’ve finished the proof of (X).

To prove (X)), first observe that by (Xs) we can replace i by 70 j. Then we use Lemma 6.27
once again to compute the values of Lan;,;(F o4 o j). To this end, one analyses the category
FinZ; Xpj, Fin /(ny: This category is a disjoint union 7oU7;U- - -7y, where 7 is as above and 7;
is given by {s;: (1) — (n)}, where s;(1) := 7. Hence the colimit describing Lan;.;(F oi o j)((n))
evaluates to F((0)) @ F((1)) @ ---® F((1)) ~ 0® F((1))®" ~ F((1))®". This shows that F'
satisfies the Segal condition if and only if cp: Lan,ej(F oioj) = F is an equivalence of functors
and thus proves (X).

To finish the proof, observe that since i: Fing; — Fin is fully faithful, the left Kan extension
functor Lan;: Fun(Fing,C) — Fun(Fin,C) must be fully faithful too by Corollary 6.29. So

C ~ Fun,(Fing,C) — Fun(Fing, C) Lani, Fun(Fin, C)

is fully faithful, and its essential image is CMon(C) by (X;). It follows that CMon(C) ~ C.
Replacing Fin by A°P everywhere, the same argument shows Mon(C) ~ C. Finally, if C
is additive, then Definition 7.27(b) shows that the E,-monoid in C associated to = € C is
automatically an E.-group, so that CGrp(C) ~ CMon(C) and Grp(C) ~ Mon(C). O

7.29. Lemma. — If C is any oco-category with finite products, then CMon(C) is semi-additive
and CGrp(C) is an additive co-category.
For the proof we need a criterion to decide when an oco-category is semi-additive.

7.30. Lemma. — Let C be an oco-category with finite products. Then C is semi-additive if the
following two conditions are satisfied:

(a) The terminal object = € C is also initial.

(b) Let A: C — C be the functor that sends x — x x x. Then there exists a natural transfor-
mation u: A = ide such that both compositions

idy x0 M
r >~ X% — T XT —2X

Oxidy Hax
I >X% X T —— T XT—X
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are homotopic to id, for all x € C, and the following diagram commutes for all x,y € C:

id, xfli id
(% 2) x (y X y) —— (2 x y) x (z x y)

Va
Ha X fby Haxy

T Xy

All conditions on p in (b) are pointwise; so for example, we don’t need to assume that the
diagram above commutes functorially in x and y. |

The proof of Lemma 7.30 is rather straightforward: One proves that the morphisms
r~xXx*x—xxyandy~=x Xy — Xy exhibit x X y as a coproduct of x and y. However,
the details become rather tedious, and so we skip the proof. You can find a full argument in
[F-KTh, Lemma II.20] and another variant in [L-HA, Proposition 2.4.3.19].

Proof sketch of Lemma 7.29. We use the criterion from Lemma 7.30 to check that CMon(C)
is semi-additive. First observe that if * € C is a terminal object, then const * is terminal in
CMon(C) (even in Fun(Fin,C) by Lemma 6.12). But it is also initial. Indeed, if M: Fin — C
is any functor, then Hompyy(pin ¢y (const #, M) ~ Home (+, lim ) epin Mp). However, (0) € Fin
is an initial object and so lim,)cpin My, ~ Mo; in particular, the limit always exists. Now if
M € CMon(C), then My ~ =. Thus

HomCMon(C) (COUSt *, M) ~ HOch(*7 *) ~ ok

as desired. So Lemma 7.30(a) is satisfied.("7)

To construct p, consider the functor x: Fin x Fin — Fin sending a pair ((m), (n))
to the product (m) x (n) = (mn).(®) Precomposition with x then induces a functor
Fun(Fin,C) — Fun(Fin x Fin,C) ~ Fun(Fin, Fun(Fin, C)). It’s straightforward to check that
the Segal condition is preserved, and so we obtain a functor

Double: CMon(C) — CMon(CMon(C)) .

Unravelling the definitions, we find that

Double(—);: CMon(C) — CMon(CMon(C)) o, CMon(C)

ev<2)

Double(—)2: CMon(C) — CMon(CMon(C)) —— CMon(C)

are equivalent to idoyon(c)y and A, respectively. The everywhere defined map f2: (2) — (1)
from Construction 7.25 induces a natural transformation evg) = ev(yy, which yields a natural
transformation y: A = idcyton(ey in Fun(CMon(C), CMon(C)), as desired. It’s straightforward
to check that p satisfies the conditions from Lemma 7.30(b). This finishes the proof that
CMon(C) is semi-additive.

Since CGrp(C) € CMon(C) is closed under products, it follows that CGrp(C) must be semi-
additive too. But then every G € CGrp(C) also satisfies the condition from Definition 7.27(b),
by definition of G being an E,-group. Hence CGrp(C) is additive. O

(7" The same argument works for Mon(C), since [0] € AP is initial too. So Mon(C) also satisfies Lemma 7.30(a).
("8 Here we crucially use that we’re working with Fin; for A°, such a functor wouldn’t exist. Thus, Mon(C)
doesn’t satisfy Lemma 7.30(b).
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Now we’re ready to approach the desired analogue of Theorem 7.10(b).

7.31. Construction. — By Corollary 6.6, the adjunction B: Mon(An) = An,, :Q) from
Theorem 7.10(b) induces an adjunction By : Fun(Fin, Mon(An)) 2 Fun(Fin, An,/) : Q.. We
claim that this restricts to another adjunction

B: CMon(Mon(An)) = CMon(An, /) :Q.

To see this, we must show that the Segal condition is preserved under B, and .. This in
turn reduces to checking that B: Mon(An) — An,, and Q: An,, — Mon(An) preserve finite
products. For §2, this is obvious, since right adjoints preserve all limits. For B, this follows from
Lemma 7.32 below (plus Lemma 6.56(a)).

Now the currying equivalence Fun(Fin, Fun(A°P, An)) ~ Fun(A°P, Fun(Fin, An)) restricts to
an equivalence CMon(Mon(An)) ~ Mon(CMon(An)) by a straightforward check. Furthermore,
Lemmas 7.28 and 7.29 show Mon(CMon(An)) ~ CMon(An). In a similar way, the equivalence
Fun(Fin, An, /) ~ Fun(Fin, An)cone «, restricts to CMon(An, /) ~ CMon(An)cons /- But
const * € CMon(An) is an initial object, as we’ve seen in the proof of Lemma 7.29. Thus
CMon(An)const ) =~ CMon(An). Putting everything together, we can rewrite the adjunction
above as

B: CMon(An) — CMon(An) : Q2.
7.32. Lemma. — The functor colimpep: Fun(A°P, An) — An preserves finite products.

Proof sketch. The crucial step is to show that the diagonal A°? — A°P x A°P is cofinal. This
is another application of Theorem 6.18(c), of course, but it’s not completely obvious and we
leave it as a not quite easy exercise. For a full proof, consult [L-Ker, Tag 02QP] or [F-KTh,
Exercise 11.18a].

It will be enough to show that colimpaer preserves empty products and binary products.
First note that colimp,jeaop * = * follows from Lemma 6.57, since |A°P| ~ « (which follows, for
example, from the fact that [0] € A°P is an initial object). This shows that colimpep preserves
empty products. For binary products, let X,Y : A°® — An be functors. Since A°P — A°P x A°P
is cofinal, we can rewrite colimp,jcaor (X X Y5) as

colim (X x Yy) >~ colim (Xm X colim Yn> ~ < colim Xm> X <colim Yn> .
([m],[n])eA°P x AcP [m]eAor [n]eAer [m]eAcr [n]eAcp

The first equivalence follows from Lemma 6.38 together with the fact that X,, x —: An — An
commutes with arbitrary colimits, because it is a left adjoint by Example 6.3(b). Applying the
same argument to — X colimpop Y;, gives the third equivalence. O

7.33. Theorem. — The adjunctions from Construction 7.31 and Theorem 7.10(b) fit into a
commutative diagram

CMon(An) % CMon(An)
(%) Cut*l " leVm

Mon(An)

(note that eviy: CMon(An) — An factors canonically over An,, — An since we have
CMon(An) ~ CMon(An,) by Construction 7.31). Furthermore:
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(a) Both B: CMon(An) — CMon(An) and ©2: CMon(An) — CMon(An) factor through the
full sub-0o-category CGrp(An) C CMon(An) and they induce inverse equivalences

B: CGrp(An) = CGrp(An)s :Q.

Here CGrp(An)>1 C CGrp(An) is the full sub-oo-category spanned by those Eoo-groups G
for which m(G) = =.

(b) The inclusion CGrp(An) C CMon(An) has a left adjoint, namely QB. So QB is not only
the “group completion” for Ei-monoids (see Corollary 7.21), but for Eo-monoids too.

Proof sketch. Commutativity of () is a straightforward unravelling of definitions. Let’s proceed
with (a). Let M € CMon(An). To show that B factors through CGrp(An) € CMon(An),
simply observe mp(BM) = x. This ordinary monoid is a group and so the underlying E;-
monoid of BM must be an E;-group by Lemma 7.9(d). To show that € factors through
CGrp(An) € CMon(An), we must show that the underlying Ei-monoid Cut*(QM) of QM
is an E;-group. But commutativity of (x) shows Cut*(BM) ~ QM; Cut*(QM) ~ QM; and
Q: An,;, — Mon(An) factors through Grp(An) € Mon(An), as we've seen in the proof of
Theorem 7.10(b).

It remains to show that B and €2 induce inverse equivalences CGrp(An) ~ CGrp(An)s;.
We've already seen that the functor B: CGrp(An) — CMon(An) factors through the inclusion
CGrp(An)>1 € CMon(An), so at least we get an adjunction

B: CGrp(An) =— CGrp(An)>; : Q2.

We use the criterion from Lemma 6.33(b). Observe that equivalences of E.-monoids can be
checked on underlying animae by the same argument as in Lemma 7.8. Thus, the questions
whether the unit u: idcgrpan) = 2B is an equivalence and whether (2 is conservative can
be reduced to the analogous questions for the adjunction B: Grp(An) = (An,/)>1 :Q. But
Theorem 7.10(b) says that this adjunction is a pair of inverse equivalences. This finishes the
proof of (a). Part (b) is a formal consequence of (a). O

§7.4. Spectra and stable co-categories

We’ve seen in Theorem 7.10(b) that Eq-groups in An are essentially the same as loop animae.
Furthermore, we’ve seen in Corollary 7.22 that QXX is the free E;-group on an anima X. Of
course, these observations should have analogues for E,.-groups, but it’s not immediately clear
how such analogues would look like, nor how they would follow from Theorem 7.33. In this
subsection, we’ll introduce the oco-category of spectra, which will eventually lead us to answers
for both questions (Remark 7.41 and Corollary 7.58), but also to many more applications.

7.34. Construction. — We’ve seen in Theorem 7.33(a) that Q2B: CGrp(An) — CGrp(An)
is homotopic to the identity. Therefore, the following diagram commutes in Caty, (or really, in
Catoo, since we're dealing with large co-categories, but we’ll ignore this issue here):

-+ == CGrp(An) CGrp(An)
JBOB 1/ lB 1/ H
1 N CGrp(An) £, CGrp(An) £, CGrp(An)

CGrp(An)
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This diagram yields a functor(7-9)

B*: CGrp(An) — lim ( LR CGrp(An) £, CGrp(An) £, CGrp(An)) .

Observe that for all n > 0, B and € induce inverse equivalences CGrp(An)>n+1 ~ CGrp(An)sy,
where CGrp(An)>, C CGrp(An) is the full sub-oco-category spanned by those Eo-groups G that
satisfy m;(G) = 0 for all 0 < i < n. Indeed, the case n = 0 follows from Theorem 7.33(a). Since
(2 “shifts homotopy groups down by one” (see Lemma 7.3(a)), its inverse B must “shift homotopy
groups up by one”. This implies that B: CGrp(An) — CGrp(An)>; must map CGrp(An)s,, into
CGrp(An)>p41; similarly, @ must map CGrp(An)>p+1 into CGrp(An)=,. Hence the equivalence
from Theorem 7.33(a) must restrict to an equivalence CGrp(An)s,4+1 ~ CGrp(An)s, for all
n > 0, as claimed.

Combining this observation with Lemma 6.76Lemma 6.76 shows that B> is fully faithful,
with essential image given by

B*: CGrp(An) — lim(' LR CGrp(An)>2 £, CGrp(An)s; £, CGrp(An)) .

Let us now turn this construction into a definition.

7.35. Definition. — Let C be an oo-category with finite limits (in the sense of Defini-
tion 6.46(c)); in particular, C has a terminal object * € C. The oo-category of spectra in C is
defined as the following limit in Cate:

Sp(C) = lim(--- 2, e, e, &C*/>.

Here Q¢: Cyy — Cy/ is defined by the same pullback diagram as in Definition 7.1. In the case
C ~ An, we write Sp := Sp(An) for brevity, and we call Sp simply the co-category of spectra.

7.36. Lemma. — Let C be an oo-category with finite limits. Then evjy: CGrp(C) — C induces
an equivalence Sp(CGrp(C)) ~ Sp(C). In particular, the first limit from Construction 7.34
agrees with Sp.

Proof sketch. Let’s address the “in particular” first. Since 0 := const * € CGrp(An) is both
initial and terminal by Lemma 7.29, we have CGrp(An) ~ CGrp(An)y,. Hence the first limit
from Construction 7.34 agrees with Sp(CGrp)(An) and thus with Sp, as claimed.

To show Sp(CGrp(C)) ~ Sp(C) in general, first observe that Fun(Fin, —): Cato, — Cateo
commutes with limits, since it is a right adjoint by Example 6.3(b). Hence we obtain

("9 Here we would like to point out a subtlety that only the extraordinarily careful reader will have noticed:
Let N denote the partially ordered set (--- — 2 — 1 — 0). Then to construct a functor N — D into an
arbitrary oco-category D, it’s enough to specify objects y, € D together with morphisms yn+1 — yn for all n € N.
This is because the inclusion sk; N(N) — N(N) of the 1-skeleton of the nerve of N is inner anodyne, so that
F(N(N), D) — F(ski N(N), D) is a trivial fibration (and thus an equivalence of quasi-categories) by Corollary 3.10.
In the situation above, we implicitly used this observation in the case D ~ Ar(Cats) to turn the commutative
diagram, which a priori only encodes a sequence of morphisms

(Bo(n+1) . CGrp(AH) N C*/) — (BOTL: CGrp(An) — C*/)

in Ar(Cat ), into a functor N — Ar(Cat ), which by currying encodes a natural transformation in Fun(N, Cate )
and thus a functor B by the universal property of limits. Also note that this subtle observation was implicitly
used to even write down the limit above: We can’t just take the limit of a sequence of morphisms, we must turn
that sequence into a functor N — Cate!
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Fun(Fin,C,/) ~ Fun(Fin,C)const, and Fun(Fin, Sp(C)) ~ Sp(Fun(Fin,C)). It’s straightfor-
ward to check that the latter equivalence restricts to Sp(CGrp(C)) ~ CGrp(Sp(C)). Thus, by
Lemma 7.28, it’s enough to show that Sp(C) is additive. We’ll use Lemma 7.30. Note that
* € C,/ is both initial and terminal. By Lemma 6.76(a), it follows that 0 := (..., *,,%) € Sp(C)
is initial and terminal too. So the condition from Lemma 7.30(a) is satisfied. To construct a
natural transformation p: A = idg,(c) as in Lemma 7.30(b), we observe:

(K1) Q¢ induces an equivalence Q¢ : Sp(C) — Sp(C).

(Xy) Q¢ can be factored into Q¢ : Sp(C) — Grp(Sp(C)) i, Sp(C). More generally, the same
is true if Sp(C) is replaced by any oo-category D with finite limits, whose terminal object
* € D is also initial.

Observation (X;) is clear from Definition 7.35. Observation (Xs) can be shown by hand.
Alternatively, first observe (X3) is true in the case D ~ An,, by Theorem 7.10(b), using
that Grp(An,,) ~ Grp(An),, ~ Grp(An) since * € Grp(An) is both initial and terminal
by the arguments from the proof of Lemma 7.29. The general case can be reduced to this
special case using the Yoneda embedding Jp: D — Fun(D°P, An), which preserves all limits
by Corollary 6.17 and thus factors through Fun(DP, An)eopnst s/ =~ Fun(DP, An, /). A full
argument can be found in [F-KTh, Remark™ I1.23a].

Now (X;) and () imply that every X € Sp(C) can be written as X ~ Q¢(Q:'(X)),
and so X can be functorially upgraded to an E;-group X € Grp(Sp(C)). We then define
p: X x X — X to be the multiplication on X. All conditions from Lemma 7.30(a) are easily
verified. O

7.37. Construction. — We regard N and Z as partially ordered sets and N C Z as the
inclusion (- —-2—-1—-0C(-~--—-2—-1—-0—(-1) - (=2) - ---). Then N - Z is a
final functor of oo-categories. Indeed, this is immediate from the dual of Theorem 6.18(¢), or
from the dual of Example 6.20(a). Hence we can rewrite Sp(C) as

Sp(C)zlim('--&c*/&c*/&c*/&)...).

For all n € Z, we let Q2°7": Sp(C) — C,, denote the projection to the n™ component of the

limit. This notation is chosen in such a way that Q¢ (2" "X) ~ ngf("fl)X , as one would
expect. In the case C ~ An, we drop the index and just write Q7"

In the case C ~ An, we define 7, (X) = m(Q°7"X), the n* homotopy group of the spectrum
X. Since Q%X ~ Q{(Q°+"~1X) and Q shifts homotopy groups down by Lemma 7.3(a),
we see mp(X) = m;(Q°T" X)) for all i > 0 (we don’t have to specify a base point since
Q>+ X ¢ An, / by construction). In particular, choosing 7 > 2 and using Lemma 3.17(b), we
see that m,(X) is an abelian group for all n € Z.

A spectrum X is called connective if 7, (X) = 0 for all n < 0, and coconnective if 7, (X) =0
for all n > 0. It’s customary to denote by Sp-, C Sp and Spcy C Sp the full sub-oco-categories
spanned by the connective and the coconnective spectra, respectively.

7.38. Lemma. — Let C be an co-category with finite limits. Then Sp(C) has all finite limits
and Q""" Sp(C) — Cy/ preserves all finite limits for all n € Z. Furthermore, in the special
case C ~ An, the following is true:

(a) The oo-category Sp has all small limits and colimits. For all n € Z, the functors
Q°7": Sp — Any, commute with all limits and with filtered colimits.
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(b) For alln € Z, the functors m,: Sp — Ab commute with all products (in particular, with
finite products and thus with finite coproducts too) and with filtered colimits.

(¢) A morphism f: X — Y of spectra is an equivalence if and only if it induces isomorphisms
Tn(X) Z mp(Y) for all n € Z. Furthermore, if X —Y — Z is a fibre sequence in Sp (in
the sense of Definition 6.39), then there is a long exact sequence of abelian groups

+— T41(Z2) 5 (X)) — 1Y) — T (Z) T Ty (X) — -

Proof. The first assertion is an immediate consequence of Lemma 6.76(b). The same argument
also proves that Sp has all limits and that Q°>°~": Sp — An,, commutes with limits. To prove
the existence of colimits in Sp, it’s enough to show that pushouts, finite coproducts, and filtered
colimits exist, because infinite coproducts can be written as filtered colimits of finite coproducts
(see claim () in the proof of Lemma 6.62). Since : An,, — An,, preserves filtered colimits
by Theorem 6.54, we can apply Lemma 6.76(b) again to deduce that Sp has all filtered colimits
and that Q2°°7": Sp — An,, commutes with filtered colimits. The existence of finite coproducts
follows from the fact that Sp is additive, as observed in Lemma 7.36. Finally, pushouts will be
constructed in Lemma 7.43 below. This finishes the proof of (a).

Part (b) follows immediately from (a) and the fact that mp: An — Set preserves all products
and filtered colimits by Lemma 6.58 (plus the fact that Ab — Set is conservative and preserves
all products and filtered colimits).

The long exact sequence from (c¢) follows immediately from Lemma 3.19 and the fact that
QX — Q7Y — Q7" 7 is a fibre sequence in An,, for all n € Z by (a). It’s clear that
any equivalence f: X — Y induces isomorphisms 7, (X) = m,(Y) for all n € Z. The converse
follows essentially from Theorem 3.18; the only non-obvious point is that Theorem 3.18 requires
isomorphisms on homotopy groups for all basepoints, whereas m,(X) = m;(Q>°+"~1X) only
uses the preferred base point of Q1" X € An, /- However, Q>°tn—i X ypgrades canonically
to an E-group in An by Lemma 7.36. In an E,,-group, all path components are homotopy
equivalent, and so it doesn’t matter which basepoint we use. ]

7.39. Remark. — Using the formalism from §6.10, we can give a slick proof of Lemma 7.38(a):
Suppose C is a presentable oo-category. The loop functor Q¢: C,; — Cy/ admits a left adjoint
¥¢: Cyy — Cyy given by the same pushout diagram as in Definition 7.1. Thus Q¢ is a functor
in Pr®. We know from Lemma 6.75 that Pr® — @coo preserves limits, and so the limit
defining Sp(C) can also be viewed as a limit in Pr®.(719) This immediately shows that Sp(C) is
presentable, so in particular, it has all colimits. If C,, is Ro-compactly generated (which is true
for C ~ An, as the pointed 0-dimensional sphere (S°, ) is a compact generator of An, /; this is
clear from Lemma 6.62(c)), the limit defining Sp(C) can also be interpreted as a limit in Pr&o,
because Prg‘0 — Pr® also preserves all limits by the dual of Corollary 6.81(b). This shows that
the projections Q2°": Sp(C) — C,, preserve filtered colimits.

We can take these considerations one step further: Recall that there’s an equivalence of
oco-categories PrY ~ (PrR)°P given by extracting adjoints. Thus, Sp(C) can also be described as
a colimit in Pr®, namely

Sp ~ colim(C*/ ¢, e, 26 )

(719)Since we can construct Pr? in ZFC, see 6.79, this also provides a way to construct Sp(C) without enlarging
our universe and talking about Catw.
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Thus, Sp(C) is the terminal co-category over C,, such that (¢ becomes invertible, but it’s also
the initial presentable oo-category under C,, such that ¥¢ becomes invertible. And we get
for free that Q°: Sp(C) — C,, admits a left adjoint ¥&°: C,,; — Sp(C). In Lemma 7.55 and
Corollary 7.57, we’ll give an explicit construction of X3° that works in greater generality (in
particular, not only for presentable C), but it’s nice to see a first instance where Lurie’s magical
oo-category Prl* becomes really useful.

7.40. Corollary (“Es-groups are connective spectra”). — The functor B> from Construc-
tion 7.34 fits into an adjunction

B*: CGrp(An) — Sp : Q.

Furthermore, B> is fully faithful and its essential image is the full sub-oo-category Spy C Sp
of connective spectra.

Proof. This follows immediately from Construction 7.34 together with Lemma 7.36 and Con-
struction 7.37. O

7.41. Remark. — Corollary 7.40 implies that an anima Y can be equipped with an E,.-group
structure if and only if Y can be written as Q2°°X for some spectrum X. Equivalently, Y must
admit a compatible sequence (..., Ys,Y1,Yy) of deloopings, satisfying Yy ~ Y and QY11 ~ Y,
for all n > 0. This can be regarded as an analogue of Theorem 7.10(b): Just as E;-groups
are precisely the loop animae, that is, those animae that can be delooped once, E,,-groups
are precisely the infinite loop animae, that is, those animae that can be delooped arbitrarily
often, in a compatible way. This is the recognition principle for infinite loop spaces due to
Boardman—Vogt, May, and Segal.

Furthermore, Corollary 7.40 implies that if Y ~ °° X then the spectrum X can always be
chosen to be connective. In other words, if Y admits a compatible sequence (..., Y2,Y7,Y)) of
deloopings, then we may always assume that Y, is n-connected for all n > 0, that is, m;(Y;,) =0
for all ¢ < n and all basepoints. The intuitive reason for this is that upon writing ¥ ~ Q"Y,,, all
information about 7, (Y},) below degree n will be lost, so we may as well assume these homotopy
groups vanish. If we work with spectra (not necessarily connective), this information is instead
remembered in the form of negative homotopy groups. In general, working with Sp rather than
CGrp(An) has a number of advantages, due to the excellent categorical properties of Sp. These
properties are axiomatised in the notion of a stable co-category.

7.42. Definition. — An oo-category C is called stable if it satisfies the equivalent conditions
from Lemma 7.43 below.

7.43. Lemma. — Suppose C is an co-category with an object O € C that’s both initial and
terminal. Then the following conditions are equivalent:

(a) C has finite limits and Qc: C — C is an equivalence of co-categories. Here Q¢ is defined
by an analogous pullback diagram as in Definition 7.1.

(b) C has finite colimits and Y¢: C — C is an equivalence of co-categories. Here ¥¢ is defined
by an analogous pushout diagram as in Definition 7.1.

(¢) C has finite limits and finite colimits and a commutative square in C is a pushout square
if and only if it is a pullback square.

(d) The functor Qg°: Sp(C) — C is an equivalence of co-categories.
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(e) There exists an oco-category D and an equivalence of co-categories Sp(D) ~ C.

Proof. The implication (a) = (d) is clear: Since 0 € C is both initial and terminal, we have
Coy =~ C, and so Qc: Cy; — Cy; is an equivalence too. It follows that the limit defining Sp(C)
is taken along equivalences and thus equivalent to C by (a dual variant of) Lemma 6.57. The
implication (d) = (e) is trivial, as is the implication (e) = (a): Qgyp): Sp(D) — Sp(D) is an
equivalence for obvious reasons (for example, using Construction 7.37, QSP(D) just corresponds
to a shift in the index category Z, which is clearly an equivalence). Furthermore, the implications
(¢) = (a), (b) are also clear: Applying the pushout-pullback condition to the pushout square
defining ¥¢ and the pullback square defining Q¢ shows that the unit v: ide = Q¢Y¢ and counit
c: Yefe = ide are natural equivalences, so ¢ and ()¢ must be equivalences of co-categories.

It remains to show (a) = (c¢); the implication (b) = (c¢) will follow from a dual argument. The
same argument as in the proof of Lemma 7.36 shows that C is additive (write X ~ Qc(Qz'X)
to lift X to an Eq-group in C and then apply Lemma 7.30). So we only need to check that
pushouts exist and coincide with pullbacks. Let X C Fun((J?,C), where (1> ~ A! x Al, be the
full subcategory spanned by pullback squares. We claim:

(X) The restriction r: X — Fun(A2,C) is an equivalence of co-categories.

To prove (X), we construct a functor s: Fun(A3,C) — X satisfying ros ~ (Q¢)s and sor ~
()4, where (2¢)s: Fun(0?,C) — Fun(0O?,C) is postcomposition with Q¢. Since Q¢ is an
equivalence, so is (Q¢)x, and (X) will be proved. Given a functor F': Ag — C, which we can
view as a span ¢ «— a — b in C, we construct the following moderately large diagram:

Qc(a) —— Qe(c) —— 0
J & &
Qc(b) x f 0
J & & & l
0 g a b
&
0 c

All squares are pullbacks as indicated. The fact that Q¢(a), Qc(b), and Q¢(c) appear in the
top left corner follows by combining suitable pullback squares into larger pullback rectangles.
The functor s: Fun(A3,C) — X now sends

— b Qc(a) — Qc(b)
9]

Qclc) —— x

k>

I
029

|

(technically we have only defined s on objects, but its clear how to make it functorial since
limits are functorial). This proves (X).

To construct pushouts, let F': A2 — C be a span ¢ «— a — b as above. We know from (X)
that F' can be uniquely (up to contractible choice) extended to a pullback square, where the
bottom right corner is some object d € C. The same goes for the trivial span consisting of
identities y = y = y for some y € C, and in this case the object we have to add in the bottom
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right corner has to be y by uniqueness. Hence

a—b y—uy a— b y—uy
Hompy, a2 c) J - ~ Hompyy(atxat,c) J - J ; ‘ | ‘ :
c Y c—d y—y

By the universal property of colimits, this means that the colimit over the span ¢ < a — b
agrees with the colimit over the commutative square formed by a, b, ¢, and d, provided that
at least one of these colimits exists. But A! x Al has a terminal object, namely the vertex
{1} x {1}, and so the colimit over any commutative square exists and is given by the bottom
right corner. This shows that d is a pushout of the span ¢ < a — b. Simultaneously, we’ve also
shown that pushout squares agree with pullback squares. This finishes the proof of (a) = (c)
and so we're done. O

7.44. Corollary. — Let F: C — D be a functor between stable co-categories. Then F
preserves finite colimits if and only if it preserves finite limits.

Proof. This is an immediate consequence of Lemma 6.50: Since C and D are additive (as we've
seen in the proof of Lemma 7.36), F' preserves finite coproducts if and only it preserves finite
products. By Lemma 7.43(c), F preserves pushouts if and only if it preserves pullbacks. [

7.45. Definition. — A functor F': C — D between stable co-categories is called ezact if
it preserves finite colimits, or equivalently, finite limits. We let Catsi C Cato, denote the
(non-full) sub-co-category spanned by stable co-categories and exact functors between them.

In the remainder of this subsection, we’ll explain how the derived co-category D(R) and its
variant D>o(R) from crash course 6.34 fit into the framework of stable co-categories.

7.46. Lemma. — Let R be a (not necessarily commutative) ring. Then there exists an
equivalence of oco-categories D(R) ~ Sp(Dxo(R)), given on objects by

>

M — ( o (oo M[2], (a1 MO[1], T;()M) .

(here T>_, (=) are the smart truncations and (—)[n] are the shift functors from crash course 6.34).
In particular, D(R) is a stable co-category.

Proof sketch. Let’s first explain how to construct the desired functor D(R) — Sp(D=o(R))
formally. The crucial observation is that Qp(r): D(R) — D(R) can be identified with the shift
functor (—)[—1]; we’'ve seen an instance of this Example 7.4, the general case follows from
similar arguments as in Lemma 6.40(b). Since 7>9: D(R) — Dxo(R) is right adjoint to the
inclusion Dxo(R) C D(R), it follows formally that Qp_ (r): D>o(R) — Dxo(R) is given by
7>0((=)[—1]). Then we get an equivalence of functors

T>—n(=)[n] = Qp_y(r) © To—(ny1) (=)0 + 1]

in Fun(D(R), Dxo(R)) for all n > 0. Indeed, substituting 7>o((—)[—1]) for Qp_ (r), this
equivalence is straightforward to verify in Fun(Ch(R),Ch>(R)); after that, Lemma 4.11 does
the rest. Thus, the functors 7>_,(—)[n]: D(R) — Dxo(R) for all n > 0 assemble into a functor
D(R) — Sp(D=o(R)), as desired.
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Now we’ll verify that this functor is fully faithful and essentially surjective. For fully
faithfulness, we employ Lemma 6.76(a) to compute Homgy,(p. o (r)); we must then show that
Hompr) (M, N) ~ lim,eny Homp._ (r)((T>-nM)[n], (7> N)[n]) for all M, N € D(R). Clearly,
we can get rid of the shifts and instead write lim,eny Homp__ (r)(7>—nM, 7>, V), where the
transition morphisms are induced by applying the functor 7>_,. This functor can also be viewed
as a right adjoint 7>_,,: D(R) — D>_,(R) of the inclusion D>_,,(R) C D(R). Therefore, we get
an adjunction equivalence Homp__ (g)(7>—nM,7>—nN) ~ Hompr)(T>—nM, N). We claim:

(X) Under these adjunction equivalences, the transition morphisms, which were originally
induced by T>_n, get identified with the precomposition morphisms

C:;: HOH]D(R) (T>,(n+1)M, N) i HomD(R) (T>_nM, N)

induced by the canonical morphisms ¢y: T>—nM — T>_(nq1)M.

To prove (), recall from the proof of Lemma 6.5 that any adjunction equivalence can, at least
pointwise, be obtained by applying the right adjoint and then precomposing with the unit
transformation. In our case, we see that Homp__ (r)(T>—nM,7>_nN) ~ Hompg) (7> M, N)
is simply given by applying 7>, since the unit u,._ a: 7> M — 7> _p (7> M) is just the
identity. To show (), we now simply observe that 7>, 0 7>_(,,41) =~ 7>y, and that 7>_,(cp)
is the identity on 7>_, M.

Using (X) and Corollary 6.16, we see that to show the desired equivalence

Hompg) (M, N) = hnl\l; Hompg)(7>—nM, N),
ne

it’ll be enough to show colim, ey 7>—,M =~ M. To prove this, observe that filtered colimits
in Ch(R) preserve quasi-isomorphisms. Through Lemma 4.11, this formally implies that
Ch(R) — D(R) preserves filtered colimits (we’ve seen analogous arguments in the proofs of
Lemma 6.58 and Corollary 6.64). So colimyen 7>—n,M ~ M can be checked on the level of
chain complexes, where it becomes obvious. This finishes the proof that D(R) — Sp(D=o(R))
is fully faithful.

To show essential surjectivity, observe that objects in Sp(Dxo(R)) are given by sequences
(-..s Mo, My, Mo) in D>o(R) together with equivalences M,, ~ Qp_(g)Mnt1 >~ 720(Mp41[—1]).
These equivalences induce morphisms M,, — M, 11[—1] in D(R) and we can form the colimit
M := colim, ey My[—n]. Using once again that filtered colimits in D(R) are well-understood,
one checks that M is a preimage of (..., Ma, M7, My) up to equivalence. ]

7.47. Eilenberg—MacLane spectra — In the special case R = Z, we have the Eilenberg—
MacLane functor K: D>((Z) — An from Construction 6.41, which preserves all limits (being a
right adjoint) and thus commutes with Q. Therefore, K induces a functor H: D(Z) — Sp via
the commutative diagram

Sp(K
Sp(D=0(2)) 2. Sp(An)
~ Va

D(Z) 1 Sp

We call H the FEilenberg-MacLane spectrum functor. Unravelling the equivalence D(Z) ~
Sp(D=o(Z)) from Lemma 7.46 and the construction of Sp(K): Sp(D=0(Z)) — Sp, we see that
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for all abelian groups A and all n > 0, the spectrum HA := H(A[0]) is explicitly given by the
sequence of animae

HA ~ (..., K(4,2),K(4,1),K(4,0)) .

This fits perfectly with the homotopy equivalences K(A,n) ~ QK(A,n + 1) from Example 7.4.
We call HA the Filenberg—MacLane spectrum of A.

The Eilenberg-MacLane functor induces an equivalence of co-categories H: Ab — Sp¥ from
the (ordinary) category of abelian groups onto the co-category Sp¥ = Sp>( N Spgg of spectra
concentrated in degree 0. Indeed, an inverse functor is provided via Sp¥ — Sp-o =~ CGrp(An)
(Corollary 7.40) and mp: CGrp(An) — CGrp(Set) ~ Ab. In the modern point of view, abelian
groups are just spectra concentrated in degree 0. Following this, we’ll often suppress H in the
notation and write the Eilenberg-MacLane spectrum just as A.(7-11)

In the classical theory of derived categories, much emphasis is placed on the fact that D(R)
can be equipped with a triangulated structure. Let us now explain how this structure is captured
and radically simplified by the fact that the derived co-category D(R) is stable.

7.48. Stable oco-categories and triangulated categories. — One striking feature of
stable oo-categories is that their homotopy category admits a canonical triangulated structure.
If you haven’t see triangulated categories before, [L-HA, Definition 1.1.2.5] has a nice review
(but you can also safely skip this remark). Moreover, [L-HA, Theorem 1.1.2.14] explains the
triangulated structure in much more detail than we’ll do below.

Let C be a stable oo-category. We choose (—)[1] := ho(X¢): ho(C) — ho(C) to be the shift
functor in our emerging triangulated structure. By Lemma 7.43(b), (—)[1] is an equivalence of
categories. We say that © — y — z — x[1] is a distinguished triangle if x — y — z is a cofibre
sequence in C in the sense of Definition 6.39. Then we can form the following pushout diagram

— Ye(x)

—_

(to see why X¢(x) appears in the bottom left corner, just observe that the outer rectangle
must be a pushout too). This shows several things at once: First it explains where the
morphism z — z[1] in a distinguished triangle comes from. Second, a closer investigation of
the diagram shows that z — y — z is a cofibre sequence if and only if y — z — Y¢(x) is
a cofibre sequence.(?) Hence z — y — z — z[1] is a distinguished triangle if and only if
y — z — x[1] — y[1] is a distinguished triangle. In other words, Verdier’s axiom (TRs) is
satisfied.

Furthermore, it’s immediately clear that every morphism x — y can be extended to a
distinguished triangle (just form the cofibre), that distinguished triangles are closed under
isomorphisms in Ho(C), and that for every x € C, the identity id,:  — =z fits into a distinguished
triangle x — z — 0 — z[1]. So (TR;) is satisfied.

(711 the words of Robert Burklund: “Why would you give a name to the functor that sends an abelian group
to itself?”

("12)Here’s the argument: We’ve already seen that © — y — z being a cofibre sequence implies the same for
y — z — X¢(z). Conversely, if y — z — Xc¢(x) is a cofibre sequence, then the right square in the diagram is a
pushout, hence a pullback by Lemma 7.43(c). Similarly, the outer square must be a pullback. It follows formally
that the left square must be a pullback too, hence a pushout, and so x — y — z is a cofibre sequence too.
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Next, we’ll tackle axiom (TRg). Since taking cofibres is functorial, for every commutative
diagram in C as below there is a unique dashed arrow (up to contractible choice):

r—"—y cofib(a)

ﬁl "W Jv |
+

Oy cofib(a’)

The crucial detail here is “//”: A commutative diagram in C is a functor &: 0% — C, whereas a
commutative diagram in ho(C) is a functor o: 90> — C, which can be extended to a functor
o: 0 — C; however, the choice of @ is not part of the data! In particular, there could be
several non-homotopic choices, corresponding to the fact that m (Home(z,9'),v o ) may not
be trivial. So taking cofibres is not functorial in commutative diagrams in ho(C). If we start
with a commutative diagram in ho(C), then a dashed arrow will exist, but it will not necessarily
be unique; the uniqueness only comes about once a filler &: (12 — C has been chosen, which we
indicate by writing “/,” in a diagram as above. This shows axiom (TR3) and it offers a nice
conceptual explanation of the non-uniqueness statement in that axiom.

Finally, let’s talk about the dreaded octahedron axiom (TR4): Given morphisms a: z — y
and f: y — z in C, we can form a pushout diagram

a B
Y z

vaJ

—— cofib(a) —— cofib(f o «)

N

0 cofib(3)

which shows that cofib(ar) — cofib(5 o &) — cofib(f) is a cofibre sequence in C. And that’s
already the octahedron axiom!

Not every triangulated category arises as the homotopy category of a stable co-category.
However, every triangulated category encountered in nature does, the primordial example being
the derived category D(R) of a ring R, which arises as the homotopy category of D(R), which
is stable by 7.47 and Lemma 7.43(¢e). The point we’re trying to make here is that whenever
you would work with triangulated categories, you should use stable oco-categories instead: It is
both conceptually simpler and more powerful! For a concrete example, you might have seen the
filtered derived category of a ring R before. In the classical approach, you run into annoying
technical subtleties when you try to define it in full generality; this is the reason why the Stacks
Project only considers degree-wise finite filtrations in [Stacks, Tag 05RX]. But on the level
of oo-categories, everything works as expected: We simply define Fil(D(R)) := Fun(Z, D(R)).
This is a stable co-category again("!'3) and so its homotopy category ho Fil(D(R)) is canonically
a triangulated category. This is the “right” definition of the filtered derived category. It also
explains where the technical subtleties come from: The homotopy category ho Fun(Z, D(R)) is
in general not the same as Fun(Z, ho D(R))

(7131 general, if C is stable, then so is Fun(Z,C) for any co-category Z; to see this, use that limits and colimits
in functor oo-categories can be computed pointwise (Lemma 6.12) to verify your favourite condition from
Lemma 7.43.
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As our final application to the theory of derived oco-categories, we would like to explain the
relationship between Hompg) (M, N) and RHompg(M, N). This needs a general construction,
which is pretty important on its own.

7.49. Lemma. — IfC is a stable co-category, then the Hom animae in C can be refined to
spectra. More precisely, there is a unique (up to equivalence) functor home: C°P? x C — Sp
fitting into the following diagram:

Sp
home -

el
2 lm’

-
-

Hom,
CP x C —5 An

Proof. The Yoneda embedding &¢: C — Fun(C°P, An) preserves limits by Corollary 6.17. In
particular, it commutes with  and thus induces a functor Sp(k¢): Sp(C) — Sp(Fun(C°P, An)),
which is uniquely (up to equivalence) characterised by the fact that Q*°Xk¥ ~ Xe. Now
Fun(C°P, —): Caty — Catoo commutes with limits, since it has a left adjoint given by — x C°P.
Furthermore, Fun(C°P, An, /) ~ Fun(C°, An)cne; /- Hence Sp(Fun(CP, An)) ~ Fun(C°P, Sp)
and so we’ve upgraded the Yoneda embedding to a functor

&¥:C — Fun(C°,Sp).

After currying, this induces the desired functor home: C°P x C — Sp. Uniqueness follows from
uniqueness of k3. O

7.50. Corollary. — For any ring R, the spectra-enriched hom in the derived co-category
D(R) is given by

hOmD(R)(M, N) =~ RHOIIIR(M, N) 5
that is, the Eilenberg—MacLane spectrum associated to RHompg (M, N) € D(R) as in 7.47, but
we suppress writing H.

Proof sketch. By the uniqueneness statement from Lemma 7.49, it’s enough to construct a
functorial equivalence Q°*RHompg (M, N) ~ Homp(R)(M, N). Unravelling the construction in
7.47, we see that Q*°RHomp (M, N) ~ K(7>90 RHompg(M, N)) is the Eilenberg—MacLane anima
associated to the trunctation 7> RHomp (M, N). Now any anima X satisfies X ~ Homa, (*, X)
and then we can compute

HOmAn(*, K(7>0 RHOmR(M, N))) >~ HomD>0(Z) (Z[O], T>0 RHOIHR(M, N))

~ Homp(z)(Z[0], RHompg (M, N))

~ Hompg) (Z[0] ®% M, N)

ad HomD(R)(M, N) .
In the first step, we use the adjunction C: An = D>¢(Z) : K from Construction 6.41. In the
second step, we use that 7>¢9: D(Z) — Dxo(Z) is right adjoint to the inclusion D= (Z) C D(Z),
as we’ve seen in crash course 6.34. In the third step, we use the “derived tensor-Hom adjunction”.
To construct this, using the description from crash course 6.36, we only need to verify that the
ordinary tensor-Hom adjunction refines to an adjunction of Kan-enriched categories, which is
straightforward. The fourth step is obvious.

Putting everything together, we get Q°°RHompz(M,N) ~ Homp(R)(M, N), as desired.

Since all steps can easily be made functorial, we’re done. O
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§7.5. Spectra and excisive functors

In this subsection, we’ll explain an alternative construction of Sp(C) that more closely resembles
the “Segal models” for E;-groups and E,.-groups from Definitions 7.6 and 7.24. This alternative
model will be needed in §8 to construct the tensor product of spectra, but we’ll also use it to
show that Q°°: Sp — An has a left adjoint and to construct the famous sphere spectrum S.

7.51. Definition. — Let Ani“ C An,, be the oo-category of finite pointed animae, defined

as smallest full sub-oco-category that contains S° ~ = * and is closed under finite colimits.(7-1%)

Furthermore, let C be an oo-category with all finite limits, so that, in particular, C contains a
terminal object * € C.

(a) A functor F': Anl;i’f/1 — Cy is called reduced if F'(x) ~ x.
(b) A functor F: AnE;‘ — C, is called ezcisive if F' sends pushout squares to pullback squares.

Furthermore, we let Fun, (Anii’/l,C* /) C FuniXC(AniiI/l, Cy/) C Fun(AnEl/],C* /) denote full sub-oo-
categories spanned by the reduced functors or the reduced excisive functors, respectively.

7.52. Lemma. — IfC has finite limits, then FuniXC(Anih/l,C*/) is a stable co-category.

Proof. We'll verify the conditions from Lemma 7.43(a). Since limits in colimits in functor
categories are computed pointwise by Lemma 6.12, it follows that Fun(AnfiI/l,C=l< /) has all finite
limits and that the terminal object const * is also initial. Furthermore, reduced excisive functors
are closed under all limits, and so FuniXC(Anih/l, C,,) still has all finite limits and its terminal
object is initial too. It remains to show that the loop functor €2 on FuniXC(Anih},C* /) is an
equivalence. We’ll show that precomposition with X: Anf;m — Anﬁr/l provides an inverse. To this
end, let F': AnEl/l — C,/ be a reduced excisive functor. By definition of ¥, we have a diagram
of natural transformations

F(—) == F(const )

I

F(const x) —= F(X(-))

Since F(x) ~ %, we have F(const*) ~ const*. Therefore, this diagram induces a natural
transformation np: F(—) = QF(X(—)). Since F sends pushout squares to pullbacks, nr is a
pointwise equivalence, hence an equivalence of functors by Theorem 4.5. Furthermore, it’s clear
from the construction that ng is also functorial in F'.

Now observe that the loop functor 2 on Fun*® (Anih/l, C,,) is given by postcomposition with
the loop functor Q¢: Cyy — C,/, as follows from Lemma 6.12. Since, in general, postcomposition
commutes with precomposition, our functorial equivalence F'(—) ~ QF(3(—)) thus shows that
precomposition with X is both a left and a right inverse of 2. O

7.53. Lemma. — For everyn > 0, let evgn: FuniXC(Anil?,C*/) — Cy, be given by evaluation

at the n-sphere S™. Then evgnt+1 ~ Q¢ oevgn holds for all n > 0 and the induced functor
Fun$™(Anl}},C,/) — Sp(C)

s an equivalence of co-categories.

(7‘14)Ani’} looks like it could be the full sub-oo-category (Any,)™® C An,, spanned by the compact objects (in
the sense of Definition 6.52(c)), but it’s not: (Any /)" also contains all retracts of objects in Ani‘}.
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Proof sketch. The condition evgni1 ~ Q¢ oevgn follows immediately from S™*!1 ~ ¥.8™ and the
fact that excisive functors send pushouts to pullbacks, so the hard part will be to show that we
get an equivalence. Let’s first consider the case where C is a stable co-category. We’ll show that
evgo: Fung* (Anii‘/l,C*/) =

is an equivalence of co-categories. This special case will occupy the majority of the proof; the
general case is an easy consequence, as we'll see below. If C is stable, then C,, ~ C, since
the terminal object is also initial. This also shows that a functor is reduced if and only if it
preserves initial objects. Furthermore, since pushout squares and pullback squares agree in any
stable co-category, a functor F': Ani;i]f1 — C is excisive if and only if it preserves pushouts. Any
finite colimit can be built from initial objects and pushouts. Indeed, by Lemma 6.50, we only
have to show that finite coproducts can be built that way, but coproducts are pushouts over
the initial object. In summary, we obtain

Fun$™© (An{:r/l, C, /) ~ Fupfin-colim (An{ir/l, C) ,

where Fun "™ C Fun denotes the full sub-oo-category of functors that preserve finite
colimits.

Now let Z := {x __ S°} be the full sub-oo-category of Ani‘r/l spanned by * and S°. Observe
that 7 ~ Fing;, where Fing is the (ordinary) category from the proof of Lemma 7.28.(7-1%)
Applying claim (Xs) from the proof of Lemma 7.28, we obtain that evaluation at S° induces

an equivalence of co-categories
evgo: Fun,(Z,C) — C.

So it remains to show that restriction along the inclusion i: 7 — Anl;i;’ induces an equivalence
of co-categories
i*: Fupfin-colim (Anf;‘?, ) — Fun,(Z,C).

To prove this, we’ll study left Kan extension along the inclusion 7. By Lemma 7.54 below, every
reduced functor F': Z — C admits a left Kan extension; furthermore, that lemma provides
an explicit formula (in form of a pushout diagram) for Lan; F/(X,x). Combining this formula
with Lemma 6.38(b) shows that Lan; F': An‘:,;”[/1 — C preserves pushouts. Lan; F' also preserves
initial objects since F' was assumed to be reduced. Hence Lan; I’ preserves all finite colimits.
Therefore, usual left Kan extension adjunction Lan; 4 ¢* restricts to an adjunction

Lan;: Fun,(Z,C) — Funfncolim (Anir/l, ) i

Since ¢ is fully faithful, so is Lan; by Corollary 6.29. Furthermore, since Amiln is generated
under finite colimits by * and S°, it’s clear that i* is conservative. So Lan; and i* are inverse
equivalences by Lemma 6.33(b), which is what we wanted to show.

It remains to deduce the general case. So let C again be an arbitrary oo-category with finite

limits. Then an equivalence Sp(C) ~ Fun'iXC(Anih},C* /) can be obtained as follows:

Sp(C) ~ Fung*® (Ani”/l, Sp(C)) ~ Sp (Funf;xC (Aniir/‘, C*/)> ~ Fung™ (Aniir/‘,C*/)

(7-19)Indeed, it’s straightforward to verify that ho(Z) ~ Fing:. But one also easily verifies that the Hom animae
in 7 are discrete, and so the canonical functor Z — ho(Z) is an equivalence by Theorem 4.6.
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The first equivalence follows from what we’ve just shown. The third equivalence follows from
FuniXC(AnEI/l, C,,) being stable by Lemma 7.52. So let’s explain where the second equivalence
comes from: The functor Fun(Anfkl;‘, —): Cato, — Cato, commutes with limits since it is
a right adjoint by Example 6.3(b). Hence Fun(AniiI/l,Sp(C)) ~ Sp(Fun(AnEI/l,C*/)). Now

FuniXC(Anii?, Sp(C)) and Sp(Fung*® (Aniir/‘, C,/)) can be regarded as full sub-oo-categories of the
left- and the right-hand side, respectively, and we only have to check that they match. To see
this, recall that limits in Sp(C) are formed degree-wise by Lemma 6.76(b), and so a functor
F: Amﬁr/1 — Sp(C) is reduced and excisive if and only if 25°7" o F': Amﬁr/1 — Cy/ is reduced and
excisive for all n € Z. This is precisely what we need.

So we’ve constructed an equivalence Sp(C) ~ FuniXC(Anf:r/l,C* /). By a straightforward

unravelling, this equivalence is really induced by evgn for all n > 0. O

7.54. Lemma. — Let C be an oo-category with finite colimits; in particular, C contains an
initial object 0 € C. Leti: T — Ang‘/l be as in the proof of Lemma 7.53 and let F: T — C be a
functor such that F (%) ~ 0. Then Lan; F': Ani”/1 — C exists and its value on a pointed anima
(X, x) is given as the pushout

F(SO) —— colim (const F(SY): X — C)

| g l

0 Lan; F(X, z)

in C (where the top horizontal arrow is induced by {z} — X).

Proof. First note that the pushout above exists in C. Indeed, since C is stable, it has all finite
colimits by Lemma 7.43(c). In particular, since X is a finite anima, colim(const F(S%): X — C)
exists, and then so does the pushout.

Showing that Lan; F(X,z) is indeed given by the pushout in question is essentially a
lengthy unravelling of the Kan extension formula from Lemma 6.27. We’ve seen in the proof of
Lemma 7.53 that Z ~ Fing;. Under this equivalence, FinZ; corresponds to the non-full sub-oo-
category J = {* — S°} of Ani“/l. Let j: J — An{i][/1 be the inclusion of J. By claim (K5) in
the proof of Lemma 7.28 we may replace Z by J and analyse the left Kan extension Lan; F' of
a reduced functor F': J — Anfkh/l instead. This will make our life much easier.

Fix some pointed anima (X, z) and consider the slice co-category

V= T oty (A08)

together with its usual slice projection s: ) — J. The Kan extension formula from Lemma 6.27
asserts that Lan; F'(X, z) ~ colim(F os: Y — C), provided this colimits exists. So let’s analyse
the oo-category Y. The objects of ) come in two flavours: First there are pointed morphisms
* — (X, x), of which there’s only one, which by abuse of notation we’ll also denote *. Second,
there are pointed morphisms S° — (X, ). Every such morphism is uniquely given by where
it sends the non-basepoint, and we let y: S° — (X, z) denote the morphism that sends the
non-basepoint to y € X. Next, let’s compute morphism animae. For y,z € X, we can use
Corollary 5.15 and Lemma 6.76(a) to see that Homy(y, 2) sits in a pullback square

Homy(y, 2) {y}

l . l

Hom 7 (SO, SO) LN Homan,, (SO, (X, x))
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Since Hom 7(S?%, S°) ~ idgo and HomAn*/(SO, (X,z)) ~ Hompy (%, X) ~ X, this pullback can
be identified with {y} x x {z}, and then an argument as in Lemma 7.3(b) shows

Homy(y, z) ~ Homx (y, 2) .

In a similar way, we obtain Homy(y,*) ~ Homx(y,z) as well as Homy(x,*) ~ % and
Homy(*, z) ~ (). This finishes our description of ).

Now let X be the pushout in Caty, of {z} — X along {z} ~ {0} — Al. We wish to construct
a functor ¢¥: X — ) and then to show that ¥ is an equivalence of oco-categories. To this end,
first consider the functor

X fin fin
@1 X = {8 xanty (AnS)) ) — T xanty (An)) iy =V

(the equivalence on the left follows from the fact that the right fibration (Anih/“) /

parametrises the functor Hom Anf (— (X,2)): ( Aniir/l)"p

xa) — A}
— An and so its fibre over S is given
by Homanp, /(SO, X) ~ X). Secondly, consider the functor 1): A' — ) corresponding to the
morphism ¢: z — * in ) which in turn corresponds to id; € Homx (z,x) ~ Homy(x,*). By
construction, ¢[(,; =~ 1|0y and so by the universal property of pushouts, ¢ and 1 together
determine a functor ¥: X — ).(7-16)

If we can show that ¢ is an equivalence, we're done. Indeed, using Lemma 6.38(b) and
our assumption F'(x) ~ 0, we see that colim(F osod: X — C) is precisely the pushout we’re
looking for! It’s obvious that 1 is essentially surjective, so we only need to prove that ¢ is fully
faithful, and for that, we must understand Hom animae in X. In general, there’s no nice way to
describe Hom in a pushout, but here we can use a trick: The inclusion ¢: X — X is left adjoint
to the functor r: X ~ X Uy A — X U,y {2} ~ X defined by A! — {z}! To see this, first
note that {0} = A is an adjunction (which is obvious, as these are ordinary categories), and
recall from Lemma 6.5 that to construct an adjunction, it’s enough to construct unit and counit
as well as the triangle identities. Since — x A!: Caty, — Cats, commutes with pushouts, as it
is a left adjoint by Example 6.3(b), we can construct the counit ¢: idy — r o ¢ by taking the
pushout of the identity transformation on X with the counit of the adjunction {0} = Al. In
the same way, we can construct the unit, and then the triangle identities will still be satisfied.

Using this adjunction, we see that 9 induces equivalences Homy (y, z) ~ Homy(y, z) for
all y,z € X. Furthermore, if * € X denotes the image of 1 € A!, then ¥(*) ~ * and we
have Homy (y, *) ~ Homx (y, (%)) ~ Homx (y, z), so Homy (y, *) ~ Homy(y, ) for all y € X.
Finally, we have Homy (*, *) ~ x and Homy (*,2) ~ () for all z € X. For the latter, simply note
that X — {x} defines a functor X ~ XUy A — {2}U,y A' >~ Al and then there’s a morphism
Homy (#,2) — Homa1(1,0) ~ (). For the former, we use model category fact 6.13: X is given
by choosing an inner anodyne map of the pushout X L, Al in sSet into a quasi-category. If
we use the recipe from the proof of Lemma 3.12, we won’t ever add any simplex whose vertices
are all =, hence Homy (*, *) ~ Homa1(1,1). Alternatively, for a model-independent argument,
one could use Lemma 6.14 and a general formula for Hom in localisations, but this is much
more difficult. This shows that ¢ is fully faithful and we’re done! O

This finishes the proof that Sp(C) ~ FuniXC(Anir/l,C* /). Now we’ll use this alternative
description to define a left adjoint of 2°°: Sp — An and to construct the sphere spectrum S.

(7-16) More precisely, every choice of an equivalence @[z} >~ 9|(0} determines a natural transformation between the
span X « {x} ~ {0} — A' and the span const ) in Fun(A3, Cats). And every such transformation determines
a viable ¥ by the universal property of colimits.
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7.55. Lemma. — Let C be an co-category with finite limits; in particular, C has a terminal
object = € C. Assume furthermore that Cy; admits sequential colimits and that Qc: Cyy — Cy
commutes with them. Then FuneXC(An*/,C*/) C Fun. (An*/,C*/) has a left adjoint, which sends
a reduced functor F': An*/ — Cyy to

FP = cgl}i%)n QEF(X™(-))

(in the proof of Lemma 7.52 we’ve constructed a transformation F = Qc¢F(X(—)); the colimit
on the right-hand side is given by iterating this construction).

To prove Lemma 7.55, we need a general lemma about adjunctions:

7.56. Lemma. — Let L: C — C be an endofunctor of an co-category and w: ide = L be a
natural transformation. Suppose that both Lu: L = Lo L and uL: L = Lo L are equivalences.
Then, if i: C;, — C denotes the inclusion of the full sub-co-category spanned by the essential
image of L, we have an adjunction

L:C—=Cy 1.

Proof. By Lemma 6.5, it’s enough to construct the unit as well as the counit and to verify
the triangle identities. This will be so tautological that it becomes confusing again. As the
notation suggests, we take u to be our unit. Restricting u along i: C;, — C defines a natural
transformation wi: i = L o4 in Fun(Cr,C). By assumption, upy: L(z) — L(L(z)) is an
equivalence for all x € C. This shows that ui is a pointwise equivalence, hence it admits an
inverse by Theorem 4.5. Furthermore wi takes values in Cy,, so we can regard it as a natural
transformation ide, = Lo in Fun(Cr,Cr). Its inverse can then also be regarded as a natural
transformation ¢: L o¢ = id¢, in Fun(Cr,Cr). This will be our counit.

Let’s now verify the triangle identities. The second one from Lemma 6.5 is trivially satisfied,
since, by construction, ic is an inverse of wi and so ic o ui ~ id;. For the first triangle
identity (in its weak form, where we only require cL o uL to be an equivalence), we use that
Lu: L = LoL = LoioL is an equivalence by assumption, so we only need to check that cL is
an equivalence. But c itself is, by construction, already an equivalence. O

Proof sketch of Lemma 7.55. It’s clear that the construction of F*P can be made into an
endofunctor (—)%: Fun,(Anf 7,Cy/) — Fun, (Anfn o/ C./)- By construction, for every I there is
a natural transformation up: F = F*P in Fun,(Anf 7,Cx/). This is clearly natural in F' as well,
hence defines a natural transformation idpyy,( Anfnc, ) = (—)%P. We'll verify the conditions
from Lemma 7.56 and show that the image of (—)%P are precisely the reduced and excisive
functors.

Let’s start with the first condition: To show that u*P: (—)%* = ((—)%P)*P is an equivalence,
we must show that

upy: coh%n QEF(Z™(-)) = c%lérgl cghén QT E (X))
is an equivalence for all F'. This follows from a formal manipulation of colimits.
To show the second condition, observe that if F' is already reduced and excisive, then
F = Qc¢F(X(—)) is an equivalence, and so up: F' = F*" must be an equivalence too. Thus,
to show that u(—)%P: (=) = ((—)*P)" is a pointwise equivalence, it’s enough to check that
(—)*P takes values in reduced and excisive functors. This has to be done anyway, since we have

163



§7. TOWARDS SPECTRA

to identify the image of (—)P. Also, our observation that up is an equivalence whenever F' is
reduced and excisive already shows that the essential image of (—)*P contains all reduced and
excisive functors. Thus, once we show that the F*®P is reduced and excisive, we’ll be done.

To show this, it’s clear that F*P is reduced again. For excisivity, observe F*P ~ Q¢ F*P(3(—)).
Indeed, precomposition with ¥ commutes with all colimits, and postcomposition with Q¢
commutes with sequential colimits by our assumption, so the colimit defining F*P just gets
transformed into itself. Now consider an arbitrary pushout diagram in A]af,;”[/1 and extend it as
follows:

A C *
l . r
B D Q *
J r r . l
¢ P YA B
. . l
* >C D

The top left 2 x 2-square induces a morphism F*P(B) X psp(py F*P(C) — QcF*P(XA) ~ FP(A).
It’s straightforward to check that this morphism is an inverse to the canonical morphism in the
other direction. This proves that F*P turns pushouts into pullbacks, as required. O

7.57. Corollary. — The functor 2*°: Sp — An,, admits a left adjoint X°°: An,, — Sp. If
(X, z) is a pointed anima, then QX (X, x) ~ colimy,>o Q"X"X together with its basepoint x.
In particular,

T2 0 (X, ) = colim 7, (Q"E" X)) = col>ign Tatn (LX)

n=0 nz=

are the stable homotopy groups of X.

Proof. To prove that $°° exists and is given as above, let Z := {+ __ S°} be the full sub-oo-
category of Ani“/l spanned by # and S° and recall the chain of equivalences and adjunctions

Lan;

An,/, — Fun, (Z, An*/) — Fun, (Anil/‘, An*/)
evs, "

from the proof of Lemma 7.53. Thus, evg,: Fun, (Anir/l, An, /) — An,, has a left adjoint. Fur-
thermore, according to Lemmas 7.53 and 7.55, Sp ~ FuniXC(Anih/l, An, /) C Fun, (Ani“/l, An,)
has a left adjoint too. This shows that X exists.

To show the desired formula for ¥°°/ fix a pointed anima (Y, y) and let —AY": Anfkir/1 — An,/
denote the associated functor. Let (X,x) be a finite pointed anima; we wish to compute
the value X AY of — AY on (X,z). It will turn out that X A'Y agrees with the smash
product you know from topology, so the suggestive notation is justified. But for the moment,
let’s forget what we know about smash products and regard X A'Y as the value of our
functor. We use Lemma 7.54 to compute it. By definition, S° AY ~ Y. The colimit of the
constant functor const S° AY: X — An is therefore X x Y by Lemma 6.14. If we take the
colimit of const S AY': X — An,, in pointed animae, we get (X x Y)/(X x {y}) instead, see
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Lemma 6.56(c). Plugging this into Lemma 7.54, we get a pushout diagram

X x{y} —— (X xY)/(X x {y})

|

% XAY

(in An or An,/, this doesn’t matter by Lemma 6.56(b)). So X A'Y is indeed the usual smash

product from topology.("-17)
Now Q°¥°(Y,y) can be described as the value of (— A Y)? on S°. According to the
formula from Lemma 7.55, this value is given by

colim Q" (X"S% AY) ~ colim Q"(S" AY) ~ colim Q"¥"Y .
n=0 n=0 n=0

It remains to show the “in particular” about the homotopy groups of the spectrum X*°(Y, y).
The same argument as above shows that Q°~¢X°°(Y,y) is given by the value of (— A Y)P on
S?, which is colim,>o Q*(E"S? AY) ~ colim,>o Q"E" Y. Hence Lemmas 6.58 and 7.3(a) show
T2 (Y, y) = mo(Q2°7*E2(Y, y)) = colimy, >0 Tupn (X" X), as desired. O

As an immediate consequence, we get an analogue of Corollary 7.22 for E,-groups.

7.58. Corollary (“Q>*X>*X, is the free Ey-group on X7). — The forgetful functor
ev(y: CGrp(An) — An sending an Eo-group to its underlying anima has a left adjoint,
sending an anima X to QX X, , where X = X U *, regarded as a pointed anima.

Proof. Since m,3°°(X, x) is given by the stable homotopy groups of X, ¥°° takes values in the
full sub-oo-category Sp of connective spectra. Therefore, we get a diagram of adjunctions

) oo
An - An,, Eoo Sp>o
Qoozoo(i)Jr /// BOOTJQOO
eV CGrp(An)
which shows that 2°°3°°(—),: An = CGrp(An) : ev(;y must be an adjunction too. O

And finally, we can define the legendary sphere spectrum.

7.59. Definition. — The reduced suspension spectrum functor functor ¥°°: An,, — Sp. The

(unreduced) suspension spectrum functor (718)ig the composition

S[—]: An S+ An, = Sp;

it is a left adjoint of 2°°: Sp — An. The spectrum S := S[x] is called the sphere spectrum.

("1D1t’s easy to turn the usual definition from topology into a functor — A Y : An,, — An,, (more on that in
[TODO]). This functor agrees with the functor we’ve constructed above. So far, we only know this on objects,
but the equivalence as functors is not hard to check. Since both definitions of S°X agree, both functors must
agree in Funy(Z, An,. /). From the universal property of left Kan extension, we then get a natural transformation
between them for free. So knowing that they agree object-wise is enough by Theorem 4.5.

(718)In the old literature, and still in much of the modern one, the (unreduced) suspension spectrum of X is
denoted X° X rather than S[X]. However, in the modern mathematics, we think of spectra as “modules over the
sphere spectrum” (a point of view that will be much elaborated on in §8), and so it seems only natural that the
“free S-module on X” should be denoted S[X], just as Z[S] usually denotes the free abelian group on a set S.
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§8. The tensor product of spectra

The overarching theme of these notes is to do topology without doing topology. So far, we’'ve
seen that many classical results are entirely formal consequences of abstract co-category theory.
From now on, we’ll show that many more classical results can be proved by doing algebra in
the stable co-category Sp. We already know that Sp is additive (see the proof of Lemma 7.36)
and so spectra can be viewed as homotopical generalisations of abelian groups. But to make
the analogy between Ab and Sp really powerful, we need to be able to talk about algebras and
modules in Sp. This requires the construction of a tensor product on Sp.

In §8.1, we’ll study symmetric monoidal structures on arbitrary oo-categories. In §8.2; we’ll
construct many interesting examples, including the tensor product of spectra. In §8.3, we’ll
take the theory of algebras and modules in Sp for granted and use it to give the “correct”
construction of homology and cohomology. Finally, there’ll be a lengthy appendix. In §8.4,
we’ll sketch the missing theory of algebras and modules. In §8.5, we’ll introduce the notion of
E,-algebras for all 0 < n < oo, which generalises the notions of E;- and E,.-monoids that we
already know. Finally, in §8.6, we’ll prove more cool stuff about Lurie’s magical co-category
Pr" and sketch another construction of the tensor product on Sp.

§8.1. Symmetric monoidal co-categories
§8.2. Day convolution

§8.3. Homology and cohomology

8.1. Theorem. — The Filenberg-MacLane functor D(Z) — Sp from 7.47 upgrades to an
equivalence of stable oo-categories

D(R) — LModg(Sp)

for every ordinary ring R. If R is commutative, then LModg(Sp) ~ Modg(Sp) admits a
canonical symmetric monoidal structure and the above equivalence can be made strictly monoidal
if we equip D(R) with the symmetric monoidal structure induced by — ®II§ —. |

8.2. Corollary. — If X € An is an anima, then the unreduced and reduced homology and
cohomology of X with coefficients in an abelian group A are given by

(X, A) = m, (S[X] ® A) , (X, A) =, (ﬁb(S[X] Sl ® A) :

~

H*(X,A) = r_,homg(S[X],4),  H*(X,A)=r_,homg (ﬁb(S[X] 5 S[*]),A) .
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APPENDIX TO §8. A GLIMPSE OF HIGHER ALGEBRA

Appendix to §8. A glimpse of higher algebra

§8.4. oco-Operads
§8.5. E,-Algebras and iterated loop animae
§8.6. The Lurie tensor product

167



APPENDIX TO §9. COOL TOPOLOGY APPLICATIONS

§9. Cool topology applications =
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[AR94]

[BV73]

[Cis19]

[CP86]

[F-HC]

[F-HCp]

[F-KTh]

[FHR21]
[FK20]
[FS23]

[CI99]

[Hat02]

[Hov99]

[Joy02]

[Joy08]

[JT07]
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